Slide 1

Velikost: px
Začni prikazovanje s strani:

Download "Slide 1"

Transkripcija

1 Vsak vektor na premici skozi izhodišče lahko zapišemo kot kjer je v smerni vektor premice in a poljubno število. r a v Vsak vektor na ravnini skozi izhodišče lahko zapišemo kot kjer sta v, v vektorja na ravnini in a 1,a 2 poljubni števili. 1 2 r a1 v1 a2 v2 Izraz a v a v a v imenujemo linearna kombinacija vektorjev v, v,, v n n 1 2 n Podobno je polinom a a x a x a x x x x x 2 n n n linearna kombinaci ja potenc,,,,. Množico, v kateri lahko tvorimo linearne kombinacije (in za katere veljajo običajna računska pravila) imenujemo linearni prostor ali vektorski prostor. Dovolj je, če preverimo, ali so linearne kombinacije dveh vektorjev a v a v vsebovane v množici. Primeri linearnih prostorov so še realna in kompleksna števila, funkcije, ipd. Cela števila niso linearni prostor, ker pri množenju z realnimi števili ne dobimo nujno cela števila. Pozitivna realna števila niso linearni prostor, ker v njih ne moremo odštevati. MATEMATIKA 1 1

2 Najbolj značilni primer vektorskega prostora tvorijo realne n-terice. Elementi so oblike (x 1,x 2,...,x n ) R n, seštevamo in množimo jih po komponentah: (x 1,x 2,...,x n )+(y 1,y 2,...,y n )=(x 1 +y 1,x 2 +y 2,...,x n + y n ) k (x 1,x 2,...,x n )=(k x 1, k x 2,..., k x n ) V vektorskem prostoru lahko ene elemente izrazimo kot linearne kombinacije drugih elementov. Včasih vse elemente izrazimo s pomočjo zelo majhnega števila vektorjev. (2,3, 5) 2 (1,0,0) 3 (0,1,0) 5 (0,0,1) ali v splošnem ( x, x,, x ) x (1,0,,0) x (0,1,,0) x (0,, 0,1) 1 2 n 1 2 n polinomi kompleksna števila x x 1 x x i i MATEMATIKA 1 2

3 Naj bo 3 V ( x, y, z) ; x 2y z 0. Za ( x, y, z),( x, y, z ) V, a, a dobimo a ( x, y, z) a ( x, y, z ) ( ax a x, ay a y, az a z ) ax a x 2 ay a y az a z a ( x 2 y z) a ( x 2 y z ) V je tudi vektorski prostor, ki ga tvorijo trojice (oz. vektorji v prostoru), vendar ne vse. in Za podmnožico vektorskega prostora, ki je tudi sama podprostor, pravimo, da je vektorski podprostor. Ravnine in premice skozi izhodišče so podprostori v prostoru vseh vektorjev v R 3. Ravnina, ki ne gre skozi izhodišče, ni podprostor prostora vektorjev v R 3. Polinomi, ki imajo ničlo v točki 1 so podprostor v vektorskem prostoru vseh polinomov. Vzemimo polinoma p( x), q( x), za katera je p(1) q(1) 0: tedaj je ( a p b q)(1) ap(1) bq(1) 0. Ali je mogoče v vsakem vektorskem prostoru izbrati nekaj vektorjev in s pomočjo njih izraziti vse ostale? MATEMATIKA 1 3

4 Množica vektorjev B je baza vektorskega prostora V, če lahko vsak vektor iz V na en sam način izrazimo kot linearno kombinacijo elementov B. Baza vektorskega prostora mora biti `ravno prav velika : če je premajhna, se nekaterih elementov V ne bo dalo izraziti z elementi baze; če ima preveč elementov pa se bo dalo elemente V izraziti na (pre)več različnih načinov. Vektor v lahko na en sam način zapišemo kot linearno kombinacijo vektorjev v, v,..., v, če ima enačba x v x v x v = v Če v lahko zapišemo na dva različna načina: potem je n n eno samo rešitev. v x v x v x v = x v x v x v n n n n x x v x x v x x v = 0 neničelni zapis vektorja n n n, 1 2 n Vektorji v, v,..., v so linearno neodvisni, če ima enačba x v x v x v = n n n eno samo rešitev in sicer x x x = n Zapis vektorja kot linearne kombinacije neodvisnih vektorjev je vedno enoličen. MATEMATIKA 1 4

