FAKULTETA ZA STROJNIŠTVO Matematika 2 Pisni izpit 9. junij 2005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite bese

Velikost: px
Začni prikazovanje s strani:

Download "FAKULTETA ZA STROJNIŠTVO Matematika 2 Pisni izpit 9. junij 2005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite bese"

Transkripcija

1 FAKULTETA ZA STROJNIŠTVO Matematika Pisni izpit 9. junij 005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Veljale bodo samo rešitve na papirju, kjer so naloge. Naloge je 6 in vsaka je vredna 0 točk, torej skupaj 10 točk. Na razpolago imate uri. Naloga a. b. Skupaj Skupaj

2 1. (0) Naj bosta a > 0 in b > 0 števili, za kateri velja ab = 1. Na območju G = {(x, y, z): x > 0, z > 0, xz y > 0} naj bo definirana funkcija kjer je α > 0 dano število. f(x, y, z) = α log(xz y ) 1 (ax + bz), a. (10) Pokažite, da je točka (αb, 0, αa) lokalni maksimum funkcije f(x, y, z). Rešitev: Računamo f x f y f z αz (x, y, z) = (x, y, z) = αy αx (x, y, z) = (xz y ) a (xz y ) b (xz y ) Z vstavljanjem točke (αb, 0, αa) ugotovimo, da so vsi parcialni odvodi enaki 0. Dana točka je stacionarna. Potrebujemo še Hessejevo matriko v točki (αb, 0, αa). Računamo, recimo, f (x, y, z) = αz x f αyz (x, y, z) = x y f x z (x, y, z) = αy Upoštevajmo, da je ab = 1 in dobimo Hf(αb, 0, αa) = a (xz y ) (xz y ) (xz y ) 0 0 α α 0 0 b α Diagonalni elementi Hessove matrike v točki (αb, 0, αa) so negativni, zato je matrika negativno definitna. Stacionarna točka je lokalni maksimum. Parcialni odvodi: točki. Vstavljanje točke: točki. Drugi parcialni odvodi: točki. Vstavljanje: točki. Sklep o lokalnem maksimumu: točki. b. (10) Naj bo funkcija g: G R dana z g(x, y, z) = xz y 1. Poščite stacionarne točke funkcije f(x, y, z) na območju G pri pogoju g(x, y, z) = 0. Rešitev: Najprej opazimo, da lahko namesto s funkcijo f(x, y, z) računamo kar s funkcijo f(x, y, z) = 1 (ax + bz),

3 Po Lagrangu sestavimo funkcijo F(x, y, z) = f(x, y, z) λg(x, y, z). Računamo F (x, y, z) = x a λz F (x, y, z) = yλ y F (x, y, z) = b λx z Parcialne odvode izenačimo z 0. Iz prve ali tretje enačbe razberemo, da mora biti λ 0. Druga enačba potem pove, da je y = 0. Iz pogoja g(x, y, z) = 0 potem sledi, da je xz = 1. Z nekaj računanja dobimo x = b in z = a. Opažanje, da lahko prvi člen zanemarimo: točki. Lagrangova funkcija: točki. Parcialno odvajanje: točki. Enačbe za točko: točki. Rezultat: točki.

4 . (0) Lemniskata je dana z enačbo (x + y ) a (x y ) = 0 za a > 0. Krivulja je na spodnji sliki. y x a. (10) Naj bo G osenčeno območje na zgornji sliki. Izračunajte a x y dx dy. Namig: Polarne koordinate. G Rešitev: Zaradi simetrije je dovolj izračunati integral po desnem ušesu lemniskate. V polarnih koordinatah je področje oblike H = {(r, φ): π/4 φ π/4, 0 r a cos φ}. To dobimo z vstavljanjem x = r cosφ in y = r sin φ v enačbo za lemniskato. Dvojni integral preide v a x y dx dy = a r r dr dφ G = = = = = a 9 H π/4 π/4 π/4 π/4 a cos φ dφ dφ 0 a a (π 5/ a (π 7/ r a r dr ( (1 cos φ)/ ) π/4 π/4 1 sin φ dφ) / (1 u )du) ( π ). 4

5 Transformacija področja: točki. Jacobian: točki. Uporaba Fubinijevega izreka: točki. Rezultat: 4 točke. b. (10) Utemeljite, da obstaja izlimitirani integral dx dy a x y in ga izračunajte. G Rešitev: Integriramo nenegativno funkcijo, zato je vseeno, kako napihujemo področja, ki bodo zajela vso desno uho lemniskate. Uvedemo polarne koordinate in dobimo podobno kot v a. G dx dy a x y = = H π/4 = a r dr dφ a r a cos φ dφ π/4 0 π/4 π/4 r a r dr dφ (1 sinφ ) = a( π ). Utemeljitev, zakaj izlimitirani integral dobro definiran: točki. Transformacija področja: točki. Jacobian: točki. Uporaba Fubinijevega izreka: točki. Rezultat: točki. 5

6 . (0) Naj bo C krožnica v yz-ravnini dana z enačbo y + z = 1 orientirana v smeri nasprotni urinemu kazalcu. Naj bo F = F(x, y) zvezno odvedljiva funkcija spremenljivk x in y. Vektorsko polje naj bo dano z F = (0, 0, F y (x, y)). a. (10) Naj bo S poljubna gladka ploskev z robom C. Pokažite, da je ploskovni integral F ds S vedno enak, ne glede na to, kakšno ploskev izberemo, če normalo na ploskev izberemo v skladu z orientacijo krožnice. Namig: Izračunajte rotor polja G = (F, 0, 0). Rešitev: Rotor polja iz namiga je rot(g) = (0, 0, F y ). Pri tem smo upoštevali, da je F z = 0, ker je F odvisna le od koordinat x in y. Po Stokesovem izreku je F ds = rot(g) ds = G dr. S S Ta zadnji integral je vedno enak, ker vedno integriramo po isti krožnici. Poleg tega je polje G pravokotnno na krožnico, zato je integral enak 0. C Upoštevanje, da je F z = 0: točki. Rotor: točki. Ideja s Stokesom: točki. Zapis Stokesovega izreka: točki. Končni sklep: točki. b. (10) Naj bo spet S ploskev z robom C. Naj bo F = (0, 0, ay ) za neko konstanto a. Izračunajte S F ds. Rešitev: Definiramo G = ( ay /, 0, 0). Velja rot(g) = F. Po a. delu naloge lahko integriramo kar po krogu K = {(y, z): y +z 1} v yz-ravnini, pri čemer si za normalo izberemo k = (1, 0, 0). V tem primeru je F ds = F ds = 0. S K Zveza z a.: točki. G: točki. Izbira K: točki. Pretovrba na integral po K: točki. Rezultat: točki. 6

