Funkcije in grafi

Velikost: px
Začni prikazovanje s strani:

Download "Funkcije in grafi"

Transkripcija

1 14 Funkcije in grafi Funkcije Zapisi funkcij Sorazmernost Obratna sorazmernost Potenčne funkcije Polinomske funkcije Druge funkcije Prileganje podatkom 14.1 Funkcije Spremenljivke Odvisnost spremenljivk Graf funkcije Dnevi se nizajo drug za drugim in štejejo čas, ki je potekel od izbranega dne v preteklosti. Rečemo, da je pretečeni čas t spremenljiva količina oziroma spremenljivka. Sonce vsak dan kulminira in njegova deklinacija (kotni odmik od nebesnega ekvatorja) je tudi spremenljivka: od dne do dne se spreminja. V svetu je očitno polno spremenljivk. Začenši z dnevom spomladanskega enakonočja lahko za vsak dan v letu izmerimo Sončevo deklinacijo in rezultate zapišemo v tabelo. Takšna tabela ki jo že poznamo [7.3] kaže, kako se deklinacija spreminja s časom. Deklinacija je odvisna od časa. Rečemo, da je čas neodvisna spremenljivka oziroma argument in deklinacija odvisna spremenljivka oziroma funkcija. Kakšna je njuna medsebojna odvisnost, pa kaže tabela. Tabela, ki opisuje medsebojno povezavo dveh spremenljivk, ni posebno pregledna. Mnogo bolj nazorno jo prikažemo z grafom: vrednosti neodvisne spremenljivke predstavimo z razdaljami vzdolž vodoravne abscisne osi, vrednosti funkcije pa z odmiki vzdolž navpične ordinatne osi. Dolžinski enoti vzdolž obeh osi sta poljubni in ju priročno izberemo. Slika 14.1 Graf deklinacije Sonca v odvisnosti od časa. Čas, merjen v dnevih od pomladnega enakonočja, je neodvisna spremenljivka ali argument. Deklinacija, merjena v stopinjah, pa je odvisna spremenljivka ali funkcija. Enačba funkcije Tudi razsežnosti teles so "spremenljive". Tako, na primer, si lahko predstavljamo kroge različnih polmerov. Polmer kroga je tedaj neodvisna spremenljivka. Vemo pa, da je z njegovo izbiro določen tudi obseg: C = 2πr. Obseg kroga je torej funkcija polmera. Funkcijska odvisnost pa ni podana niti s tabelo, niti z grafom, marveč na posebno odličen način, z enačbo. Ko v enačbo vstavimo vrednost za polmer, znamo iz nje izračunati, kakšen je pripadajoči obseg. Na ta način lahko zgradimo ustrezno tabelo in iz nje narišemo graf. Kar velja za obseg kroga, velja tudi za njegovo ploščino je funkcija polmera: S = πr 2. Funkcijska odvisnost pa je sedaj 1

2 drugačna. In končno je tudi prostornina krogle funkcija polmera: V = (4π/3)r 3. Očitno obstaja med lastnostmi teles še mnogo funkcijskih povezav Zapisi funkcij Oblike funkcij Eksplicitni in implicitni zapis Funkcije več spremenljivk Odmislimo tip spremenljivk (čas, kot, razdalja itd.) in označimo kakršnokoli neodvisno spremenljivko z x in odvisno spremenljivko z u. Kar preostane, so zgolj različne oblike funkcijskih odvisnosti; iz navedenih konkretnih primerov (za krog in kroglo) tako izluščimo naslednje oblike: u = ax, u = ax 2 in u = ax 3, pri čemer je a poljubno, a nespremenljivo število. Takšnemu številu rečemo konstanta ali parameter. Seveda si lahko zamislimo tudi neomejeno mnogo drugačnih oblik. Enačba, ki opisuje funkcijsko odvisnost dveh količin, vsebuje dve spremenljivki. Kot že vemo, se enačba ne spremeni, če na levi in desni strani izvedemo isto operacijo. Zato lahko vsako dovolj pohlevno funkcijsko odvisnost zapišemo na različne, med seboj enakovredne načine, na primer: u = ax 2, x = (u/a) in u ax 2 = 0. Prvi in drugi obliki rečemo eksplicitna in zadnji implicitna. Za obe eksplicitni obliki tudi rečemo, da sta druga drugi obratni. Splošno povezavo dveh skalarnih količin u in x pa zapišemo simbolično kot u = f(x) ali x = g(u) ali F(x,u) = 0. Nikjer ni zahtevano, da mora biti funkcija odvisna zgolj od ene neodvisne spremenljivke. Lahko je odvisna od več njih, kakor kaže zgled za prostornino valja: ta je odvisna od njegovega polmera in višine: V = πr 2 h. Na splošno bomo tako za dve neodvisni spremenljivki zapisali eksplicitno u = f(x,y) (ali katero izmed obeh obratnih oblik) in implicitno F(x,y,u) = Sorazmernost Kadar je kvocient dveh soodvisnih spremenljivk zmeraj enak, kakor na primer kvocient med obsegom poljubnega kroga in njegovim polmerom, imamo opravka s sorazmernostjo: Premica u = ax. (14.1) Graf te funkcije narišemo tako, da v primerno izbranih točkah abscise izračunamo ustrezne ordinate in dobljene točke med seboj povežemo. Nastane premica. Pravzaprav je dovolj, da določimo le dve točki: u(0) = 0 in u(1) = a, ter skoznju potegnemo premico. Tako vidimo, kakšen pomen ima koeficient a: označuje nagibni kot φ premice glede na abscisno os, a = tan φ. Zato mu rečemo tudi smerni koeficient. Večji kot je, bolj strma je premica. Kadar je negativen, je premica padajoča. 2

3 Slika 14.2 Sorazmernost dveh količin u = ax. Graf je premica skozi izhodišče. Slika velja za koeficient a = 1. Večji kot je, bolj strma je premica. Če je koeficient negativen, je premica prezrcaljena preko abscisne osi, torej padajoča. Obratna funkcija k sorazmernosti je tudi sorazmernost: x = u/a. Le smerni koeficient je zdaj drugačen, namreč 1/a. Ni treba risati novega grafa, ampak že obstoječega pogledamo "od strani": ne torej vzdolž osi x, na katero so nataknjene ordinate, ampak vzdolž osi u, na katero so nataknjene abscise. Kogar to moti, lahko graf zavrti v nasprotni smeri urinega kazalca za 90. Os x postane navpična in os u vodoravna. Da kaže v levo namesto v desno, pa je zanimiva poživitev Obratna sorazmernost Kadar je produkt dveh soodvisnih spremenljivk zmeraj enak, kakor na primer produkt med silo in potjo pri dvigu bremena po poljubnem klancu na dano višino, imamo opravka z obratno sorazmernostjo: u = a x. (14.2) Hiperbola Izračunamo ordinate v primernih pozitivnih abscisnih točkah, na primer 0, 1/2, 1, 2 in (neskončno), ter jih povežemo. Enako storimo za ustrezne negativne točke. Nastane hiperbola. Definirana je v vsaki abscisni točki razen v izhodišču, kjer je neskončna. Rečemo, da ima tam pol oziroma da je ordinatna os navpična asimptota hiperbole. Daleč proč od izhodišča pa se čedalje tesneje približuje abscisni osi. Rečemo, da je ta vodoravna asimptota. Koeficient a določa, koliko je teme hiperbole oddaljeno od izhodišča. Slika 14.3 Obratna sorazmernost dveh količin u = a/x. Graf poimenujemo hiperbola. Slika velja za koeficient a = 1. Večji koeficient pomeni večji odmik temena hiperbole od izhodišča. Če je koeficient negativen, je graf prezrcaljen preko abscisne osi. Obratna funkcija k obratni sorazmernosti je tudi obratna sorazmernost: x = a/u. Še celo koeficient je isti. Funkcijo vidimo, ko obstoječi graf pogledamo "od strani". 3