5 V vektorskem prostoru V imamo neskončno mnogo možnih izbir za bazo, vsem tem bazam pa je skupno le to, da imajo enako mnogo elementov. Številu elementov baze pravimo dimenzija prostora V in ga označimo dimv. V vektorskem prostoru R 3 lahko za bazo vzamemo vektorje (1,0,0), (0,1,0) in (0,0,1). Poljuben vektor lahko zapišemo kot linearno kombinacijo teh treh in sicer na en sam način: Dimenzija prostora R 3 je 3. ( x, x, x ) x (1,0,0) x (0, 1,0) x (0,0,1) Podobno je dimenzija prostora R n enaka n. V vektorskem prostoru vseh polinomov lahko za bazo vzamemo vse potence: 1,x, x 2, x 3,... Vektorski prostor vseh polinomov je neskončnodimenzionalen. Kompleksna števila so dvodimenzionalni vektorski prostor z bazo: 1,i. MATEMATIKA 1 5

6 Premica skozi izhodišče je vektorski prostor, v katerem lahko za bazo vzamemo (katerikoli) njen smerni vektor. Premica skozi izhodišče je enodimenzionalni vektorski prostor. 0 r Ravnina skozi izhodišče je vektorski prostor, v katerem lahko za bazo vzamemo katerakoli vektorja, ki ležita v ravnini, vendar ne na isti premici. Ravnina je dvodimezionalni vektorski prostor. r 2 0 r 1 V ravnini z enačbo x+y+2z=0 lahko za bazo vzamemo vektorja (2,0,-1) in (0,2,-1): x y x y Če za ( x, y, z) velja x y 2z 0, potem je z in ( x, y, z) (2,0, 1) (2,0, 1) V vektorskem prostoru R 3 lahko za bazo vzamemo katerekoli tri vektorje, ki ne ležijo v isti ravnini. MATEMATIKA 1 6

7 LINEARNE FUNKCIJE V,W linearna prostora. Funkcija L:V W je linearna, če ohranja linearne kombinacije, tj. če velja L( a v a v a v ) = a L( v ) a L( v ) a L( v ) n n n n Zadošča preveriti, če velja L( a v a v ) = a L( v ) a L( v ). 3 2 L :, L( x, y, z) ( x, y 2 z) je linearna La( x, y, z) a ( x, y, z ) L( ax a x, ay a y, az a z ) ax a x, ay a y 2( az a z ) a( x, y 2 z) a ( x, y 2z ) al( x, y, z) a L( x, y, z ) 2 L :, L( x, y) x 2y K K x y x y 2 :, (, ) 2 1 je linearna. ni linearna. K a( x, y) a ( x, y ) L( ax a x, ay a y ) ax a x 2( ay a y ) 1 ak( x, y) a K( x, y ) a( x 2y 1) a ( x 2y 1) ax a x 2( ay a y) a a' Odvajanje je linearna preslikava, saj velja (a u(x)+b v(x))'=a u'(x)+b v'(x). MATEMATIKA 1 7

8 LINEARNE ENAČBE Linearna enačba je enačba oblike L(x)=w kjer je L:V W linearna funkcija in w W. 2 2x 3y 2 je linearna enačba, kjer je L :, L( x, y) 2x 3 y, w 2 2x y 1 x 2y 3 je linearna enačba, kjer je L L x y x y x y w 2 2 :, (, ) (2, 2 ), (1,3) Z ustrezno izbrano linearno funkcijo L in vektorjem w lahko poljubni sistem linearnih enačb strnjeno zapišemo kot eno linearno enačbo. f ( x) 2 f ( x) x 1 je diferencialna enačba, ki jo lahko zapišemo kot linearno enačbo L( f ) w za L : odvedljive funkcije funkcije, L( f ) f 2 f in w x 1 MATEMATIKA 1 8

9 Želimo odgovoriti na dve vprašanji: a) Ali je enačba L(x)=w rešljiva? b) Če je enačba rešljiva, kaj so vse njene rešitve? Za linearno funkcijo L:V W vpeljemo: Z ( L) L( v) W; v V zaloga vrednosti L 'slika' L N ( L) v V ; L( v) 0 ničelna množica L 'jedro' L N(L) je podprostor prostora V, Z(L) pa je podprostor prostora W. Res, če sta v,v' N(L), potem je L(av+a'v')=aL(v)+a'L(v')=0, torej je tudi av+a'v' N(L). Poleg tega, za L(v),L(v') Z(L) je al(v)+a'l(v')=l(av+a'v'), torej je tudi al(v)+a'l(v') Z(L). Vsota dimenzij zaloge vrednosti in ničelne množice je ravno dimenzija V. dim Z(L)+dim N(L)=dim V Izberimo bazo L(x 1 ),, L(x i ) za Z(L) in bazo y 1,, y j za N(L). Za vsak v V lahko enolično izrazimo L(v)= a 1 L(x 1 )+ +a i L(x i )= L(a 1 x 1 + +a i x i ). Tedaj je v-(a 1 x 1 + +a i x i ) v ničelni množici L in ga lahko enolično izrazimo kot v-(a 1 x 1 + +a i x i )= b 1 y 1 + +b j y j. Sklepamo, da lahko v enolično izrazimo kot v=a 1 x 1 + +a i x i + b 1 y 1 + +b j y j, torej je dimenzija V enaka i+j. MATEMATIKA 1 9