7 4. (0) Med točkama A in B na površju zemlje skopljemo raven predor dolžine d in vanj položimo tirnice, po katerih lahko pelje vlak brez trenja. Naj bo x(t) razdalja vlaka od sredine predora v trenutku t. Ko je vlak v točki A, je ta razdalja d. Gibanje vlaka pod vplivom težnosti opisuje diferencialna enačba 4πρk ẋ = d x, kjer je ρ masna gostota zemlje in k gravitacijska konstanta. a. (10) Naj bo x(0) = d. Poiščite rešitev diferencialne enačbe. Rešitev: Enačbo najprej prepišemo v obliko ẋ d x = α, kjer je Integriramo in dobimo Iz začetnega pogoja sledi torej c = π/. Sledi torej 4πρk α =. arcsin(x/d) = αt + c. arcsin( 1) = c, x d = sin(αt π ), x(t) = d cos(αt). Pretvorba na obliko za integriranje: točki. Integriranje: točki. Enačba za konstanto: točki. Konstanta: točki. Rešitev: točki. b. (10) Ker predpostavljamo, da ni trenja, bo vlak sam od sebe peljal od točke A do točke B. Izračunajte čas, ki je za to potreben. Rešitev: Iz a. preberemo, da je arcsin(x/d) = αt π. Ko bo vlak na sredi predora, bo x = 0. Razberemo, da za to potreben čas zadošča enačbi αt = π. 7

8 torej je t = π α. Čas od sredine predora do točke B bo enak času od A do sredine predora. Sledi, da je potreben čas π/α. Ideja, kako razbrati čas: točki. Uporaba a.: točki. Enačba za t: točki. Utemeljitev, da je čas do sredine enak ostanku časa: točki. Rezultat: točki. 8

9 5. (0) Dana naj bo linearna diferencialna enačba s konstantnimi koeficienti y () + y + 7y + 5y = 16e x cos x z začetnimi pogoji y(0) =, y (0) = 4 in y (0) =. a. (10) Poiščite partikularno rešitev zgornje enačbe. Rešitev: Karakteristični polinom homogenega dela enačbe je enak P(λ) = λ + λ + 7λ + 5. Ničle najprej iščemo med delitelji konstantnega člena. Ugotovimo, da je λ 1 = 1. Z deljenjem dobimo P(λ) = (λ + 1)(λ + λ + 5), torej je λ = 1 + i in λ = 1 i. Desno stran enačbe zamenjamo z 16e ( 1+i)x. Ker je konstanta v eksponentu ničla karakterističnega polinoma, je nastavek za rešitev y p (x) = Axe ( 1+i)x. Odvajamo y p (x) = Ae( 1+i)x + Ax( 1 + i)e ( 1+i)x y p (x) = Ae( 1+i)x (( 4i)x ( 4i)) y p () (x) = (4 i)ae ( 1+i)x (( + i)x i) Vstavimo v enačbo, pokrajšamo e ( 1+i)x in poenostavimo. Za konstanto A dobimo enačbo 8A = 16, torej A =. Partikularna rešitev je realni del nastavka, torej y p (x) = xe x cos x. Karakteristični polinom in ničle: točki. Nastavek: točki. Odvajanje in vstavljanje: točki. Enačba za A: točki. Partikularna rešitev: točki. b. (10) Poiščite rešitev enačbe, ki ustreza začetnim pogojem. Rešitev: Splošna rešitev enačbe je y(x) = xe x cos x + c 1 e x + c e x cos x + c e x sin x. Iz točke a. razberemo odvode partikularne rešitve kot y p (0) = in y p (0) = 4. Z odvajanjem in vstavljanjem x = 0 dobimo enačbe = c 1 + c 4 = c 1 c + c = 4 + c 1 c 4c Seštejemo prvi dve enačbi in sledi c = 0. Dalje dobimo z odštevanjem prve enačbe od zadnje, da je c = in končno c 1 = 0. Sledi y(x) = xe x cos x + e x cos x. 9

10 Odvodi partikularne rešitve: točki. Odvodi rešitev homogene enačbe: točki. Sistem enačba za konstante: točki. Rešitev sistema: točki. Končna rešitev: točki. 10

11 6. (0) Na ploskvi S, ki je dana kot graf funkcije f : R R, kjer je f(x, y) = 1 (x + y ), iščemo najkrajše poti, ki potekajo po ploskvi med danima točkama. V polarni obliki sta kot φ in oddaljenost poti od izhodišča r povezana kot φ = φ(r). Kot znano privzemite, da funkcija w(r) = φ (r) 1 + r ustreza diferencialni enačbi w + r w + rw = 0. a. (10) Poiščite splošno rešitev diferencialne enačbe za w. Rešitev: Enačba je Bernoullijeva z α =. Uvedemo substitucijo z(r) = w (r). Enačba preide v z 4 r z = r, kar je linearna diferencialna enačba prvega reda. Rešitev homogene enačbe je z(r) = r 4, rešitev nehomogene pa iščemo z nastavkom r 4 u(r). Vstavimo in dobimo 4r u + r 4 u 4r u = r, ali u = r. Sledi u(r) = r + c. Splošna rešitev za z je z(r) = r + cr 4, torej je w(r) = 1 r cr 1. Opažanje, da je enačba Bernoullijeva: točki. Substitucija: točki. Rešitev homogene enačbe: točki. Partikularna rešitev: točki. Splošna rešitev: točki. b. (10) Privzemite, da je w( ) = 1/ in φ( ) = 0. Poiščite funkcijo φ. Kot znano upoštevajte, da je ( ( ) ( ) ) r 1 r r arcsinh + arctg = r + 1 r r 1. Rešitev: V splošno rešitev za w vstavimo r =. Dobimo enačbo 1 = w( ) = 1 c 1. 11

12 Sledi c = 1. Z vstavljanjem v enačbo za φ dobimo φ r + 1 (r) = r r 1. Z upoštevanjem pogoja φ( ) = 0 sledi φ(r) = r ρ + 1 r ρ 1 dρ. Upoštevamo še integral iz naloge in dobimo ( ) ( ) r 1 r 1 φ(r) = arcsinh +arctg arcsinh r + 1 ( ) 1 arctg ( ) 1. Enačba za c: točki. c: točki. Integriranje φ : točki. Upoštevanje začetnega pogoja za φ: točki. φ kot funkcija r in sklep: točki. 1

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNISTVO Matematika Pisni izpit. junij 22 Ime in priimek Vpisna st Navodila Pazljivo preberite besedilo naloge, preden se lotite resevanja. Veljale bodo samo resitve na papirju, kjer so

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNIŠTVO Matematika 2. kolokvij 4. januar 212 Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Veljale bodo samo rešitve na papirju, kjer

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 3. februar Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Veljale bodo samo rešitve na papirju, kjer

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNISTVO Matematika 2. kolokvij. december 2 Ime in priimek: Vpisna st: Navodila Pazljivo preberite besedilo naloge, preden se lotite resevanja. Veljale bodo samo resitve na papirju, kjer

Prikaži več

Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y

Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y 2 ). Rešitev: Diferencialna enačba ima ločljive spremenljivke,

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/testi in izpiti/ /IZPITI/FKKT-februar-14.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/testi in izpiti/ /IZPITI/FKKT-februar-14.dvi Kemijska tehnologija, Kemija Bolonjski univerzitetni program Smer: KT K WolframA: DA NE Računski del izpita pri predmetu MATEMATIKA I 6. 2. 2014 Čas reševanja je 75 minut. Navodila: Pripravi osebni dokument.