4 14.5 Potenčne funkcije Naslednja vrsta funkcij, srečanih doslej, so naravne potence, na primer odvisnost med ploščino kroga in njegovim polmerom, ali med prostornino krogle in njenim polmerom: Parabole u = ax n. (14.3) Graf kvadratne potence u = ax 2 poteka iz točke u(0) = 0 skozi u(1) = a in naprej s čedalje večjo strmino. Graf je simetričen glede na ordinatno os: u( x) = u(x). Negativni koeficient a pomeni, da graf iz izhodišča pada, ne raste. Vse druge sode potence njihovi eksponenti so mnogokratniki števila dve imajo podobne grafe. Rečemo jim sode parabole. Tudi graf kubne potence u = ax 3 poteka iz točke u(0) = 0 skozi u(1) = a in naprej čedalje bolj strmo. Vendar je sedaj graf simetričen glede na izhodišče: u( x) = u(x). Negativni koeficient a pomeni, da graf skozi izhodišče pada, ne raste. Vse druge lihe potence tiste, ki niso sode imajo podobne grafe. Rečemo jim lihe parabole. Slika 14.4 Potenčna odvisnost količin u = ax 2 (rdeča) in u = ax 3 (modra). Grafa imenujemo paraboli, kvadratno in kubno. Slika velja za koeficienta a = 1. Večji koeficient pomeni bolj strmo naraščanje. Če je koeficient negativen, je graf prezrcaljen preko abscisne osi. Obratne funkcije k potenčnim so korenske funkcije. Njihovi grafi so "od strani gledani" grafi potenčnih funkcij. Lihi koreni so definirani za vse vrednosti argumenta, sodi pa le za pozitivne. Grafi slednjih so tudi dvolični: eni vrednosti argumenta ustrezata kar dve vrednosti funkcije, namreč pozitivni in negativni koren Polinomske funkcije Linearna funkcija V dosedanjih funkcijah so nastopali le produkti in kvocienti spremenljivk in parametrov (naravne potence so pravzaprav tudi le produkti). Vpeljimo še vsote in razlike! Najpreprostejša tovrstna funkcija je u = ax + b. (14.4) Rečemo ji linearna funkcija. Od sorazmernosti se razlikuje po dodatnem členu b. Zato je njen graf že poznana premica, vendar premaknjena iz izhodišča paralelno vzdolž ordinatne osi za b; navzgor, če je pozitiven, in navzdol, če je negativen. Kje premica seka ordinatno os, izračunamo tako, da v enačbo vstavimo x = 0 in izračunamo u. Seveda dobimo u = b. Presečišče premice z abscisno osjo pa dobimo tako, da v enačbo vstavimo 4

5 u = 0, s tem pridelamo linearno enačbo ax + b = 0 in iz nje izračunamo x = b/a. Kvadratna funkcija Višji polinomi Naslednja po vrsti je kvadratna funkcija: u = ax 2 + bx + c. (14.5) Kakšen je njen graf? Če b = 0, je očitno že znana parabola, premaknjena vzdolž ordinatne osi za c gor ali dol. Linearni člen bx pa vse skupaj zaplete. Bi se ga morda lahko znebili? Da, s pretvorbo funkcije v "temensko" obliko u = a(x + b/2a) 2 (b 2 /4a) + c, torej v kvadratno funkcijo u = ax 2 + D z novo neodvisno spremenljivko X = x + b/2a in z novim konstantnim členom D = c b 2 /4a. To pa že znamo narisati: teme ima pri X = 0, to je pri x = b/2a, in premaknjeno je po navpičnici za D. Presečišče parabole z ordinatno osjo določimo tako, da izračunamo vrednost kvadratne funkcije za x = 0. Dobimo u = c. Določitev presečišč z abscisno osjo pa vodi do kvadratne enačbe v temenski obliki; po ločitvi členov in korenjenju dobimo dve formalni rešitvi: x 1,2 = b ± (b2 4ac) 2a. Dve dejanski rešitvi skalarja dobimo le tedaj, ko je podkorenski izraz pozitiven. (14.6) Z dodajanjem čedalje višjih potenc lahko nadaljujemo v nedogled. Tako dobimo polinomske funkcije višjih stopenj. Linearna funkcija je polinom prve stopnje in kvadratna funkcija je polinom druge stopnje. V polinomu stopnje n, daleč proč od izhodišča, prevladuje člen ax n : po absolutni vrednosti je večji od vseh ostalih. Tako se graf tudi vede: daleč proč od izhodišča je podoben ustrezni potenčni funkciji. Blizu izhodišča pa seveda vijuga po svoje. Ker ima linearna funkcija največ eno ničlo, kvadratna pa dve, predvidevamo, da ima tak polinom največ n ničel Druge funkcije Gradnja funkcij Polinome lahko med seboj seštevamo, odštevamo, množimo in delimo. V prvih treh primerih spet dobimo polinom. V zadnjem primeru pa dobimo racionalne funkcije in njim ustrezajoče grafe ter enačbe. Posebno preprost primer je že poznana obratna sorazmernost. Če jih še korenimo, pa dobimo prav hude iracionalne funkcije. Vse skupaj polinome, racionalne in iracionalne funkcije poimenujemo algebrajske funkcije. S tem pravzaprav izrazimo pričakovanje, da morda obstajajo še druge, recimo jim transcendentne funkcije. Če bomo katero kdaj srečali in bo pomembna, se ji bomo posvetili tedaj. 5

6 Preoblikovanje grafov Reševanje enačb Risanje grafov za linearno in kvadratno funkcijo nam kaže, kako lahko dani graf u = f(x) preoblikujemo in dodelujemo. Premaknemo ga vzdolž abscisne osi: x x a in vzdolž ordinatne osi: u u a. Če je a pozitiven, je premik usmerjen v desno (naprej), sicer v levo (nazaj). Raztegnemo ga vzdolž abscisne osi: x x/a in vzdolž ordinatne osi: u u/a. Če je a večji od ena, se graf raztegne, sicer skrči. Prezrcalimo ga preko abscisne osi: x x ali preko ordinatne osi: u u. Funkcije, za katere velja f( x) = f(x), so torej simetrične glede na ordinatno os; po zgledu sodih potenc jih poimenujemo sode funkcije. Funkcije f( x) = f(x) so simetrične glede na izhodišče in jim iz podobnega razloga rečemo lihe funkcije. Reševanje linearne in kvadratne enačbe nam ponuja tudi zgled, kako reševati poljubno enačbo F(x,a) = 0, pri čemer smo z a označili enega ali več njenih parametrov. Cilj nam je, da enačbo preoblikujemo v obliko x = f(a), pri čemer je f(a) izračunljiv številski izraz. Enačba se pri tem ne spremeni, če nad levo in desno stranjo uporabimo enako operacijo: kaj prištejemo ali odštejemo; s čim pomnožimo ali delimo; potenciramo; korenimo; in podobno. Seveda pa ni nobenega zagotovila, da bo vsaka enačba, ki jo bomo kdaj srečali, tudi rešljiva Prileganje podatkom Interpolacija Enačba grafa Funkcija, ki je opisana s tabelo, je poznana zgolj v posameznih točkah. Kakšne pa so vrednosti med dvema točkama u 1 = u(x 1 ) in u 2 = u(x 2 )? Najlažje je, če tam aproksimiramo funkcijo s premico. V vmesni točki x ima funkcija potem vrednost u = u 1 + (x x 1 )(u 2 u 1 )/(x 2 x 1 ). To je linearna interpolacija. Ne da bi kaj dosti premišljevali, smo jo doslej že večkrat uporabili: pri tabelah sončnih deklinacij [7.3] in anomalij [7.6] ter pri tabelah kotnih razmerij [8.5] in logaritmov [13.6]. Zdaj, ko smo spoznali linearno funkcijo, smo interpolacijski obrazec tudi zapisali. Če je funkcija podana z enačbo, izračunamo in narišemo njen graf bolj ali manj zlahka. Obratna pot je mnogo težja: če poznamo kakšen graf, s katero enačbo bi ga opisali? Ne gre drugače, kot da ga primerjamo z grafi že poznanih funkcij, ugotovimo, kateremu je najbolj podoben in nastavimo funkcijske parametre tako, da je ujemanje najboljše. Poglejmo najpreprostejši primer, ko nas izmerjene točke (x,u) vabijo, da skoznje potegnemo premico. To storimo tako, da se odmiki merskih točk od nje navzgor in navzdol "izravnajo". Izravnavanje ocenimo kar na oko, vendar upamo, da bomo kdaj v prihodnje našli bolj "objektiven" način. S tem smo merske podatke aproksimirali z grafom linearne funkcije u = ax + b. Vrednost parametra a določimo iz strmine narisane premice: 6