10 Naj bo ena x rešitev enačbe : L( x ) w. 0 0 Če je x x N ( L), potem je tudi rešitev x enačbe, ker je L( x ) L( x x x ) L( x ) L( x x ) w 0 w L( x1) w, potem L 1 0 torej je 1 0 Obrat no, če je je ( x x ) w w 0, x x N ( L). a) Enačba L(x)=w rešljiva, če je w Z(L). b) Če je L(x 0 )=w, potem so vse rešitve enačbe dane z x0 N ( L) x0 v; v N ( L). Velikost jedra N(L) funkcije L določa velikost množice rešitev enačbe L(x)=w: Če je dimenzija vektorskega prostora N(L) enaka n, potem lahko zapišemo splošno rešitev v kateri nastopa n parametrov. Pravimo, da je množica rešitev n-parametrična. Če je x 0 rešitev enačbe L(x)=w in če je v 1, v 2,..., v n baza prostora N(L), potem je splošna rešitev enačbe dana z x=x 0 +t 1 v 1 +t 2 v 2 + +t n v n, kjer so t 1, t 2,, t n poljubna realna števila. MATEMATIKA 1 10

11 Rešimo enačbo (1,0,2) x (2,1,0). 3 3 Funkcija L :, L( x) v x je linearna velja v a x b y a v x b v y, zato je (1,0,2) x (2,1,0) linearna enačba. V zalogi vrednosti funkcije L( x) (1,0,2) x so vektorji, ki so pravokotni na (1,0,2), zato (2,1,0) Z( L) in enačba ni rešljiva. Rešimo enačbo (1,0,2) x (2,1, 1). Vektor (2,1, 1) je pravokoten na (1,0,2) zato je vsebovan v zalogi Z( L) funkcije L( x) (1,0,2) x. Enačba je rešljiva. Eno rešitev enačbe dobimo tako, da vzamemo primerno dolg vektor v smeri, ki je pravokotna na (1,0,2) in (2,1,-1): 1 (1,0, 2) (2,1, 1) ( 2,5,1) in (1,0, 2) ( 2,5,1) ( 10, 5,5) 5 (2, 1, 1), zato lahko vzamemo x0 (2, 5, 1). 5 Jedro funkcije L( x) (1,0,2) x tvorijo vektorji, ki so vzporedni z (1,0,2). Prostor je enodimenzionalen, za bazo lahko vzamemo kar vektor Splošna rešitev enačbe (1,0, 2) x (2,1, 1) (1, 0,2) je x (2, 5, 1) t (1,0,2) ( t, 1,2 t ) MATEMATIKA 1 11

Vaje: Matrike 1. Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N 0 1 n ; n N Pokaži, da je množica x 0 y 0 x

Vaje: Matrike 1. Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N 0 1 n ; n N Pokaži, da je množica x 0 y 0 x Vaje: Matrike 1 Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N n 1 1 0 1 ; n N 0 2 Pokaži, da je množica x 0 y 0 x y x + z ; x, y, z R y x z x vektorski podprostor v prostoru matrik

Prikaži več

Linearna algebra - povzetek vsebine Peter Šemrl Jadranska 21, kabinet 4.10 Izpitni režim: Kolokviji in pisni izpiti so vsi s

Linearna algebra - povzetek vsebine Peter Šemrl Jadranska 21, kabinet 4.10 Izpitni režim: Kolokviji in pisni izpiti so vsi s Linearna algebra - povzetek vsebine Peter Šemrl Jadranska 21, kabinet 410 petersemrl@fmfuni-ljsi Izpitni režim: Kolokviji in pisni izpiti so vsi sestavljeni iz dveh delov: v prvem delu se rešujejo naloge,