Prikaži več

FGG13

FGG13 10.8 Metoda zveznega nadaljevanja To je metoda za reševanje nelinearne enačbe f(x) = 0. Če je težko poiskati začetni približek (še posebno pri nelinearnih sistemih), si lahko pomagamo z uvedbo dodatnega

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-avgust-17.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-avgust-17.dvi Vpisna številka Priimek, ime Smer: K KT WA Izpit pri predmetu MATEMATIKA I Računski del Ugasni in odstrani mobilni telefon. Uporaba knjig in zapiskov ni dovoljena. Dovoljeni pripomočki so: kemični svinčnik,

Prikaži več

Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t

Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t 0.5 1.5 2.0 t a.) Nari²ite tri grafe: graf (klasi ne)

Prikaži več

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6. julij 2018 Navodila Pazljivo preberite be

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6. julij 2018 Navodila Pazljivo preberite be Ime in priimek: Vpisna št: FAKULEA ZA MAEMAIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6 julij 2018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Za pozitiven rezultat

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-junij-17.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-junij-17.dvi Vpisna številka Priimek, ime Smer: K KT WA Izpit pri predmetu MATEMATIKA I Računski del Ugasni in odstrani mobilni telefon. Uporaba knjig in zapiskov ni dovoljena. Dovoljeni pripomočki so: kemični svinčnik,

Prikaži več

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5. februar 2018 Navodila Pazljivo preberite

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5. februar 2018 Navodila Pazljivo preberite Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5 februar 018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Nalog je

Prikaži več

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 2017

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 2017 UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 217 ii Kazalo Diferencialni račun vektorskih funkcij 1 1.1 Skalarne funkcije...........................

Prikaži več

C:/Users/Matevz/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-januar-februar-15.dvi

C:/Users/Matevz/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-januar-februar-15.dvi Kemijska tehnologija, Kemija Bolonjski univerzitetni program Smer: KT K WolframA: DA NE Čas reševanja je 75 minut. Navodila: Računski del izpita pri predmetu MATEMATIKA I Ugasni in odstrani mobilni telefon.

Prikaži več

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 31. avgust 2018 Navodila Pazljivo preberite

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 31. avgust 2018 Navodila Pazljivo preberite Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 31 avgust 018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Za pozitiven

Prikaži več

NEKAJ VPRAŠANJ IZ MATEMATIKE 2 1. Katero točko evklidskega prostora R n imenujemo notranjo (zunanjo, robno) točko množice M R n? 2. Za poljubno množic

NEKAJ VPRAŠANJ IZ MATEMATIKE 2 1. Katero točko evklidskega prostora R n imenujemo notranjo (zunanjo, robno) točko množice M R n? 2. Za poljubno množic NEKAJ VPRAŠANJ IZ MATEMATIKE 2 1. Katero točko evklidskega prostora R n imenujemo notranjo (zunanjo, robno) točko množice M R n? 2. Za poljubno množico M R n evklidskega prostora R n definirajte množice

Prikaži več

PowerPoint Presentation

PowerPoint Presentation Integral rešujemo nalogo: Dana je funkcija f. Najdimo funkcijo F, katere odvod je enak f. Če je F ()=f() pravimo, da je F() primitivna funkcija za funkcijo f(). Primeri: f ( ) = cos f ( ) = sin f () =

Prikaži več

Osnove matematicne analize 2018/19

Osnove matematicne analize  2018/19 Osnove matematične analize 2018/19 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D f R priredi natanko

Prikaži več

Matematika II (UNI) Izpit (23. avgust 2011) RE ITVE Naloga 1 (20 to k) Vektorja a = (0, 1, 1) in b = (1, 0, 1) oklepata trikotnik v prostoru. Izra una

Matematika II (UNI) Izpit (23. avgust 2011) RE ITVE Naloga 1 (20 to k) Vektorja a = (0, 1, 1) in b = (1, 0, 1) oklepata trikotnik v prostoru. Izra una Matematika II (UNI) Izpit (. avgust 11) RE ITVE Naloga 1 ( to k) Vektorja a = (, 1, 1) in b = (1,, 1) oklepata trikotnik v prostoru. Izra unajte: kot med vektorjema a in b, pravokotno projekcijo vektorja

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNIŠTVO Matematika 4 Pini izpit 2. januar 22 Ime in priimek: Vpina št: Navodila Pazljivo preberite beedilo naloge, preden e lotite reševanja. Veljale bodo amo rešitve na papirju, kjer

Prikaži več

Poslovilno predavanje

Poslovilno predavanje Poslovilno predavanje Matematične teme z didaktiko Marko Razpet, Pedagoška fakulteta Ljubljana, 20. november 2014 1 / 32 Naše skupne ure Matematične tehnologije 2011/12 Funkcije več spremenljivk 2011/12

Prikaži več

Matematika 2

Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 23. april 2014 Soda in liha Fourierjeva vrsta Opomba Pri razvoju sode periodične funkcije f v Fourierjevo vrsto v razvoju nastopajo

Prikaži več

Popravki nalog: Numerična analiza - podiplomski študij FGG : popravljena naloga : popravljena naloga 14 domače naloge - 2. skupina

Popravki nalog: Numerična analiza - podiplomski študij FGG : popravljena naloga : popravljena naloga 14 domače naloge - 2. skupina Popravki nalog: Numerična analiza - podiplomski študij FGG 9.8.24: popravljena naloga 4 3..25: popravljena naloga 4 domače naloge - 2. skupina V drugem delu morate rešiti toliko nalog, da bo njihova skupna

Prikaži več

Uvod v diferencialne enačbe, kompleksno in Fourierovo analizo Bojan Magajna Fakulteta za matematiko in fiziko, Univerza v Ljubljani

Uvod v diferencialne enačbe, kompleksno in Fourierovo analizo Bojan Magajna Fakulteta za matematiko in fiziko, Univerza v Ljubljani Uvod v diferencialne enačbe, kompleksno in Fourierovo analizo Bojan Magajna Fakulteta za matematiko in fiziko, Univerza v Ljubljani UVOD V DIFERENCIALNE ENAČBE, KOMPLEKSNO IN FOURIEROVO ANALIZO Povzetek

Prikaži več

ANALITIČNA GEOMETRIJA V RAVNINI

ANALITIČNA GEOMETRIJA V RAVNINI 3. Analitična geometrija v ravnini Osnovna ideja analitične geometrije je v tem, da vaskemu geometrijskemu objektu (točki, premici,...) pridružimo števila oz koordinate, ki ta objekt popolnoma popisujejo.

Prikaži več

M

M Š i f r a k a n d i d a t a : Državni izpitni center *M16140111* Osnovna raven MATEMATIKA Izpitna pola 1 SPOMLADANSKI IZPITNI ROK Sobota, 4. junij 016 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat

Prikaži več

Vaje: Matrike 1. Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N 0 1 n ; n N Pokaži, da je množica x 0 y 0 x

Vaje: Matrike 1. Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N 0 1 n ; n N Pokaži, da je množica x 0 y 0 x Vaje: Matrike 1 Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N n 1 1 0 1 ; n N 0 2 Pokaži, da je množica x 0 y 0 x y x + z ; x, y, z R y x z x vektorski podprostor v prostoru matrik

Prikaži več

Univerza v Mariboru Fakulteta za naravoslovje in matematiko Oddelek za matematiko in računalništvo Enopredmetna matematika IZPIT IZ VERJETNOSTI IN STA

Univerza v Mariboru Fakulteta za naravoslovje in matematiko Oddelek za matematiko in računalništvo Enopredmetna matematika IZPIT IZ VERJETNOSTI IN STA Enopredmetna matematika IN STATISTIKE Maribor, 31. 01. 2012 1. Na voljo imamo kovanca tipa K 1 in K 2, katerih verjetnost, da pade grb, je p 1 in p 2. (a) Istočasno vržemo oba kovanca. Verjetnost, da je