7 a = Δu/Δx. Parameter b pa je podan s presečiščem premice in ordinatne osi. Kaj pa, če je funkcija videti kot potenčna funkcija u = ax n? Tedaj enačbo logaritmiramo in dobimo lg u = n lg x + lg a, kar je linearna funkcija U = nx + A z novima spremenljivkama in z novim parametrom. Narišemo merske točke (X, U) in če res tvorijo premico po že znani metodi določimo vse parametre. Seveda velja postopek le, kadar so vrednosti logaritmiranih količin pozitivne. Eksponent pa je lahko pozitiven ali negativen. 7

PRIPRAVA NA 1. Š. N.: KVADRATNA FUNKCIJA IN KVADRATNA ENAČBA 1. Izračunaj presečišča parabole y=5 x x 8 s koordinatnima osema. R: 2 0, 8, 4,0,,0

PRIPRAVA NA 1. Š. N.: KVADRATNA FUNKCIJA IN KVADRATNA ENAČBA 1. Izračunaj presečišča parabole y=5 x x 8 s koordinatnima osema. R: 2 0, 8, 4,0,,0 PRIPRAVA NA 1. Š. N.: KVADRATNA FUNKCIJA IN KVADRATNA ENAČBA 1. Izračunaj presečišča parabole y=5 x +18 x 8 s koordinatnima osema. R: 0, 8, 4,0,,0 5. Zapiši enačbo kvadratne funkcije f (x )=3 x +1 x+8

Prikaži več

ANALITIČNA GEOMETRIJA V RAVNINI

ANALITIČNA GEOMETRIJA V RAVNINI 3. Analitična geometrija v ravnini Osnovna ideja analitične geometrije je v tem, da vaskemu geometrijskemu objektu (točki, premici,...) pridružimo števila oz koordinate, ki ta objekt popolnoma popisujejo.

Prikaži več

Posebne funkcije

Posebne funkcije 10 Posebne funkcije Posebne funkcije Geometrijska vrsta Binomska vrsta Eksponentna funkcija Logaritemska funkcija Kotne funkcije Kotne tabele Grafi kotnih funkcij Obratne kotne funkcije 10.1 Posebne funkcije

Prikaži več

Osnove matematicne analize 2018/19

Osnove matematicne analize  2018/19 Osnove matematične analize 2018/19 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D f R priredi natanko

Prikaži več

Srednja šola za oblikovanje

Srednja šola za oblikovanje Srednja šola za oblikovanje Park mladih 8 2000 Maribor POKLICNA MATURA MATEMATIKA SEZNAM VPRAŠANJ ZA USTNI DEL NARAVNA IN CELA ŠTEVILA Opišite vrstni red računskih operacij v množici naravnih števil. Kakšen

Prikaži več

M

M Š i f r a k a n d i d a t a : Državni izpitni center *M16140111* Osnovna raven MATEMATIKA Izpitna pola 1 SPOMLADANSKI IZPITNI ROK Sobota, 4. junij 016 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat

Prikaži več

DN5(Kor).dvi

DN5(Kor).dvi Koreni Število x, ki reši enačbo x n = a, imenujemo n-ti koren števila a in to označimo z n a. Pri tem je n naravno število, a pa poljubno realno število. x = n a x n = a. ( n a ) n = a. ( n a ) m = n

Prikaži več

PREDMETNI KURIKULUM ZA RAZVOJ METEMATIČNIH KOMPETENC

PREDMETNI KURIKULUM ZA RAZVOJ METEMATIČNIH KOMPETENC MATEMATIKA 1.razred OSNOVE PREDMETA POKAZATELJI ZNANJA SPRETNOSTI KOMPETENCE Naravna števila -pozna štiri osnovne računske operacije in njihove lastnosti, -izračuna številske izraze z uporabo štirih računskih

Prikaži več

Zgledi:

Zgledi: a) za funkcijo f(x)= 1/3x 1 izračunaj ničlo, zapiši začetno vrednost in nariši graf (x=3, začetna vrednost: f(0)= 1, graf seka abscisno os v točki (3,0), ordinatno os pa v točki (0, 1)) b) nariši graf

Prikaži več

Slide 1

Slide 1 Vsak vektor na premici skozi izhodišče lahko zapišemo kot kjer je v smerni vektor premice in a poljubno število. r a v Vsak vektor na ravnini skozi izhodišče lahko zapišemo kot kjer sta v, v vektorja na

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-avgust-17.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-avgust-17.dvi Vpisna številka Priimek, ime Smer: K KT WA Izpit pri predmetu MATEMATIKA I Računski del Ugasni in odstrani mobilni telefon. Uporaba knjig in zapiskov ni dovoljena. Dovoljeni pripomočki so: kemični svinčnik,

Prikaži več

Vrste

Vrste Matematika 1 17. - 24. november 2009 Funkcija, ki ni algebraična, se imenuje transcendentna funkcija. Podrobneje si bomo ogledali naslednje transcendentne funkcije: eksponentno, logaritemsko, kotne, ciklometrične,

Prikaži več

MATEMATIKA 2. LETNIK GIMNAZIJE G2A,G2B Sestavil: Matej Mlakar, prof. Ravnatelj: Ernest Simončič, prof. Šolsko leto 2011/2012 Število ur: 140

MATEMATIKA 2. LETNIK GIMNAZIJE G2A,G2B Sestavil: Matej Mlakar, prof. Ravnatelj: Ernest Simončič, prof. Šolsko leto 2011/2012 Število ur: 140 MATEMATIKA 2. LETNIK GIMNAZIJE G2A,G2B Sestavil: Matej Mlakar, prof. Ravnatelj: Ernest Simončič, prof. Šolsko leto 2011/2012 Število ur: 140 Pravila ocenjevanja pri predmetu matematika na Gimnaziji Krško

Prikaži več

LABORATORIJSKE VAJE IZ FIZIKE

LABORATORIJSKE VAJE IZ FIZIKE UVOD LABORATORIJSKE VAJE IZ FIZIKE V tem šolskem letu ste se odločili za fiziko kot izbirni predmet. Laboratorijske vaje boste opravljali med poukom od začetka oktobra do konca aprila. Zunanji kandidati