Prikaži več

Domače vaje iz LINEARNE ALGEBRE Marjeta Kramar Fijavž Fakulteta za gradbeništvo in geodezijo Univerze v Ljubljani 2007/08 Kazalo 1 Vektorji 2 2 Analit

Domače vaje iz LINEARNE ALGEBRE Marjeta Kramar Fijavž Fakulteta za gradbeništvo in geodezijo Univerze v Ljubljani 2007/08 Kazalo 1 Vektorji 2 2 Analit Domače vaje iz LINEARNE ALGEBRE Marjeta Kramar Fijavž Fakulteta za gradbeništvo in geodezijo Univerze v Ljubljani 007/08 Kazalo Vektorji Analitična geometrija 7 Linearni prostori 0 4 Evklidski prostori

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/testi in izpiti/ /IZPITI/FKKT-februar-14.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/testi in izpiti/ /IZPITI/FKKT-februar-14.dvi Kemijska tehnologija, Kemija Bolonjski univerzitetni program Smer: KT K WolframA: DA NE Računski del izpita pri predmetu MATEMATIKA I 6. 2. 2014 Čas reševanja je 75 minut. Navodila: Pripravi osebni dokument.

Prikaži več

Rešene naloge iz Linearne Algebre

Rešene naloge iz Linearne Algebre UNIVERZA V LJUBLJANI FAKULTETA ZA RAČUNALNIŠTVO IN INFORMATIKO LABORATORIJ ZA MATEMATIČNE METODE V RAČUNALNIŠTVU IN INFORMATIKI Aleksandra Franc REŠENE NALOGE IZ LINEARNE ALGEBRE Študijsko gradivo Ljubljana

Prikaži več

2. izbirni test za MMO 2017 Ljubljana, 17. februar Naj bosta k 1 in k 2 dve krožnici s središčema O 1 in O 2, ki se sekata v dveh točkah, ter

2. izbirni test za MMO 2017 Ljubljana, 17. februar Naj bosta k 1 in k 2 dve krožnici s središčema O 1 in O 2, ki se sekata v dveh točkah, ter 2. izbirni test za MMO 2017 Ljubljana, 17. februar 2017 1. Naj bosta k 1 in k 2 dve krožnici s središčema O 1 in O 2, ki se sekata v dveh točkah, ter naj bo A eno od njunih presečišč. Ena od njunih skupnih

Prikaži več

EKVITABILNE PARTICIJE IN TOEPLITZOVE MATRIKE Aleksandar Jurišić Politehnika Nova Gorica in IMFM Vipavska 13, p.p. 301, Nova Gorica Slovenija Štefko Mi

EKVITABILNE PARTICIJE IN TOEPLITZOVE MATRIKE Aleksandar Jurišić Politehnika Nova Gorica in IMFM Vipavska 13, p.p. 301, Nova Gorica Slovenija Štefko Mi EKVITABILNE PARTICIJE IN TOEPLITZOVE MATRIKE Aleksandar Jurišić Politehnika Nova Gorica in IMFM Vipavska 13, p.p. 301, Nova Gorica Slovenija Štefko Miklavič 30. okt. 2003 Math. Subj. Class. (2000): 05E{20,

Prikaži več

Matematika II (UN) 1. kolokvij (13. april 2012) RE ITVE Naloga 1 (25 to k) Dana je linearna preslikava s predpisom τ( x) = A x A 1 x, kjer je A

Matematika II (UN) 1. kolokvij (13. april 2012) RE ITVE Naloga 1 (25 to k) Dana je linearna preslikava s predpisom τ( x) = A x A 1 x, kjer je A Matematika II (UN) 1 kolokvij (13 april 01) RE ITVE Naloga 1 (5 to k) Dana je linearna preslikava s predpisom τ( x) = A x A 1 x, kjer je 0 1 1 A = 1, 1 A 1 pa je inverzna matrika matrike A a) Poi² ite

Prikaži več

5 SIMPLICIALNI KOMPLEKSI Definicija 5.1 Vektorji r 0,..., r k v R n so afino neodvisni, če so vektorji r 1 r 0, r 2 r 0,..., r k r 0 linearno neodvisn

5 SIMPLICIALNI KOMPLEKSI Definicija 5.1 Vektorji r 0,..., r k v R n so afino neodvisni, če so vektorji r 1 r 0, r 2 r 0,..., r k r 0 linearno neodvisn 5 SIMPLICIALNI KOMPLEKSI Definicija 5.1 Vektorji r 0,..., r k v R n so afino neodvisni, če so vektorji r 1 r 0, r 2 r 0,..., r k r 0 linearno neodvisni. Če so krajevni vektorji do točk a 0,..., a k v R