Prikaži več

Vrste

Vrste Matematika 1 17. - 24. november 2009 Funkcija, ki ni algebraična, se imenuje transcendentna funkcija. Podrobneje si bomo ogledali naslednje transcendentne funkcije: eksponentno, logaritemsko, kotne, ciklometrične,

Prikaži več

RAČUNALNIŠKA ORODJA V MATEMATIKI

RAČUNALNIŠKA ORODJA V MATEMATIKI DEFINICIJA V PARAVOKOTNEM TRIKOTNIKU DEFINICIJA NA ENOTSKI KROŢNICI GRAFI IN LASTNOSTI SINUSA IN KOSINUSA POMEMBNEJŠE FORMULE Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z

Prikaži več

Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku β a c γ b α sin = a c cos = b c tan = a b cot = b a Sinus kota je razmerje kotu naspr

Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku β a c γ b α sin = a c cos = b c tan = a b cot = b a Sinus kota je razmerje kotu naspr Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete in hipotenuze. Kosinus kota je razmerje

Prikaži več

Naloge iz kolokvijev Analize 1 (z rešitvami) E-UNI, GING, TK-UNI FERI dr. Iztok Peterin Maribor 2009 V tej datoteki so zbrane naloge iz kolokvijev za

Naloge iz kolokvijev Analize 1 (z rešitvami) E-UNI, GING, TK-UNI FERI dr. Iztok Peterin Maribor 2009 V tej datoteki so zbrane naloge iz kolokvijev za Naloge iz kolokvijev Analize (z rešitvami) E-UNI, GING, TK-UNI FERI dr. Iztok Peterin Maribor 2009 V tej datoteki so zbrane naloge iz kolokvijev za predmet Analiza na smereh E-UNI, GING in TK-UNI na Fakulteti

Prikaži več

11. Navadne diferencialne enačbe Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogo

11. Navadne diferencialne enačbe Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogo 11. Navadne diferencialne enačbe 11.1. Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogoju y(x 0 ) = y 0, kjer je f dana dovolj gladka funkcija

Prikaži več

LaTeX slides

LaTeX slides Linearni in nelinearni modeli Milena Kovač 22. december 2006 Biometrija 2006/2007 1 Linearni, pogojno linearni in nelinearni modeli Kriteriji za razdelitev: prvi parcialni odvodi po parametrih Linearni

Prikaži več

Slide 1

Slide 1 Vsak vektor na premici skozi izhodišče lahko zapišemo kot kjer je v smerni vektor premice in a poljubno število. r a v Vsak vektor na ravnini skozi izhodišče lahko zapišemo kot kjer sta v, v vektorja na

Prikaži več

Domače vaje iz LINEARNE ALGEBRE Marjeta Kramar Fijavž Fakulteta za gradbeništvo in geodezijo Univerze v Ljubljani 2007/08 Kazalo 1 Vektorji 2 2 Analit

Domače vaje iz LINEARNE ALGEBRE Marjeta Kramar Fijavž Fakulteta za gradbeništvo in geodezijo Univerze v Ljubljani 2007/08 Kazalo 1 Vektorji 2 2 Analit Domače vaje iz LINEARNE ALGEBRE Marjeta Kramar Fijavž Fakulteta za gradbeništvo in geodezijo Univerze v Ljubljani 007/08 Kazalo Vektorji Analitična geometrija 7 Linearni prostori 0 4 Evklidski prostori

Prikaži več

DOMACA NALOGA - LABORATORIJSKE VAJE NALOGA 1 Dani sta kompleksni stevili z in z Kompleksno stevilo je definirano kot : z = a + b, a p

DOMACA NALOGA - LABORATORIJSKE VAJE NALOGA 1 Dani sta kompleksni stevili z in z Kompleksno stevilo je definirano kot : z = a + b, a p DOMACA NALOGA - LABORATORIJSKE VAJE NALOGA 1 Dani sta kompleksni stevili z 1 5 2 3 in z 2 3 8 5. Kompleksno stevilo je definirano kot : z = a + b, a predstavlja realno, b pa imaginarno komponento. z 1

Prikaži več

DN5(Kor).dvi

DN5(Kor).dvi Koreni Število x, ki reši enačbo x n = a, imenujemo n-ti koren števila a in to označimo z n a. Pri tem je n naravno število, a pa poljubno realno število. x = n a x n = a. ( n a ) n = a. ( n a ) m = n

Prikaži več

EKVITABILNE PARTICIJE IN TOEPLITZOVE MATRIKE Aleksandar Jurišić Politehnika Nova Gorica in IMFM Vipavska 13, p.p. 301, Nova Gorica Slovenija Štefko Mi

EKVITABILNE PARTICIJE IN TOEPLITZOVE MATRIKE Aleksandar Jurišić Politehnika Nova Gorica in IMFM Vipavska 13, p.p. 301, Nova Gorica Slovenija Štefko Mi EKVITABILNE PARTICIJE IN TOEPLITZOVE MATRIKE Aleksandar Jurišić Politehnika Nova Gorica in IMFM Vipavska 13, p.p. 301, Nova Gorica Slovenija Štefko Miklavič 30. okt. 2003 Math. Subj. Class. (2000): 05E{20,

Prikaži več

Bojan Magajna Uvod v diferencialne enačbe, kompleksno in Fourierovo analizo sin πz = πz n=1 (1 z2 n 2 ) DMFA založništvo

Bojan Magajna Uvod v diferencialne enačbe, kompleksno in Fourierovo analizo sin πz = πz n=1 (1 z2 n 2 ) DMFA založništvo Bojan Magajna Uvod v diferencialne enačbe, kompleksno in Fourierovo analizo sin πz = πz n=1 (1 z2 n 2 ) DMFA založništvo Kazalo Predgovor 9 1. Osnovno o diferencialnih enačbah 13 1.1. Nekatere enačbe

Prikaži več

UM FKKT, Bolonjski visoko²olski program Kemijska tehnologija Vpisna ²tevilka Priimek, ime 3. test pri predmetu MATEMATIKA II Ra unski del

UM FKKT, Bolonjski visoko²olski program Kemijska tehnologija Vpisna ²tevilka Priimek, ime 3. test pri predmetu MATEMATIKA II Ra unski del UM FKKT, Bolonjski visoko²olski program Kemijska tehnologija Vpisna ²tevilka Priimek, ime 3. test pri predmetu MATEMATIKA II Ra unski del 13. 6. 2016 Navodila: Pripravi osebni dokument. Ugasni in odstrani

Prikaži več

GeomInterp.dvi

GeomInterp.dvi Univerza v Ljubljani Fakulteta za matematiko in fiziko Seminar za Numerično analizo Geometrijska interpolacija z ravninskimi parametričnimi polinomskimi krivuljami Gašper Jaklič, Jernej Kozak, Marjeta

Prikaži več

PREDMETNI KURIKULUM ZA RAZVOJ METEMATIČNIH KOMPETENC

PREDMETNI KURIKULUM ZA RAZVOJ METEMATIČNIH KOMPETENC MATEMATIKA 1.razred OSNOVE PREDMETA POKAZATELJI ZNANJA SPRETNOSTI KOMPETENCE Naravna števila -pozna štiri osnovne računske operacije in njihove lastnosti, -izračuna številske izraze z uporabo štirih računskih

Prikaži več

Univerza v Novi Gorici Fakulteta za aplikativno naravoslovje Fizika (I. stopnja) Mehanika 2014/2015 VAJE Gravitacija - ohranitveni zakoni