Prikaži več

Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t

Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t 0.5 1.5 2.0 t a.) Nari²ite tri grafe: graf (klasi ne)

Prikaži več

4.Racionalna števila Ulomek je zapis oblike. Sestavljen je iz števila a (a ), ki ga imenujemo števec, in iz števila b (b, b 0), ki ga imenujemo imenov

4.Racionalna števila Ulomek je zapis oblike. Sestavljen je iz števila a (a ), ki ga imenujemo števec, in iz števila b (b, b 0), ki ga imenujemo imenov 4.Racionalna števila Ulomek je zapis oblike. Sestavljen je iz števila a (a ), ki ga imenujemo števec, in iz števila b (b, b 0), ki ga imenujemo imenovalec, ter iz ulomkove črte. Racionalna števila so števila,

Prikaži več

SESTAVA VSEBINE MATEMATIKE V 6

SESTAVA VSEBINE MATEMATIKE V 6 SESTAVA VSEBINE MATEMATIKE V 6. RAZREDU DEVETLETKE 1. KONFERENCA Št. ure Učne enote CILJI UVOD (1 ura) 1 Uvodna ura spoznati vsebine učnega načrta, način dela, učne pripomočke za pouk matematike v 6. razredu

Prikaži več

7. VAJA A. ENAČBA ZBIRALNE LEČE

7. VAJA A. ENAČBA ZBIRALNE LEČE 7. VAJA A. ENAČBA ZBIRALNE LEČE 1. UVOD Enačbo leče dobimo navadno s pomočjo geometrijskih konstrukcij. V našem primeru bomo do te enačbe prišli eksperimentalno, z merjenjem razdalj a in b. 2. NALOGA Izračunaj

Prikaži več

Vaje: Matrike 1. Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N 0 1 n ; n N Pokaži, da je množica x 0 y 0 x

Vaje: Matrike 1. Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N 0 1 n ; n N Pokaži, da je množica x 0 y 0 x Vaje: Matrike 1 Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N n 1 1 0 1 ; n N 0 2 Pokaži, da je množica x 0 y 0 x y x + z ; x, y, z R y x z x vektorski podprostor v prostoru matrik

Prikaži več

2. izbirni test za MMO 2017 Ljubljana, 17. februar Naj bosta k 1 in k 2 dve krožnici s središčema O 1 in O 2, ki se sekata v dveh točkah, ter

2. izbirni test za MMO 2017 Ljubljana, 17. februar Naj bosta k 1 in k 2 dve krožnici s središčema O 1 in O 2, ki se sekata v dveh točkah, ter 2. izbirni test za MMO 2017 Ljubljana, 17. februar 2017 1. Naj bosta k 1 in k 2 dve krožnici s središčema O 1 in O 2, ki se sekata v dveh točkah, ter naj bo A eno od njunih presečišč. Ena od njunih skupnih

Prikaži več

P182C10111

P182C10111 Š i f r a k a n d i d a t a : Državni izpitni center *P18C10111* JESENSKI IZPITNI ROK MATEMATIKA Izpitna pola Ponedeljek, 7. avgust 018 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno

Prikaži več

jj

jj Predmetni izpitni katalog za poklicno maturo Matematika Predmetni izpitni katalog se uporablja od spomladanskega izpitnega roka 04, dokler ni določen novi. Veljavnost kataloga za leto, v katerem bo kandidat

Prikaži več

Microsoft Word - Astronomija-Projekt19fin

Microsoft Word - Astronomija-Projekt19fin Univerza v Ljubljani Fakulteta za matematiko in fiziko Jure Hribar, Rok Capuder Radialna odvisnost površinske svetlosti za eliptične galaksije Projektna naloga pri predmetu astronomija Ljubljana, april

Prikaži več

Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y

Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y 2 ). Rešitev: Diferencialna enačba ima ločljive spremenljivke,

Prikaži več

RAČUNALNIŠKA ORODJA V MATEMATIKI

RAČUNALNIŠKA ORODJA V MATEMATIKI DEFINICIJA V PARAVOKOTNEM TRIKOTNIKU DEFINICIJA NA ENOTSKI KROŢNICI GRAFI IN LASTNOSTI SINUSA IN KOSINUSA POMEMBNEJŠE FORMULE Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z

Prikaži več

FGG13

FGG13 10.8 Metoda zveznega nadaljevanja To je metoda za reševanje nelinearne enačbe f(x) = 0. Če je težko poiskati začetni približek (še posebno pri nelinearnih sistemih), si lahko pomagamo z uvedbo dodatnega

Prikaži več

Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku β a c γ b α sin = a c cos = b c tan = a b cot = b a Sinus kota je razmerje kotu naspr

Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku β a c γ b α sin = a c cos = b c tan = a b cot = b a Sinus kota je razmerje kotu naspr Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete in hipotenuze. Kosinus kota je razmerje

Prikaži več

GeomInterp.dvi

GeomInterp.dvi Univerza v Ljubljani Fakulteta za matematiko in fiziko Seminar za Numerično analizo Geometrijska interpolacija z ravninskimi parametričnimi polinomskimi krivuljami Gašper Jaklič, Jernej Kozak, Marjeta

Prikaži več

Matematika 2

Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 23. april 2014 Soda in liha Fourierjeva vrsta Opomba Pri razvoju sode periodične funkcije f v Fourierjevo vrsto v razvoju nastopajo

Prikaži več

jj

jj PREDMETNI IZPITNI KATALOG ZA POKLICNO MATURO MATEMATIKA Predmetni izpitni katalog je določil Strokovni svet RS za splošno izobraževanje na 60. seji 27. 8. 2003 in se uporablja v programih za pridobitev

Prikaži več

EKVITABILNE PARTICIJE IN TOEPLITZOVE MATRIKE Aleksandar Jurišić Politehnika Nova Gorica in IMFM Vipavska 13, p.p. 301, Nova Gorica Slovenija Štefko Mi

EKVITABILNE PARTICIJE IN TOEPLITZOVE MATRIKE Aleksandar Jurišić Politehnika Nova Gorica in IMFM Vipavska 13, p.p. 301, Nova Gorica Slovenija Štefko Mi EKVITABILNE PARTICIJE IN TOEPLITZOVE MATRIKE Aleksandar Jurišić Politehnika Nova Gorica in IMFM Vipavska 13, p.p. 301, Nova Gorica Slovenija Štefko Miklavič 30. okt. 2003 Math. Subj. Class. (2000): 05E{20,

Prikaži več

Microsoft Word - Analiza rezultatov NPZ matematika 2018.docx

Microsoft Word - Analiza rezultatov NPZ matematika 2018.docx Analiza dosežkov pri predmetu matematika za NPZ 28 6. razred NPZ matematika 28 Dosežek šole Povprečno število točk v % Državno povprečje Povprečno število točk v % Odstopanje v % 49,55 52,52 2,97 Povprečni

Prikaži več

Ime in priimek

Ime in priimek Polje v osi tokovne zanke Seminar pri predmetu Osnove Elektrotehnike II, VSŠ (Uporaba programskih orodij v elektrotehniki) Ime Priimek, vpisna številka, skupina Ljubljana,.. Kratka navodila: Seminar mora

Prikaži več

Mladi za napredek Maribora srečanje DOLŽINA»SPIRALE«Matematika Raziskovalna naloga Februar 2015

Mladi za napredek Maribora srečanje DOLŽINA»SPIRALE«Matematika Raziskovalna naloga Februar 2015 Mladi za napredek Maribora 015 3. srečanje DOLŽINA»SPIRALE«Matematika Raziskovalna naloga Februar 015 Kazalo 1. Povzetek...3. Uvod...4 3. Spirala 1...5 4. Spirala...6 5. Spirala 3...8 6. Pitagorejsko drevo...10