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-junij-17.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-junij-17.dvi Vpisna številka Priimek, ime Smer: K KT WA Izpit pri predmetu MATEMATIKA I Računski del Ugasni in odstrani mobilni telefon. Uporaba knjig in zapiskov ni dovoljena. Dovoljeni pripomočki so: kemični svinčnik,

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-avgust-17.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-avgust-17.dvi Vpisna številka Priimek, ime Smer: K KT WA Izpit pri predmetu MATEMATIKA I Računski del Ugasni in odstrani mobilni telefon. Uporaba knjig in zapiskov ni dovoljena. Dovoljeni pripomočki so: kemični svinčnik,

Prikaži več

FGG14

FGG14 Iterativne metode podprostorov Iterativne metode podprostorov uporabljamo za numerično reševanje linearnih sistemov ali računanje lastnih vrednosti problemov z velikimi razpršenimi matrikami, ki so prevelike,

Prikaži več

C:/Users/Matevz/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-januar-februar-15.dvi

C:/Users/Matevz/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-januar-februar-15.dvi Kemijska tehnologija, Kemija Bolonjski univerzitetni program Smer: KT K WolframA: DA NE Čas reševanja je 75 minut. Navodila: Računski del izpita pri predmetu MATEMATIKA I Ugasni in odstrani mobilni telefon.

Prikaži več

3. Metode, ki temeljijo na minimalnem ostanku Denimo, da smo z Arnoldijevim algoritmom zgenerirali ON bazo podprostora Krilova K k (A, r 0 ) in velja

3. Metode, ki temeljijo na minimalnem ostanku Denimo, da smo z Arnoldijevim algoritmom zgenerirali ON bazo podprostora Krilova K k (A, r 0 ) in velja 3. Metode, ki temeljijo na minimalnem ostanku Denimo, da smo z Arnoldijevim algoritmom zgenerirali ON bazo podprostora Krilova K k (A, r 0 ) in velja AV k = V k H k + h k+1,k v k+1 e T k = V kh k+1,k.

Prikaži več

PREDMETNI KURIKULUM ZA RAZVOJ METEMATIČNIH KOMPETENC

PREDMETNI KURIKULUM ZA RAZVOJ METEMATIČNIH KOMPETENC MATEMATIKA 1.razred OSNOVE PREDMETA POKAZATELJI ZNANJA SPRETNOSTI KOMPETENCE Naravna števila -pozna štiri osnovne računske operacije in njihove lastnosti, -izračuna številske izraze z uporabo štirih računskih

Prikaži več

11. Navadne diferencialne enačbe Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogo

11. Navadne diferencialne enačbe Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogo 11. Navadne diferencialne enačbe 11.1. Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogoju y(x 0 ) = y 0, kjer je f dana dovolj gladka funkcija

Prikaži več

FGG13

FGG13 10.8 Metoda zveznega nadaljevanja To je metoda za reševanje nelinearne enačbe f(x) = 0. Če je težko poiskati začetni približek (še posebno pri nelinearnih sistemih), si lahko pomagamo z uvedbo dodatnega

Prikaži več

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6. julij 2018 Navodila Pazljivo preberite be

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6. julij 2018 Navodila Pazljivo preberite be Ime in priimek: Vpisna št: FAKULEA ZA MAEMAIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6 julij 2018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Za pozitiven rezultat

Prikaži več

Vektorji - naloge za test Naloga 1 Ali so točke A(1, 2, 3), B(0, 3, 7), C(3, 5, 11) b) A(0, 3, 5), B(1, 2, 2), C(3, 0, 4) kolinearne? Naloga 2 Ali toč

Vektorji - naloge za test Naloga 1 Ali so točke A(1, 2, 3), B(0, 3, 7), C(3, 5, 11) b) A(0, 3, 5), B(1, 2, 2), C(3, 0, 4) kolinearne? Naloga 2 Ali toč Vektorji - naloge za test Naloga 1 li so točke (1, 2, 3), (0, 3, 7), C(3, 5, 11) b) (0, 3, 5), (1, 2, 2), C(3, 0, 4) kolinearne? Naloga 2 li točke a) (6, 0, 2), (2, 0, 4), C(6, 6, 1) in D(2, 6, 3), b)

Prikaži več

PRIPRAVA NA 1. Š. N.: KVADRATNA FUNKCIJA IN KVADRATNA ENAČBA 1. Izračunaj presečišča parabole y=5 x x 8 s koordinatnima osema. R: 2 0, 8, 4,0,,0