Univerza v Novi Gorici Fakulteta za aplikativno naravoslovje Fizika (I. stopnja) Mehanika 2014/2015 VAJE Gravitacija - ohranitveni zakoni Univerza v Novi Gorici Fakulteta za aplikativno naravoslovje Fizika (I. stopnja) Mehanika 2014/2015 VAJE 12. 11. 2014 Gravitacija - ohranitveni zakoni 1. Telo z maso M je sestavljeno iz dveh delov z masama

Prikaži več

OdvodFunkcijEne11.dvi

OdvodFunkcijEne11.dvi III. ODVODI FUNKCIJ ENE REALNE SPREMENLJIVKE 1. Odvajanje funkcij ene spremenljivke Odvajanje je ena najpomembnejši operacij na funkcija. Z uporabo odvoda, kadar le-ta obstaja, lako veliko bolje spoznamo

Prikaži več

Matematika II (UN) 1. kolokvij (13. april 2012) RE ITVE Naloga 1 (25 to k) Dana je linearna preslikava s predpisom τ( x) = A x A 1 x, kjer je A

Matematika II (UN) 1. kolokvij (13. april 2012) RE ITVE Naloga 1 (25 to k) Dana je linearna preslikava s predpisom τ( x) = A x A 1 x, kjer je A Matematika II (UN) 1 kolokvij (13 april 01) RE ITVE Naloga 1 (5 to k) Dana je linearna preslikava s predpisom τ( x) = A x A 1 x, kjer je 0 1 1 A = 1, 1 A 1 pa je inverzna matrika matrike A a) Poi² ite

Prikaži več

Brownova kovariancna razdalja

Brownova kovariancna razdalja Brownova kovariančna razdalja Nace Čebulj Fakulteta za matematiko in fiziko 8. januar 2015 Nova mera odvisnosti Motivacija in definicija S primerno izbiro funkcije uteži w(t, s) lahko definiramo mero odvisnosti

Prikaži več

P182C10111

P182C10111 Š i f r a k a n d i d a t a : Državni izpitni center *P18C10111* JESENSKI IZPITNI ROK MATEMATIKA Izpitna pola Ponedeljek, 7. avgust 018 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno

Prikaži več

Poglavje 3 Reševanje nelinearnih enačb Na iskanje rešitve enačbe oblike f(x) = 0 (3.1) zelo pogosto naletimo pri reševanju tehničnih problemov. Pri te

Poglavje 3 Reševanje nelinearnih enačb Na iskanje rešitve enačbe oblike f(x) = 0 (3.1) zelo pogosto naletimo pri reševanju tehničnih problemov. Pri te Poglavje 3 Reševanje nelinearnih enačb Na iskanje rešitve enačbe oblike f(x) = 0 (3.1) zelo pogosto naletimo pri reševanju tehničnih problemov. Pri tem je lahko nelinearna funkcija f podana eksplicitno,

Prikaži več

PRIPRAVA NA 1. Š. N.: KVADRATNA FUNKCIJA IN KVADRATNA ENAČBA 1. Izračunaj presečišča parabole y=5 x x 8 s koordinatnima osema. R: 2 0, 8, 4,0,,0

PRIPRAVA NA 1. Š. N.: KVADRATNA FUNKCIJA IN KVADRATNA ENAČBA 1. Izračunaj presečišča parabole y=5 x x 8 s koordinatnima osema. R: 2 0, 8, 4,0,,0 PRIPRAVA NA 1. Š. N.: KVADRATNA FUNKCIJA IN KVADRATNA ENAČBA 1. Izračunaj presečišča parabole y=5 x +18 x 8 s koordinatnima osema. R: 0, 8, 4,0,,0 5. Zapiši enačbo kvadratne funkcije f (x )=3 x +1 x+8

Prikaži več

2. izbirni test za MMO 2017 Ljubljana, 17. februar Naj bosta k 1 in k 2 dve krožnici s središčema O 1 in O 2, ki se sekata v dveh točkah, ter

2. izbirni test za MMO 2017 Ljubljana, 17. februar Naj bosta k 1 in k 2 dve krožnici s središčema O 1 in O 2, ki se sekata v dveh točkah, ter 2. izbirni test za MMO 2017 Ljubljana, 17. februar 2017 1. Naj bosta k 1 in k 2 dve krožnici s središčema O 1 in O 2, ki se sekata v dveh točkah, ter naj bo A eno od njunih presečišč. Ena od njunih skupnih

Prikaži več

Bojan Kuzma ZBIRKA IZPITNIH VPRAŠANJ PRI PREDMETIH ANALIZA I IN ANALIZA II (Zbirka Izbrana poglavja iz matematike, št. 1) Urednica zbirke: Petruša Mih

Bojan Kuzma ZBIRKA IZPITNIH VPRAŠANJ PRI PREDMETIH ANALIZA I IN ANALIZA II (Zbirka Izbrana poglavja iz matematike, št. 1) Urednica zbirke: Petruša Mih Bojan Kuzma ZBIRKA IZPITNIH VPRAŠANJ PRI PREDMETIH ANALIZA I IN ANALIZA II (Zbirka Izbrana poglavja iz matematike, št. 1) Urednica zbirke: Petruša Miholič Izdala in založila: Knjižnica za tehniko, medicino

Prikaži več

Srednja šola za oblikovanje

Srednja šola za oblikovanje Srednja šola za oblikovanje Park mladih 8 2000 Maribor POKLICNA MATURA MATEMATIKA SEZNAM VPRAŠANJ ZA USTNI DEL NARAVNA IN CELA ŠTEVILA Opišite vrstni red računskih operacij v množici naravnih števil. Kakšen

Prikaži več

CpE & ME 519

CpE & ME 519 2D Transformacije Zakaj potrebujemo transformacije? Animacija Več instanc istega predmeta, variacije istega objekta na sceni Tvorba kompliciranih predmetov iz bolj preprostih Transformacije gledanja Kaj

Prikaži več

Numeri na analiza - podiplomski ²tudij FGG doma e naloge - 1. skupina V prvem delu morate re²iti toliko nalog, da bo njihova skupna vsota vsaj 10 to k

Numeri na analiza - podiplomski ²tudij FGG doma e naloge - 1. skupina V prvem delu morate re²iti toliko nalog, da bo njihova skupna vsota vsaj 10 to k Numeri na analiza - podiplomski ²tudij FGG doma e naloge -. skupina V prvem delu morate re²iti toliko nalog, da bo njihova skupna vsota vsaj 0 to k in da bo vsaj ena izmed njih vredna vsaj 4 to ke. Za

Prikaži več

Matematika 2 - ustna vprašanja 1) Determinanta, poddeterminanta (1,3)...3 2) Lastnosti determinante (5)...3 3) Cramerjevo pravilo (9)...3 4) Računanje

Matematika 2 - ustna vprašanja 1) Determinanta, poddeterminanta (1,3)...3 2) Lastnosti determinante (5)...3 3) Cramerjevo pravilo (9)...3 4) Računanje Matematika 2 - ustna vprašanja 1) Determinanta, poddeterminanta (1,3)...3 2) Lastnosti determinante (5)...3 3) Cramerjevo pravilo (9)...3 4) Računanje z vektorji, kot med vektorij (11)...3 5) Skalarni