Prikaži več

ELEKTRIČNI NIHAJNI KROG TEORIJA Električni nihajni krog je električno vezje, ki služi za generacijo visokofrekvenče izmenične napetosti. V osnovi je "

ELEKTRIČNI NIHAJNI KROG TEORIJA Električni nihajni krog je električno vezje, ki služi za generacijo visokofrekvenče izmenične napetosti. V osnovi je ELEKTRIČNI NIHAJNI KROG TEORIJA Električni nihajni krog je električno vezje, ki služi za generacijo visokofrekvenče izmenične napetosti. V osnovi je "električno" nihalo, sestavljeno iz vzporedne vezave

Prikaži več

Microsoft Word - CelotniPraktikum_2011_verZaTisk.doc

Microsoft Word - CelotniPraktikum_2011_verZaTisk.doc Elektrotehniški praktikum Sila v elektrostatičnem polju Namen vaje Našli bomo podobnost med poljem mirujočih nabojev in poljem mas, ter kakšen vpliv ima relativna vlažnost zraka na hitrost razelektritve

Prikaži več

FGG14

FGG14 Iterativne metode podprostorov Iterativne metode podprostorov uporabljamo za numerično reševanje linearnih sistemov ali računanje lastnih vrednosti problemov z velikimi razpršenimi matrikami, ki so prevelike,

Prikaži več

Predtest iz za 1. kontrolno nalogo- 2K Teme za kontrolno nalogo: Podobni trikotniki. Izreki v pravokotnem trikotniku. Kotne funkcije poljubnega kota.

Predtest iz za 1. kontrolno nalogo- 2K Teme za kontrolno nalogo: Podobni trikotniki. Izreki v pravokotnem trikotniku. Kotne funkcije poljubnega kota. Predtest iz za 1. kontrolno nalogo- K Teme za kontrolno nalogo: Podobni trikotniki. Izreki v pravokotnem trikotniku. Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/testi in izpiti/ /IZPITI/FKKT-februar-14.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/testi in izpiti/ /IZPITI/FKKT-februar-14.dvi Kemijska tehnologija, Kemija Bolonjski univerzitetni program Smer: KT K WolframA: DA NE Računski del izpita pri predmetu MATEMATIKA I 6. 2. 2014 Čas reševanja je 75 minut. Navodila: Pripravi osebni dokument.

Prikaži več

DOMACA NALOGA - LABORATORIJSKE VAJE NALOGA 1 Dani sta kompleksni stevili z in z Kompleksno stevilo je definirano kot : z = a + b, a p

DOMACA NALOGA - LABORATORIJSKE VAJE NALOGA 1 Dani sta kompleksni stevili z in z Kompleksno stevilo je definirano kot : z = a + b, a p DOMACA NALOGA - LABORATORIJSKE VAJE NALOGA 1 Dani sta kompleksni stevili z 1 5 2 3 in z 2 3 8 5. Kompleksno stevilo je definirano kot : z = a + b, a predstavlja realno, b pa imaginarno komponento. z 1

Prikaži več

glava.dvi

glava.dvi Lastnosti verjetnosti 1. Za dogodka A in B velja: P(A B) = P(A) + P(B) P(A B) 2. Za dogodke A, B in C velja: P(A B C) = P(A) + P(B) + P(C) P(A B) P(A C) P(B C) + P(A B C) Kako lahko to pravilo posplošimo

Prikaži več

P181C10111

P181C10111 Š i f r a k a n d i d a t a : Državni izpitni center *P181C10111* SPOMLADANSKI IZPITNI ROK MATEMATIKA Izpitna pola Sobota, 9. junij 018 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno

Prikaži več

NAVODILA AVTORJEM PRISPEVKOV

NAVODILA AVTORJEM PRISPEVKOV Predmetna komisija za nižji izobrazbeni standard matematika Opisi dosežkov učencev 6. razreda na nacionalnem preverjanju znanja Slika: Porazdelitev točk pri matematiki (NIS), 6. razred 1 ZELENO OBMOČJE

Prikaži več

Brownova kovariancna razdalja

Brownova kovariancna razdalja Brownova kovariančna razdalja Nace Čebulj Fakulteta za matematiko in fiziko 8. januar 2015 Nova mera odvisnosti Motivacija in definicija S primerno izbiro funkcije uteži w(t, s) lahko definiramo mero odvisnosti

Prikaži več

Poročilo o opravljenem delu pri praktičnem pouku fizike: MERJENJE S KLJUNASTIM MERILOM Ime in priimek: Mitja Kočevar Razred: 1. f Učitelj: Otmar Uranj

Poročilo o opravljenem delu pri praktičnem pouku fizike: MERJENJE S KLJUNASTIM MERILOM Ime in priimek: Mitja Kočevar Razred: 1. f Učitelj: Otmar Uranj Poročilo o opravljenem delu pri praktičnem pouku fizike: MERJENJE S KLJUNASTIM MERILOM Ime in priimek: Mitja Kočevar Razred: 1. f Učitelj: Otmar Uranjek, prof. fizike Datum izvedbe vaje: 11. 11. 2005 Uvod

Prikaži več

Rešene naloge iz Linearne Algebre

Rešene naloge iz Linearne Algebre UNIVERZA V LJUBLJANI FAKULTETA ZA RAČUNALNIŠTVO IN INFORMATIKO LABORATORIJ ZA MATEMATIČNE METODE V RAČUNALNIŠTVU IN INFORMATIKI Aleksandra Franc REŠENE NALOGE IZ LINEARNE ALGEBRE Študijsko gradivo Ljubljana

Prikaži več

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5. februar 2018 Navodila Pazljivo preberite

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5. februar 2018 Navodila Pazljivo preberite Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5 februar 018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Nalog je

Prikaži več

Univerza v Ljubljani Fakulteta za elektrotehniko Fakulteta za računalništvo in informatiko MATEMATIKA I Gabrijel Tomšič Bojan Orel Neža Mramor Kosta L

Univerza v Ljubljani Fakulteta za elektrotehniko Fakulteta za računalništvo in informatiko MATEMATIKA I Gabrijel Tomšič Bojan Orel Neža Mramor Kosta L Univerza v Ljubljani Fakulteta za elektrotehniko Fakulteta za računalništvo in informatiko MATEMATIKA I Gabrijel Tomšič Bojan Orel Neža Mramor Kosta Ljubljana, 2004 Poglavje 3 Funkcije 3.1 Osnovni pojmi

Prikaži več

UČNI NAČRT. Gimnazija, 2. letnik, 2016/2017 Ime in Priimek: MATEJ MLAKAR , Pregledal-a: 1: Splošni cilji / kompetence predmeta: S splošnimi ci

UČNI NAČRT. Gimnazija, 2. letnik, 2016/2017 Ime in Priimek: MATEJ MLAKAR , Pregledal-a: 1: Splošni cilji / kompetence predmeta: S splošnimi ci UČNI NAČRT. Gimnazija, 2. letnik, 2016/2017 Ime in Priimek: MATEJ MLAKAR 1.9.2016, Pregledal-a: 1: Splošni cilji / kompetence predmeta: S splošnimi cilji opredelimo namen učenja in poučevanja matematike.