PRIPRAVA NA 1. Š. N.: KVADRATNA FUNKCIJA IN KVADRATNA ENAČBA 1. Izračunaj presečišča parabole y=5 x x 8 s koordinatnima osema. R: 2 0, 8, 4,0,,0 PRIPRAVA NA 1. Š. N.: KVADRATNA FUNKCIJA IN KVADRATNA ENAČBA 1. Izračunaj presečišča parabole y=5 x +18 x 8 s koordinatnima osema. R: 0, 8, 4,0,,0 5. Zapiši enačbo kvadratne funkcije f (x )=3 x +1 x+8

Prikaži več

Funkcije in grafi

Funkcije in grafi 14 Funkcije in grafi Funkcije Zapisi funkcij Sorazmernost Obratna sorazmernost Potenčne funkcije Polinomske funkcije Druge funkcije Prileganje podatkom 14.1 Funkcije Spremenljivke Odvisnost spremenljivk

Prikaži več

Srednja šola za oblikovanje

Srednja šola za oblikovanje Srednja šola za oblikovanje Park mladih 8 2000 Maribor POKLICNA MATURA MATEMATIKA SEZNAM VPRAŠANJ ZA USTNI DEL NARAVNA IN CELA ŠTEVILA Opišite vrstni red računskih operacij v množici naravnih števil. Kakšen

Prikaži več

ANALITIČNA GEOMETRIJA V RAVNINI

ANALITIČNA GEOMETRIJA V RAVNINI 3. Analitična geometrija v ravnini Osnovna ideja analitične geometrije je v tem, da vaskemu geometrijskemu objektu (točki, premici,...) pridružimo števila oz koordinate, ki ta objekt popolnoma popisujejo.

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNISTVO Matematika Pisni izpit. junij 22 Ime in priimek Vpisna st Navodila Pazljivo preberite besedilo naloge, preden se lotite resevanja. Veljale bodo samo resitve na papirju, kjer so

Prikaži več

Poslovilno predavanje

Poslovilno predavanje Poslovilno predavanje Matematične teme z didaktiko Marko Razpet, Pedagoška fakulteta Ljubljana, 20. november 2014 1 / 32 Naše skupne ure Matematične tehnologije 2011/12 Funkcije več spremenljivk 2011/12

Prikaži več

Osnove matematicne analize 2018/19

Osnove matematicne analize  2018/19 Osnove matematične analize 2018/19 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D f R priredi natanko

Prikaži več

Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t

Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t 0.5 1.5 2.0 t a.) Nari²ite tri grafe: graf (klasi ne)

Prikaži več

MATEMATIKA 2. LETNIK GIMNAZIJE G2A,G2B Sestavil: Matej Mlakar, prof. Ravnatelj: Ernest Simončič, prof. Šolsko leto 2011/2012 Število ur: 140

MATEMATIKA 2. LETNIK GIMNAZIJE G2A,G2B Sestavil: Matej Mlakar, prof. Ravnatelj: Ernest Simončič, prof. Šolsko leto 2011/2012 Število ur: 140 MATEMATIKA 2. LETNIK GIMNAZIJE G2A,G2B Sestavil: Matej Mlakar, prof. Ravnatelj: Ernest Simončič, prof. Šolsko leto 2011/2012 Število ur: 140 Pravila ocenjevanja pri predmetu matematika na Gimnaziji Krško

Prikaži več

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 2017

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 2017 UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 217 ii Kazalo Diferencialni račun vektorskih funkcij 1 1.1 Skalarne funkcije...........................

Prikaži več

Microsoft Word - Analiza rezultatov NPZ matematika 2018.docx

Microsoft Word - Analiza rezultatov NPZ matematika 2018.docx Analiza dosežkov pri predmetu matematika za NPZ 28 6. razred NPZ matematika 28 Dosežek šole Povprečno število točk v % Državno povprečje Povprečno število točk v % Odstopanje v % 49,55 52,52 2,97 Povprečni

Prikaži več

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5. februar 2018 Navodila Pazljivo preberite

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5. februar 2018 Navodila Pazljivo preberite Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5 februar 018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Nalog je

Prikaži več

GeomInterp.dvi

GeomInterp.dvi Univerza v Ljubljani Fakulteta za matematiko in fiziko Seminar za Numerično analizo Geometrijska interpolacija z ravninskimi parametričnimi polinomskimi krivuljami Gašper Jaklič, Jernej Kozak, Marjeta