Prikaži več

P181C10111

P181C10111 Š i f r a k a n d i d a t a : Državni izpitni center *P181C10111* SPOMLADANSKI IZPITNI ROK MATEMATIKA Izpitna pola Sobota, 9. junij 018 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno

Prikaži več

FGG02

FGG02 6.6 Simetrični problem lastnih vrednosti Če je A = A T, potem so lastne vrednosti realne, matrika pa se da diagonalizirati. Schurova forma za simetrično matriko je diagonalna matrika. Lastne vrednosti

Prikaži več

Strojna oprema

Strojna oprema Asistenta: Mira Trebar, Miha Moškon UIKTNT 2 Uvod v programiranje Začeti moramo razmišljati algoritmično sestaviti recept = napisati algoritem Algoritem za uporabo poljubnega okenskega programa. UIKTNT

Prikaži več

Microsoft PowerPoint _12_15-11_predavanje(1_00)-IR-pdf

Microsoft PowerPoint _12_15-11_predavanje(1_00)-IR-pdf uporaba for zanke i iz korak > 0 oblika zanke: for i iz : korak : ik NE i ik DA stavek1 stavek2 stavekn stavek1 stavek2 stavekn end i i + korak I&: P-XI/1/17 uporaba for zanke i iz korak < 0 oblika zanke:

Prikaži več

Študij AHITEKTURE IN URBANIZMA, šol. l. 2016/17 Vaje iz MATEMATIKE 9. Integral Določeni integral: Določeni integral: Naj bo f : [a, b] R funkcija. Int

Študij AHITEKTURE IN URBANIZMA, šol. l. 2016/17 Vaje iz MATEMATIKE 9. Integral Določeni integral: Določeni integral: Naj bo f : [a, b] R funkcija. Int Študij AHITEKTURE IN URBANIZMA, šol. l. 6/7 Vje iz MATEMATIKE 9. Integrl Določeni integrl: Določeni integrl: Nj bo f : [, b] R funkcij. Intervl [, b] rzdelimo n n podintervlov z delilnimi točkmi: = x

Prikaži več

dr. Andreja Šarlah Teorijska fizika II (FMF, Pedagoška fizika, 2010/11) kolokviji in izpiti Vsebina Kvantna mehanika 2 1. kolokvij 2 2. kolokvij 4 1.

dr. Andreja Šarlah Teorijska fizika II (FMF, Pedagoška fizika, 2010/11) kolokviji in izpiti Vsebina Kvantna mehanika 2 1. kolokvij 2 2. kolokvij 4 1. dr. Andreja Šarlah Teorijska fizika II (FMF, Pedagoška fizika, 2010/11) kolokviji in izpiti Vsebina Kvantna mehanika 2 1. kolokvij 2 2. kolokvij 4 1. izpit 5 2. izpit 6 3. izpit (2014) 7 Termodinamika

Prikaži več

RAM stroj Nataša Naglič 4. junij RAM RAM - random access machine Bralno pisalni, eno akumulatorski računalnik. Sestavljajo ga bralni in pisalni

RAM stroj Nataša Naglič 4. junij RAM RAM - random access machine Bralno pisalni, eno akumulatorski računalnik. Sestavljajo ga bralni in pisalni RAM stroj Nataša Naglič 4. junij 2009 1 RAM RAM - random access machine Bralno pisalni, eno akumulatorski računalnik. Sestavljajo ga bralni in pisalni trak, pomnilnik ter program. Bralni trak- zaporedje

Prikaži več

Rešene naloge iz Linearne Algebre

Rešene naloge iz Linearne Algebre UNIVERZA V LJUBLJANI FAKULTETA ZA RAČUNALNIŠTVO IN INFORMATIKO LABORATORIJ ZA MATEMATIČNE METODE V RAČUNALNIŠTVU IN INFORMATIKI Aleksandra Franc REŠENE NALOGE IZ LINEARNE ALGEBRE Študijsko gradivo Ljubljana

Prikaži več

6.1 Uvod 6 Igra Chomp Marko Repše, Chomp je nepristranska igra dveh igralcev s popolno informacijo na dvo (ali vec) dimenzionalnem prostoru

6.1 Uvod 6 Igra Chomp Marko Repše, Chomp je nepristranska igra dveh igralcev s popolno informacijo na dvo (ali vec) dimenzionalnem prostoru 6.1 Uvod 6 Igra Chomp Marko Repše, 30.03.2009 Chomp je nepristranska igra dveh igralcev s popolno informacijo na dvo (ali vec) dimenzionalnem prostoru in na končni ali neskončni čokoladi. Igralca si izmenjujeta

Prikaži več

VEKTORSKE FUNKCIJE Vektorske funkcije so funkcije, katerih rezultat preslikave je vektor v prostoru. Preslikave so: preslikava rezultat 3 f(t) = ( x(t

VEKTORSKE FUNKCIJE Vektorske funkcije so funkcije, katerih rezultat preslikave je vektor v prostoru. Preslikave so: preslikava rezultat 3 f(t) = ( x(t VETORSE FUNCIJE Vektorske funkcije so funkcije, katerih rezultat preslikave je vektor v prostoru. reslikave so: preslikava rezultat 3 f(t) = ( x(t),y(t),z(t) ) 3 f(u,v) = ( x(u,v),y(u,v),z(u,v) ). 3 3

Prikaži več

Univerza na Primorskem FAMNIT, MFI Vrednotenje zavarovalnih produktov Seminarska naloga Naloge so sestavni del preverjanja znanja pri predmetu Vrednot

Univerza na Primorskem FAMNIT, MFI Vrednotenje zavarovalnih produktov Seminarska naloga Naloge so sestavni del preverjanja znanja pri predmetu Vrednot Univerza na Primorskem FAMNIT, MFI Vrednotenje zavarovalnih produktov Seminarska naloga Naloge so sestavni del preverjanja znanja pri predmetu Vrednotenje zavarovalnih produktov. Vsaka naloga je vredna

Prikaži več

glava.dvi

glava.dvi Lastnosti verjetnosti 1. Za dogodka A in B velja: P(A B) = P(A) + P(B) P(A B) 2. Za dogodke A, B in C velja: P(A B C) = P(A) + P(B) + P(C) P(A B) P(A C) P(B C) + P(A B C) Kako lahko to pravilo posplošimo

Prikaži več

FGG14

FGG14 Iterativne metode podprostorov Iterativne metode podprostorov uporabljamo za numerično reševanje linearnih sistemov ali računanje lastnih vrednosti problemov z velikimi razpršenimi matrikami, ki so prevelike,

Prikaži več

Microsoft Word - UP_Lekcija04_2014.docx

Microsoft Word - UP_Lekcija04_2014.docx 4. Zanka while Zanke pri programiranju uporabljamo, kadar moramo stavek ali skupino stavkov izvršiti večkrat zaporedoma. Namesto, da iste (ali podobne) stavke pišemo n-krat, jih napišemo samo enkrat in

Prikaži več

Linearna algebra - povzetek vsebine Peter Šemrl Jadranska 21, kabinet 4.10 Izpitni režim: Kolokviji in pisni izpiti so vsi s

Linearna algebra - povzetek vsebine Peter Šemrl Jadranska 21, kabinet 4.10 Izpitni režim: Kolokviji in pisni izpiti so vsi s Linearna algebra - povzetek vsebine Peter Šemrl Jadranska 21, kabinet 410 petersemrl@fmfuni-ljsi Izpitni režim: Kolokviji in pisni izpiti so vsi sestavljeni iz dveh delov: v prvem delu se rešujejo naloge,