Prikaži več

Priloga 1 Ljubljana 2018 MATEMATIKA Katalog znanja za osebe z mednarodno zaščito

Priloga 1 Ljubljana 2018 MATEMATIKA Katalog znanja za osebe z mednarodno zaščito Priloga 1 Ljubljana 2018 MATEMATIKA Katalog znanja za osebe z mednarodno zaščito KAZALO 1 UVOD... 3 2 IZPITNI CILJI... 4 3 ZGRADBA IN VREDNOTENJE IZPITA... 5 3.1 Shema izpita... 5 3.2 Tipi nalog in vrednotenje...

Prikaži več

PowerPoint Presentation

PowerPoint Presentation Integral rešujemo nalogo: Dana je funkcija f. Najdimo funkcijo F, katere odvod je enak f. Če je F ()=f() pravimo, da je F() primitivna funkcija za funkcijo f(). Primeri: f ( ) = cos f ( ) = sin f () =

Prikaži več

Geometrija v nacionalnih preverjanjih znanja

Geometrija v nacionalnih preverjanjih znanja Geometrija v nacionalnih preverjanjih znanja Aleš Kotnik, OŠ Rada Robiča Limbuš Boštjan Repovž, OŠ Krmelj Struktura NPZ za 6. razred Struktura NPZ za 9. razred Taksonomska stopnja (raven) po Gagneju I

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNISTVO Matematika Pisni izpit. junij 22 Ime in priimek Vpisna st Navodila Pazljivo preberite besedilo naloge, preden se lotite resevanja. Veljale bodo samo resitve na papirju, kjer so

Prikaži več

FAKULTETA ZA STROJNIŠTVO Matematika 2 Pisni izpit 9. junij 2005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite bese

FAKULTETA ZA STROJNIŠTVO Matematika 2 Pisni izpit 9. junij 2005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite bese FAKULTETA ZA STROJNIŠTVO Matematika Pisni izpit 9. junij 005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Veljale bodo

Prikaži več

Poskusi s kondenzatorji

Poskusi s kondenzatorji Poskusi s kondenzatorji Samo Lasič, Fakulteta za Matematiko in Fiziko, Oddelek za fiziko, Ljubljana Povzetek Opisani so nekateri poskusi s kondenzatorji, ki smo jih izvedli z merilnim vmesnikom LabPro.

Prikaži več

OSNOVE LOGIKE 1. Kaj je izjava? Kaj je negacija izjave? Kaj je konjunkcija in kaj disjunkcija izjav? Povejte, kako je s pravilnostjo negacije, konjunk

OSNOVE LOGIKE 1. Kaj je izjava? Kaj je negacija izjave? Kaj je konjunkcija in kaj disjunkcija izjav? Povejte, kako je s pravilnostjo negacije, konjunk OSNOVE LOGIKE 1. Kaj je izjava? Kaj je negacija izjave? Kaj je konjunkcija in kaj disjunkcija izjav? Povejte, kako je s pravilnostjo negacije, konjunkcije in disjunkcije. Izjava je vsaka poved, za katero

Prikaži več

Poslovilno predavanje

Poslovilno predavanje Poslovilno predavanje Matematične teme z didaktiko Marko Razpet, Pedagoška fakulteta Ljubljana, 20. november 2014 1 / 32 Naše skupne ure Matematične tehnologije 2011/12 Funkcije več spremenljivk 2011/12

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 3. februar Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Veljale bodo samo rešitve na papirju, kjer

Prikaži več

Vsebinska struktura predmetnih izpitnih katalogov za splošno maturo

Vsebinska struktura predmetnih izpitnih katalogov za splošno maturo Ljubljana 017 MATEMATIKA Predmetni izpitni katalog za splošno maturo Predmetni izpitni katalog se uporablja od spomladanskega izpitnega roka 019, dokler ni določen novi. Veljavnost kataloga za leto, v

Prikaži več

6.1 Uvod 6 Igra Chomp Marko Repše, Chomp je nepristranska igra dveh igralcev s popolno informacijo na dvo (ali vec) dimenzionalnem prostoru

6.1 Uvod 6 Igra Chomp Marko Repše, Chomp je nepristranska igra dveh igralcev s popolno informacijo na dvo (ali vec) dimenzionalnem prostoru 6.1 Uvod 6 Igra Chomp Marko Repše, 30.03.2009 Chomp je nepristranska igra dveh igralcev s popolno informacijo na dvo (ali vec) dimenzionalnem prostoru in na končni ali neskončni čokoladi. Igralca si izmenjujeta

Prikaži več

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 2017

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 2017 UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 217 ii Kazalo Diferencialni račun vektorskih funkcij 1 1.1 Skalarne funkcije...........................

Prikaži več

Microsoft PowerPoint _12_15-11_predavanje(1_00)-IR-pdf

Microsoft PowerPoint _12_15-11_predavanje(1_00)-IR-pdf uporaba for zanke i iz korak > 0 oblika zanke: for i iz : korak : ik NE i ik DA stavek1 stavek2 stavekn stavek1 stavek2 stavekn end i i + korak I&: P-XI/1/17 uporaba for zanke i iz korak < 0 oblika zanke:

Prikaži več

11. Navadne diferencialne enačbe Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogo

11. Navadne diferencialne enačbe Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogo 11. Navadne diferencialne enačbe 11.1. Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogoju y(x 0 ) = y 0, kjer je f dana dovolj gladka funkcija

Prikaži več

Turingov stroj in programiranje Barbara Strniša Opis in definicija Definirajmo nekaj oznak: Σ abeceda... končna neprazna množica simbolo

Turingov stroj in programiranje Barbara Strniša Opis in definicija Definirajmo nekaj oznak: Σ abeceda... končna neprazna množica simbolo Turingov stroj in programiranje Barbara Strniša 12. 4. 2010 1 Opis in definicija Definirajmo nekaj oznak: Σ abeceda... končna neprazna množica simbolov (običajno Σ 2) Σ n = {s 1 s 2... s n ; s i Σ, i =

Prikaži več

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6. julij 2018 Navodila Pazljivo preberite be

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6. julij 2018 Navodila Pazljivo preberite be Ime in priimek: Vpisna št: FAKULEA ZA MAEMAIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6 julij 2018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Za pozitiven rezultat

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNISTVO Matematika 2. kolokvij. december 2 Ime in priimek: Vpisna st: Navodila Pazljivo preberite besedilo naloge, preden se lotite resevanja. Veljale bodo samo resitve na papirju, kjer

Prikaži več

Mrežni modeli polimernih verig Boštjan Jenčič 22. maj 2013 Eden preprostejših opisov polimerne verige je mrežni model, kjer lahko posamezni segmenti p

Mrežni modeli polimernih verig Boštjan Jenčič 22. maj 2013 Eden preprostejših opisov polimerne verige je mrežni model, kjer lahko posamezni segmenti p Mrežni modeli polimernih verig Boštjan Jenčič. maj 013 Eden preprostejših opisov polimerne verige je mrežni model, kjer lahko posameni segmenti polimera asedejo golj ogljišča v kvadratni (ali kubični v

Prikaži več

LaTeX slides

LaTeX slides Linearni in nelinearni modeli Milena Kovač 22. december 2006 Biometrija 2006/2007 1 Linearni, pogojno linearni in nelinearni modeli Kriteriji za razdelitev: prvi parcialni odvodi po parametrih Linearni

Prikaži več

Numeri na analiza - podiplomski ²tudij FGG doma e naloge - 1. skupina V prvem delu morate re²iti toliko nalog, da bo njihova skupna vsota vsaj 10 to k

Numeri na analiza - podiplomski ²tudij FGG doma e naloge - 1. skupina V prvem delu morate re²iti toliko nalog, da bo njihova skupna vsota vsaj 10 to k Numeri na analiza - podiplomski ²tudij FGG doma e naloge -. skupina V prvem delu morate re²iti toliko nalog, da bo njihova skupna vsota vsaj 0 to k in da bo vsaj ena izmed njih vredna vsaj 4 to ke. Za

Prikaži več

Del 1 Limite

Del 1 Limite Del 1 Limite POGLAVJE 1 Zaporedja realnih števil 1. Osnovne lastnosti realnih števil Naravna števila označujemo z N, cela z Z, racionalna z Q in realna z R. Naravna števila so nastala iz potrebe po preštevanju.