Prikaži več

Podatkovni model ER

Podatkovni model ER Podatkovni model Entiteta- Razmerje Iztok Savnik, FAMNIT 2018/19 Pregled: Načrtovanje podatkovnih baz Konceptualno načtrovanje: (ER Model) Kaj so entite in razmerja v aplikacijskem okolju? Katere podatke

Prikaži več

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Katja Ciglar Analiza občutljivosti v Excel-u Seminarska naloga pri predmetu Optimizacija v fina

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Katja Ciglar Analiza občutljivosti v Excel-u Seminarska naloga pri predmetu Optimizacija v fina UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Katja Ciglar Analiza občutljivosti v Excel-u Seminarska naloga pri predmetu Optimizacija v financah Ljubljana, 2010 1. Klasični pristop k analizi

Prikaži več

CpE & ME 519

CpE & ME 519 2D Transformacije Zakaj potrebujemo transformacije? Animacija Več instanc istega predmeta, variacije istega objekta na sceni Tvorba kompliciranih predmetov iz bolj preprostih Transformacije gledanja Kaj

Prikaži več

4.Racionalna števila Ulomek je zapis oblike. Sestavljen je iz števila a (a ), ki ga imenujemo števec, in iz števila b (b, b 0), ki ga imenujemo imenov

4.Racionalna števila Ulomek je zapis oblike. Sestavljen je iz števila a (a ), ki ga imenujemo števec, in iz števila b (b, b 0), ki ga imenujemo imenov 4.Racionalna števila Ulomek je zapis oblike. Sestavljen je iz števila a (a ), ki ga imenujemo števec, in iz števila b (b, b 0), ki ga imenujemo imenovalec, ter iz ulomkove črte. Racionalna števila so števila,

Prikaži več

Brownova kovariancna razdalja

Brownova kovariancna razdalja Brownova kovariančna razdalja Nace Čebulj Fakulteta za matematiko in fiziko 8. januar 2015 Nova mera odvisnosti Motivacija in definicija S primerno izbiro funkcije uteži w(t, s) lahko definiramo mero odvisnosti

Prikaži več

(Microsoft PowerPoint - vorsic ET 9.2 OES matri\350ne metode 2011.ppt [Compatibility Mode])

(Microsoft PowerPoint - vorsic ET 9.2 OES matri\350ne metode 2011.ppt [Compatibility Mode]) 8.2 OBRATOVANJE ELEKTROENERGETSKEGA SISTEMA o Matrične metode v razreševanju el. omrežij Matrične enačbe električnih vezij Numerične metode za reševanje linearnih in nelinearnih enačb Sistem algebraičnih

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNISTVO Matematika 2. kolokvij. december 2 Ime in priimek: Vpisna st: Navodila Pazljivo preberite besedilo naloge, preden se lotite resevanja. Veljale bodo samo resitve na papirju, kjer

Prikaži več

M

M Š i f r a k a n d i d a t a : Državni izpitni center *M16140111* Osnovna raven MATEMATIKA Izpitna pola 1 SPOMLADANSKI IZPITNI ROK Sobota, 4. junij 016 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat

Prikaži več

FAKULTETA ZA STROJNIŠTVO Matematika 2 Pisni izpit 9. junij 2005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite bese

FAKULTETA ZA STROJNIŠTVO Matematika 2 Pisni izpit 9. junij 2005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite bese FAKULTETA ZA STROJNIŠTVO Matematika Pisni izpit 9. junij 005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Veljale bodo

Prikaži več

Izpit iz GEOMETRIJE 17. junij 2004 Vpisna ²tevilka: Vrsta: Ime in priimek: Sedeº: 1. Poi² i vse stoºnice v P(R 3 ), ki se dotikajo premice x = 0, prem

Izpit iz GEOMETRIJE 17. junij 2004 Vpisna ²tevilka: Vrsta: Ime in priimek: Sedeº: 1. Poi² i vse stoºnice v P(R 3 ), ki se dotikajo premice x = 0, prem 17. junij 2004 1. Poi² i vse stoºnice v P(R 3 ), ki se dotikajo premice x = 0, premice z = 0 v to ki (1, 1, 0) in premice y = 0 v to ki (1, 0, 1). 2. V projektivni ravnini so dane premice p 1 : 4x 3y z

Prikaži več

RAČUNALNIŠKA ORODJA V MATEMATIKI

RAČUNALNIŠKA ORODJA V MATEMATIKI DEFINICIJA V PARAVOKOTNEM TRIKOTNIKU DEFINICIJA NA ENOTSKI KROŢNICI GRAFI IN LASTNOSTI SINUSA IN KOSINUSA POMEMBNEJŠE FORMULE Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z