Prikaži več

REŠEVANJE DIFERENCIALNIH ENAČB Z MEHANSKIMI RAČUNSKIMI STROJI Pino Koc Seminar za učitelje matematike FMF, Ljubljana, 25. september 2015 Vir: [1] 1

REŠEVANJE DIFERENCIALNIH ENAČB Z MEHANSKIMI RAČUNSKIMI STROJI Pino Koc Seminar za učitelje matematike FMF, Ljubljana, 25. september 2015 Vir: [1] 1 REŠEVANJE DIFERENCIALNIH ENAČB Z MEHANSKIMI RAČUNSKIMI STROJI Pino Koc Seminar za učitelje matematike FMF, Ljubljana, 25. september 2015 Vir: [1] 1 Nekateri pripomočki in naprave za računanje: 1a) Digitalni

Prikaži več

Lehmerjev algoritem za racunanje najvecjega skupnega delitelja

Lehmerjev algoritem za racunanje najvecjega skupnega delitelja Univerza v Ljubljani Fakulteta za računalništvo in informatiko ter Fakulteta za Matematiko in Fiziko Mirjam Kolar Lehmerjev algoritem za računanje največjega skupnega delitelja DIPLOMSKO DELO NA INTERDISCIPLINARNEM

Prikaži več

LABORATORIJSKE VAJE IZ FIZIKE

LABORATORIJSKE VAJE IZ FIZIKE UVOD LABORATORIJSKE VAJE IZ FIZIKE V tem šolskem letu ste se odločili za fiziko kot izbirni predmet. Laboratorijske vaje boste opravljali med poukom od začetka oktobra do konca aprila. Zunanji kandidati

Prikaži več

Naloge 1. Dva električna grelnika z ohmskima upornostma 60 Ω in 30 Ω vežemo vzporedno in priključimo na idealni enosmerni tokovni vir s tokom 10 A. Tr

Naloge 1. Dva električna grelnika z ohmskima upornostma 60 Ω in 30 Ω vežemo vzporedno in priključimo na idealni enosmerni tokovni vir s tokom 10 A. Tr Naloge 1. Dva električna grelnika z ohmskima upornostma 60 Ω in 30 Ω vežemo vzporedno in priključimo na idealni enosmerni tokovni vir s tokom 10 A. Trditev: idealni enosmerni tokovni vir obratuje z močjo

Prikaži več

Poskusi s kondenzatorji

Poskusi s kondenzatorji Poskusi s kondenzatorji Samo Lasič, Fakulteta za Matematiko in Fiziko, Oddelek za fiziko, Ljubljana Povzetek Opisani so nekateri poskusi s kondenzatorji, ki smo jih izvedli z merilnim vmesnikom LabPro.

Prikaži več

Urejevalna razdalja Avtorji: Nino Cajnkar, Gregor Kikelj Mentorica: Anja Petković 1 Motivacija Tajnica v posadki MARS - a je pridna delavka, ampak se

Urejevalna razdalja Avtorji: Nino Cajnkar, Gregor Kikelj Mentorica: Anja Petković 1 Motivacija Tajnica v posadki MARS - a je pridna delavka, ampak se Urejevalna razdalja Avtorji: Nino Cajnkar, Gregor Kikelj Mentorica: Anja Petković 1 Motivacija Tajnica v posadki MARS - a je pridna delavka, ampak se velikokrat zmoti. Na srečo piše v programu Microsoft

Prikaži več

Mladi za napredek Maribora srečanje DOLŽINA»SPIRALE«Matematika Raziskovalna naloga Februar 2015

Mladi za napredek Maribora srečanje DOLŽINA»SPIRALE«Matematika Raziskovalna naloga Februar 2015 Mladi za napredek Maribora 015 3. srečanje DOLŽINA»SPIRALE«Matematika Raziskovalna naloga Februar 015 Kazalo 1. Povzetek...3. Uvod...4 3. Spirala 1...5 4. Spirala...6 5. Spirala 3...8 6. Pitagorejsko drevo...10

Prikaži več

Izpit iz GEOMETRIJE 17. junij 2004 Vpisna ²tevilka: Vrsta: Ime in priimek: Sedeº: 1. Poi² i vse stoºnice v P(R 3 ), ki se dotikajo premice x = 0, prem

Izpit iz GEOMETRIJE 17. junij 2004 Vpisna ²tevilka: Vrsta: Ime in priimek: Sedeº: 1. Poi² i vse stoºnice v P(R 3 ), ki se dotikajo premice x = 0, prem 17. junij 2004 1. Poi² i vse stoºnice v P(R 3 ), ki se dotikajo premice x = 0, premice z = 0 v to ki (1, 1, 0) in premice y = 0 v to ki (1, 0, 1). 2. V projektivni ravnini so dane premice p 1 : 4x 3y z

Prikaži več

ZveznostFunkcij11.dvi

ZveznostFunkcij11.dvi II. LIMITA IN ZVEZNOST FUNKCIJ. Preslikave med množicami Funkcija ali preslikava med dvema množicama A in B je predpis f, ki vsakemu elementu x množice A priredi natanko določen element y množice B. Važno

Prikaži več

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO ODDELEK ZA FIZIKO Peter Smerkol SEMINARSKA NALOGA Brownovo Gibanje MENTOR: dr. Tomaž Podobnik L

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO ODDELEK ZA FIZIKO Peter Smerkol SEMINARSKA NALOGA Brownovo Gibanje MENTOR: dr. Tomaž Podobnik L UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO ODDELEK ZA FIZIKO Peter Smerkol SEMINARSKA NALOGA Brownovo Gibanje MENTOR: dr. Tomaž Podobnik Ljubljana, Marec 2007 Povzetek Najpreprostejši model

Prikaži več

Ime in priimek

Ime in priimek Polje v osi tokovne zanke Seminar pri predmetu Osnove Elektrotehnike II, VSŠ (Uporaba programskih orodij v elektrotehniki) Ime Priimek, vpisna številka, skupina Ljubljana,.. Kratka navodila: Seminar mora

Prikaži več

MATEMATIKA 2. LETNIK GIMNAZIJE G2A,G2B Sestavil: Matej Mlakar, prof. Ravnatelj: Ernest Simončič, prof. Šolsko leto 2011/2012 Število ur: 140

MATEMATIKA 2. LETNIK GIMNAZIJE G2A,G2B Sestavil: Matej Mlakar, prof. Ravnatelj: Ernest Simončič, prof. Šolsko leto 2011/2012 Število ur: 140 MATEMATIKA 2. LETNIK GIMNAZIJE G2A,G2B Sestavil: Matej Mlakar, prof. Ravnatelj: Ernest Simončič, prof. Šolsko leto 2011/2012 Število ur: 140 Pravila ocenjevanja pri predmetu matematika na Gimnaziji Krško

Prikaži več

3. Metode, ki temeljijo na minimalnem ostanku Denimo, da smo z Arnoldijevim algoritmom zgenerirali ON bazo podprostora Krilova K k (A, r 0 ) in velja

3. Metode, ki temeljijo na minimalnem ostanku Denimo, da smo z Arnoldijevim algoritmom zgenerirali ON bazo podprostora Krilova K k (A, r 0 ) in velja 3. Metode, ki temeljijo na minimalnem ostanku Denimo, da smo z Arnoldijevim algoritmom zgenerirali ON bazo podprostora Krilova K k (A, r 0 ) in velja AV k = V k H k + h k+1,k v k+1 e T k = V kh k+1,k.