Prikaži več

Matematika II (UN) 1. kolokvij (13. april 2012) RE ITVE Naloga 1 (25 to k) Dana je linearna preslikava s predpisom τ( x) = A x A 1 x, kjer je A

Matematika II (UN) 1. kolokvij (13. april 2012) RE ITVE Naloga 1 (25 to k) Dana je linearna preslikava s predpisom τ( x) = A x A 1 x, kjer je A Matematika II (UN) 1 kolokvij (13 april 01) RE ITVE Naloga 1 (5 to k) Dana je linearna preslikava s predpisom τ( x) = A x A 1 x, kjer je 0 1 1 A = 1, 1 A 1 pa je inverzna matrika matrike A a) Poi² ite

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNIŠTVO Matematika 2. kolokvij 4. januar 212 Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Veljale bodo samo rešitve na papirju, kjer

Prikaži več

1 Merjenje sil in snovnih lastnosti 1.1 Merjenje sil z računalnikom Umeritev senzorja Senzor za merjenje sile pretvarja silo v električno napetost. Si

1 Merjenje sil in snovnih lastnosti 1.1 Merjenje sil z računalnikom Umeritev senzorja Senzor za merjenje sile pretvarja silo v električno napetost. Si 1 Merjenje sil in snovnih lastnosti 11 Merjenje sil z računalnikom Umeritev senzorja Senzor za merjenje sile pretvarja silo v električno napetost Signal vodimo do računalnika, ki prikaže časovno odvisnost

Prikaži več

Domače vaje iz LINEARNE ALGEBRE Marjeta Kramar Fijavž Fakulteta za gradbeništvo in geodezijo Univerze v Ljubljani 2007/08 Kazalo 1 Vektorji 2 2 Analit

Domače vaje iz LINEARNE ALGEBRE Marjeta Kramar Fijavž Fakulteta za gradbeništvo in geodezijo Univerze v Ljubljani 2007/08 Kazalo 1 Vektorji 2 2 Analit Domače vaje iz LINEARNE ALGEBRE Marjeta Kramar Fijavž Fakulteta za gradbeništvo in geodezijo Univerze v Ljubljani 007/08 Kazalo Vektorji Analitična geometrija 7 Linearni prostori 0 4 Evklidski prostori

Prikaži več

Microsoft Word - UP_Lekcija04_2014.docx

Microsoft Word - UP_Lekcija04_2014.docx 4. Zanka while Zanke pri programiranju uporabljamo, kadar moramo stavek ali skupino stavkov izvršiti večkrat zaporedoma. Namesto, da iste (ali podobne) stavke pišemo n-krat, jih napišemo samo enkrat in

Prikaži več

10. Meritev šumnega števila ojačevalnika Vsako radijsko zvezo načrtujemo za zahtevano razmerje signal/šum. Šum ima vsaj dva izvora: naravni šum T A, k

10. Meritev šumnega števila ojačevalnika Vsako radijsko zvezo načrtujemo za zahtevano razmerje signal/šum. Šum ima vsaj dva izvora: naravni šum T A, k 10. Meritev šumnega števila ojačevalnika Vsako radijsko zvezo načrtujemo za zahtevano razmerje signal/šum. Šum ima vsaj dva izvora: naravni šum T A, ki ga sprejme antena in dodatni šum T S radijskega sprejemnika.

Prikaži več

VIDEOANALIZA GIBANJ Za kratke projektne naloge lahko dijaki z domačimi digitalnimi fotoaparati posnamejo nekaj sekundne videofilme poljubnih gibanj. U

VIDEOANALIZA GIBANJ Za kratke projektne naloge lahko dijaki z domačimi digitalnimi fotoaparati posnamejo nekaj sekundne videofilme poljubnih gibanj. U VIDEOANALIZA GIBANJ Za kratke projektne naloge lahko dijaki z domačimi digitalnimi fotoaparati posnamejo nekaj sekundne videofilme poljubnih gibanj. Uporabni so skoraj vsi domači digitalni fotoaparati.

Prikaži več

C:/Users/Matevz/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-januar-februar-15.dvi

C:/Users/Matevz/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-januar-februar-15.dvi Kemijska tehnologija, Kemija Bolonjski univerzitetni program Smer: KT K WolframA: DA NE Čas reševanja je 75 minut. Navodila: Računski del izpita pri predmetu MATEMATIKA I Ugasni in odstrani mobilni telefon.

Prikaži več

Univerza v Novi Gorici Fakulteta za aplikativno naravoslovje Fizika (I. stopnja) Mehanika 2014/2015 VAJE Gravitacija - ohranitveni zakoni

Univerza v Novi Gorici Fakulteta za aplikativno naravoslovje Fizika (I. stopnja) Mehanika 2014/2015 VAJE Gravitacija - ohranitveni zakoni Univerza v Novi Gorici Fakulteta za aplikativno naravoslovje Fizika (I. stopnja) Mehanika 2014/2015 VAJE 12. 11. 2014 Gravitacija - ohranitveni zakoni 1. Telo z maso M je sestavljeno iz dveh delov z masama

Prikaži več

MERJENJE GORIŠČNE RAZDALJE LEČE

MERJENJE GORIŠČNE RAZDALJE LEČE MERJENJE GORIŠČNE RAZDALJE LEČE 1. UVOD: V tej vaji je bilo potrebno narediti pet nalog, povezanih z lečami. 2. NALOGA: -Na priloženih listih POTREBŠČINE: -Na priloženih listih A. Enačba zbiralne leče

Prikaži več

CpE & ME 519

CpE & ME 519 2D Transformacije Zakaj potrebujemo transformacije? Animacija Več instanc istega predmeta, variacije istega objekta na sceni Tvorba kompliciranih predmetov iz bolj preprostih Transformacije gledanja Kaj

Prikaži več

Microsoft Word - A-3-Dezelak-SLO.doc

Microsoft Word - A-3-Dezelak-SLO.doc 20. posvetovanje "KOMUNALNA ENERGETIKA / POWER ENGINEERING", Maribor, 2011 1 ANALIZA OBRATOVANJA HIDROELEKTRARNE S ŠKOLJČNIM DIAGRAMOM Klemen DEŽELAK POVZETEK V prispevku je predstavljena možnost izvedbe

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-junij-17.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-junij-17.dvi Vpisna številka Priimek, ime Smer: K KT WA Izpit pri predmetu MATEMATIKA I Računski del Ugasni in odstrani mobilni telefon. Uporaba knjig in zapiskov ni dovoljena. Dovoljeni pripomočki so: kemični svinčnik,

Prikaži več

PowerPointova predstavitev

PowerPointova predstavitev Obravnava kotov za učence s posebnimi potrebami Reading of angles for pupils with special needs Petra Premrl OŠ Danila Lokarja Ajdovščina OSNOVNA ŠOLA ENAKOVREDNI IZOBRAZBENI STANDARD NIŽJI IZOBRAZBENI

Prikaži več

Uvod v diferencialne enačbe, kompleksno in Fourierovo analizo Bojan Magajna Fakulteta za matematiko in fiziko, Univerza v Ljubljani