Prikaži več

Kazalo 1 DVOMESTNE RELACIJE Operacije z dvomestnimi relacijami Predstavitev relacij

Kazalo 1 DVOMESTNE RELACIJE Operacije z dvomestnimi relacijami Predstavitev relacij Kazalo 1 DVOMESTNE RELACIJE 1 1.1 Operacije z dvomestnimi relacijami...................... 2 1.2 Predstavitev relacij............................... 3 1.3 Lastnosti relacij na dani množici (R X X)................

Prikaži več

ELEKTRIČNI NIHAJNI KROG TEORIJA Električni nihajni krog je električno vezje, ki služi za generacijo visokofrekvenče izmenične napetosti. V osnovi je "

ELEKTRIČNI NIHAJNI KROG TEORIJA Električni nihajni krog je električno vezje, ki služi za generacijo visokofrekvenče izmenične napetosti. V osnovi je ELEKTRIČNI NIHAJNI KROG TEORIJA Električni nihajni krog je električno vezje, ki služi za generacijo visokofrekvenče izmenične napetosti. V osnovi je "električno" nihalo, sestavljeno iz vzporedne vezave

Prikaži več

4.Racionalna števila Ulomek je zapis oblike. Sestavljen je iz števila a (a ), ki ga imenujemo števec, in iz števila b (b, b 0), ki ga imenujemo imenov

4.Racionalna števila Ulomek je zapis oblike. Sestavljen je iz števila a (a ), ki ga imenujemo števec, in iz števila b (b, b 0), ki ga imenujemo imenov 4.Racionalna števila Ulomek je zapis oblike. Sestavljen je iz števila a (a ), ki ga imenujemo števec, in iz števila b (b, b 0), ki ga imenujemo imenovalec, ter iz ulomkove črte. Racionalna števila so števila,

Prikaži več

Diploma.Žiga.Krofl.v27

Diploma.Žiga.Krofl.v27 Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo University of Ljubljana Faculty of Civil and Geodetic Engineering Jamova cesta 2 1000 Ljubljana, Slovenija http://www3.fgg.uni-lj.si/ Jamova

Prikaži več

Microsoft Word - Astronomija-Projekt19fin

Microsoft Word - Astronomija-Projekt19fin Univerza v Ljubljani Fakulteta za matematiko in fiziko Jure Hribar, Rok Capuder Radialna odvisnost površinske svetlosti za eliptične galaksije Projektna naloga pri predmetu astronomija Ljubljana, april

Prikaži več

1. izbirni test za MMO 2018 Ljubljana, 16. december Naj bo n naravno število. Na mizi imamo n 2 okraskov n različnih barv in ni nujno, da imam

1. izbirni test za MMO 2018 Ljubljana, 16. december Naj bo n naravno število. Na mizi imamo n 2 okraskov n različnih barv in ni nujno, da imam 1. izbirni test za MMO 018 Ljubljana, 16. december 017 1. Naj bo n naravno število. Na mizi imamo n okraskov n različnih barv in ni nujno, da imamo enako število okraskov vsake barve. Dokaži, da se okraske

Prikaži več

NAJRAJE SE DRUŽIM S SVIČNIKOM, SAJ LAHKO VADIM ČRTE IN KRIVULJE, PA VELIKE TISKANE ČRKE IN ŠTEVILKE DO 20. Preizkusite znanje vaših otrok in natisnite

NAJRAJE SE DRUŽIM S SVIČNIKOM, SAJ LAHKO VADIM ČRTE IN KRIVULJE, PA VELIKE TISKANE ČRKE IN ŠTEVILKE DO 20. Preizkusite znanje vaših otrok in natisnite NAJRAJE SE DRUŽIM S SVIČNIKOM, SAJ LAHKO VADIM ČRTE IN KRIVULJE, PA VELIKE TISKANE ČRKE IN ŠTEVILKE DO 20. Preizkusite znanje vaših otrok in natisnite vzorčne strani iz DELOVNIH LISTOV 1 v štirih delih

Prikaži več

predstavitev fakultete za matematiko 2017 A

predstavitev fakultete za matematiko 2017 A ZAKAJ ŠTUDIJ MATEMATIKE? Ker vam je všeč in vam gre dobro od rok! lepa, eksaktna veda, ki ne zastara matematičnoanalitično sklepanje je uporabno povsod matematiki so zaposljivi ZAKAJ V LJUBLJANI? najdaljša

Prikaži več

Vektorji - naloge za test Naloga 1 Ali so točke A(1, 2, 3), B(0, 3, 7), C(3, 5, 11) b) A(0, 3, 5), B(1, 2, 2), C(3, 0, 4) kolinearne? Naloga 2 Ali toč

Vektorji - naloge za test Naloga 1 Ali so točke A(1, 2, 3), B(0, 3, 7), C(3, 5, 11) b) A(0, 3, 5), B(1, 2, 2), C(3, 0, 4) kolinearne? Naloga 2 Ali toč Vektorji - naloge za test Naloga 1 li so točke (1, 2, 3), (0, 3, 7), C(3, 5, 11) b) (0, 3, 5), (1, 2, 2), C(3, 0, 4) kolinearne? Naloga 2 li točke a) (6, 0, 2), (2, 0, 4), C(6, 6, 1) in D(2, 6, 3), b)

Prikaži več

Slide 1

Slide 1 SLUČAJNE SPREMENLJIVKE Povezave med verjetnostjo P, porazdelitveno funcijo F in gostoto porazdelitve p. P F (x) =P( x) P(a b)=f (b)-f (a) F p Slučajna spremenljiva ima gostoto p. Kašno gostoto ima Y=+l?

Prikaži več

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Katja Ciglar Analiza občutljivosti v Excel-u Seminarska naloga pri predmetu Optimizacija v fina

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Katja Ciglar Analiza občutljivosti v Excel-u Seminarska naloga pri predmetu Optimizacija v fina UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Katja Ciglar Analiza občutljivosti v Excel-u Seminarska naloga pri predmetu Optimizacija v financah Ljubljana, 2010 1. Klasični pristop k analizi

Prikaži več

Numerika

Numerika 20 Numerika Računalniki Koreni enačb Sistem linearnih enačb Odvajanje Integriranje Spektralna analiza Enačba rasti Enačba gibanja Advekcijska enačba Valovna enačba Difuzijska enačba Potencialna enačba

Prikaži več

Turingov stroj in programiranje Barbara Strniša Opis in definicija Definirajmo nekaj oznak: Σ abeceda... končna neprazna množica simbolo

Turingov stroj in programiranje Barbara Strniša Opis in definicija Definirajmo nekaj oznak: Σ abeceda... končna neprazna množica simbolo Turingov stroj in programiranje Barbara Strniša 12. 4. 2010 1 Opis in definicija Definirajmo nekaj oznak: Σ abeceda... končna neprazna množica simbolov (običajno Σ 2) Σ n = {s 1 s 2... s n ; s i Σ, i =

Prikaži več

Del 1 Limite

Del 1 Limite Del 1 Limite POGLAVJE 1 Zaporedja realnih števil 1. Osnovne lastnosti realnih števil Naravna števila označujemo z N, cela z Z, racionalna z Q in realna z R. Naravna števila so nastala iz potrebe po preštevanju.

Prikaži več