Uvod v diferencialne enačbe, kompleksno in Fourierovo analizo Bojan Magajna Fakulteta za matematiko in fiziko, Univerza v Ljubljani Uvod v diferencialne enačbe, kompleksno in Fourierovo analizo Bojan Magajna Fakulteta za matematiko in fiziko, Univerza v Ljubljani UVOD V DIFERENCIALNE ENAČBE, KOMPLEKSNO IN FOURIEROVO ANALIZO Povzetek

Prikaži več

STAVKI _5_

STAVKI _5_ 5. Stavki (Teoremi) Vsebina: Stavek superpozicije, stavek Thévenina in Nortona, maksimalna moč na bremenu (drugič), stavek Tellegena. 1. Stavek superpozicije Ta stavek določa, da lahko poljubno vezje sestavljeno

Prikaži več

Prostor

Prostor 8 Prostor Dolžina Podobni trikotniki Pravokotni trikotnik Krog, lok in kot Kotna razmerja Triangulacija Splošni trikotnik Zemljemerstvo Ploščina Prostornina Velikost Zemlje Do nebesnih teles Sončni sistem

Prikaži več

Poglavje 3 Reševanje nelinearnih enačb Na iskanje rešitve enačbe oblike f(x) = 0 (3.1) zelo pogosto naletimo pri reševanju tehničnih problemov. Pri te

Poglavje 3 Reševanje nelinearnih enačb Na iskanje rešitve enačbe oblike f(x) = 0 (3.1) zelo pogosto naletimo pri reševanju tehničnih problemov. Pri te Poglavje 3 Reševanje nelinearnih enačb Na iskanje rešitve enačbe oblike f(x) = 0 (3.1) zelo pogosto naletimo pri reševanju tehničnih problemov. Pri tem je lahko nelinearna funkcija f podana eksplicitno,

Prikaži več

RAM stroj Nataša Naglič 4. junij RAM RAM - random access machine Bralno pisalni, eno akumulatorski računalnik. Sestavljajo ga bralni in pisalni

RAM stroj Nataša Naglič 4. junij RAM RAM - random access machine Bralno pisalni, eno akumulatorski računalnik. Sestavljajo ga bralni in pisalni RAM stroj Nataša Naglič 4. junij 2009 1 RAM RAM - random access machine Bralno pisalni, eno akumulatorski računalnik. Sestavljajo ga bralni in pisalni trak, pomnilnik ter program. Bralni trak- zaporedje

Prikaži več

INDIVIDUALNI PROGRAM PREDMET: MATEMATIKA ŠOL. LETO 2015/2016 UČITELJ: ANDREJ PRAH Učenec: Razred: 7. Leto šolanja: Ugotovitev stanja: Učenec je lani n

INDIVIDUALNI PROGRAM PREDMET: MATEMATIKA ŠOL. LETO 2015/2016 UČITELJ: ANDREJ PRAH Učenec: Razred: 7. Leto šolanja: Ugotovitev stanja: Učenec je lani n INDIVIDUALNI PROGRAM PREDMET: MATEMATIKA ŠOL. LETO 2015/2016 UČITELJ: ANDREJ PRAH Učenec: Razred: 7. Leto šolanja: Ugotovitev stanja: Učenec je lani neredno opravljal domače naloge. Pri pouku ga je bilo

Prikaži več

NAVADNA (BIVARIATNA) LINEARNA REGRESIJA O regresijski analizi govorimo, kadar želimo opisati povezanost dveh numeričnih spremenljivk. Opravka imamo to

NAVADNA (BIVARIATNA) LINEARNA REGRESIJA O regresijski analizi govorimo, kadar želimo opisati povezanost dveh numeričnih spremenljivk. Opravka imamo to NAVADNA (BIVARIATNA) LINEARNA REGRESIJA O regresijski analizi govorimo, kadar želimo opisati povezanost dveh numeričnih spremenljivk. Opravka imamo torej s pari podatkov (x i,y i ), kjer so x i vrednosti

Prikaži več

PowerPoint Presentation

PowerPoint Presentation RAK: P-II//9 NUMERIČNI MODE esatno reševanje: reševanje dierencialni enačb aprosimativno reševanje: metoda ončni razli (MKR) inite dierence metod (FDM) metoda ončni elementov (MKE) inite element metod

Prikaži več

Microsoft PowerPoint - Java_spremenljivke

Microsoft PowerPoint - Java_spremenljivke Java Spremenljivke, prireditveni stavek Spremenljivke Prostor, kjer hranimo vrednosti Ime Znak, števka, _ Presledkov v imenu ne sme biti! Tip spremenljivke int (cela števila) Vse spremenljivke napovemo

Prikaži več

Naloge 1. Dva električna grelnika z ohmskima upornostma 60 Ω in 30 Ω vežemo vzporedno in priključimo na idealni enosmerni tokovni vir s tokom 10 A. Tr

Naloge 1. Dva električna grelnika z ohmskima upornostma 60 Ω in 30 Ω vežemo vzporedno in priključimo na idealni enosmerni tokovni vir s tokom 10 A. Tr Naloge 1. Dva električna grelnika z ohmskima upornostma 60 Ω in 30 Ω vežemo vzporedno in priključimo na idealni enosmerni tokovni vir s tokom 10 A. Trditev: idealni enosmerni tokovni vir obratuje z močjo

Prikaži več

Microsoft Word - avd_vaje_ars1_1.doc

Microsoft Word - avd_vaje_ars1_1.doc ARS I Avditorne vaje Pri nekem programu je potrebno izvršiti N=1620 ukazov. Pogostost in trajanje posameznih vrst ukazov računalnika sta naslednja: Vrsta ukaza Štev. urinih period Pogostost Prenosi podatkov

Prikaži več

Jerneja Čučnik Merjenje in uporaba kondenzatorja Gimnazija Celje Center LABORATORIJSKA VAJA Merjenje in uporaba kondenzatorja Ime in priimek:

Jerneja Čučnik Merjenje in uporaba kondenzatorja Gimnazija Celje Center LABORATORIJSKA VAJA Merjenje in uporaba kondenzatorja Ime in priimek: 1. LABOATOJSKA VAJA Merjenje in uporaba me in priimek: azred: 4. b Šola: Gimnazija elje ener Menor: Boru Namesnik, prof. Daum izvedbe vaje: 17.12.29 1 VOD in POTEK DELA 1.a Polnjenje Kondenzaor priključimo

Prikaži več

ZveznostFunkcij11.dvi

ZveznostFunkcij11.dvi II. LIMITA IN ZVEZNOST FUNKCIJ. Preslikave med množicami Funkcija ali preslikava med dvema množicama A in B je predpis f, ki vsakemu elementu x množice A priredi natanko določen element y množice B. Važno

Prikaži več

(Microsoft PowerPoint - vorsic ET 9.2 OES matri\350ne metode 2011.ppt [Compatibility Mode])

(Microsoft PowerPoint - vorsic ET 9.2 OES matri\350ne metode 2011.ppt [Compatibility Mode]) 8.2 OBRATOVANJE ELEKTROENERGETSKEGA SISTEMA o Matrične metode v razreševanju el. omrežij Matrične enačbe električnih vezij Numerične metode za reševanje linearnih in nelinearnih enačb Sistem algebraičnih

Prikaži več

Statistika, Prakticna matematika, , izrocki

Statistika, Prakticna matematika, , izrocki Srednje vrednosti Srednja vrednost...... številske spremenljivke X je tako število, s katerim skušamo kar najbolje naenkrat povzeti vrednosti na posameznih enotah: Polovica zaposlenih oseb ima bruto osebni

Prikaži več