Prikaži več

Zgledi:

Zgledi: a) za funkcijo f(x)= 1/3x 1 izračunaj ničlo, zapiši začetno vrednost in nariši graf (x=3, začetna vrednost: f(0)= 1, graf seka abscisno os v točki (3,0), ordinatno os pa v točki (0, 1)) b) nariši graf

Prikaži več

Mrežni modeli polimernih verig Boštjan Jenčič 22. maj 2013 Eden preprostejših opisov polimerne verige je mrežni model, kjer lahko posamezni segmenti p

Mrežni modeli polimernih verig Boštjan Jenčič 22. maj 2013 Eden preprostejših opisov polimerne verige je mrežni model, kjer lahko posamezni segmenti p Mrežni modeli polimernih verig Boštjan Jenčič. maj 013 Eden preprostejših opisov polimerne verige je mrežni model, kjer lahko posameni segmenti polimera asedejo golj ogljišča v kvadratni (ali kubični v

Prikaži več

SESTAVA VSEBINE MATEMATIKE V 6

SESTAVA VSEBINE MATEMATIKE V 6 SESTAVA VSEBINE MATEMATIKE V 6. RAZREDU DEVETLETKE 1. KONFERENCA Št. ure Učne enote CILJI UVOD (1 ura) 1 Uvodna ura spoznati vsebine učnega načrta, način dela, učne pripomočke za pouk matematike v 6. razredu

Prikaži več

Vrste

Vrste Matematika 1 17. - 24. november 2009 Funkcija, ki ni algebraična, se imenuje transcendentna funkcija. Podrobneje si bomo ogledali naslednje transcendentne funkcije: eksponentno, logaritemsko, kotne, ciklometrične,

Prikaži več

Kazalo 1 DVOMESTNE RELACIJE Operacije z dvomestnimi relacijami Predstavitev relacij

Kazalo 1 DVOMESTNE RELACIJE Operacije z dvomestnimi relacijami Predstavitev relacij Kazalo 1 DVOMESTNE RELACIJE 1 1.1 Operacije z dvomestnimi relacijami...................... 2 1.2 Predstavitev relacij............................... 3 1.3 Lastnosti relacij na dani množici (R X X)................

Prikaži več

NEKAJ VPRAŠANJ IZ MATEMATIKE 2 1. Katero točko evklidskega prostora R n imenujemo notranjo (zunanjo, robno) točko množice M R n? 2. Za poljubno množic

NEKAJ VPRAŠANJ IZ MATEMATIKE 2 1. Katero točko evklidskega prostora R n imenujemo notranjo (zunanjo, robno) točko množice M R n? 2. Za poljubno množic NEKAJ VPRAŠANJ IZ MATEMATIKE 2 1. Katero točko evklidskega prostora R n imenujemo notranjo (zunanjo, robno) točko množice M R n? 2. Za poljubno množico M R n evklidskega prostora R n definirajte množice

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 3. februar Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Veljale bodo samo rešitve na papirju, kjer

Prikaži več

UM FKKT, Bolonjski visoko²olski program Kemijska tehnologija Vpisna ²tevilka Priimek, ime 3. test pri predmetu MATEMATIKA II Ra unski del

UM FKKT, Bolonjski visoko²olski program Kemijska tehnologija Vpisna ²tevilka Priimek, ime 3. test pri predmetu MATEMATIKA II Ra unski del UM FKKT, Bolonjski visoko²olski program Kemijska tehnologija Vpisna ²tevilka Priimek, ime 3. test pri predmetu MATEMATIKA II Ra unski del 13. 6. 2016 Navodila: Pripravi osebni dokument. Ugasni in odstrani

Prikaži več

REED-SOLOMONOVE KODE Aleksandar Jurišić Arjana Žitnik 6. junij 2004 Math. Subj. Class. (2000): 51E22, 94B05?, 11T71 Reed-Solomonove kode so izjemno us

REED-SOLOMONOVE KODE Aleksandar Jurišić Arjana Žitnik 6. junij 2004 Math. Subj. Class. (2000): 51E22, 94B05?, 11T71 Reed-Solomonove kode so izjemno us REED-SOLOMONOVE KODE Aleksandar Jurišić Arjana Žitnik 6 junij 2004 Math Subj Class (2000): 51E22, 94B05?, 11T71 Reed-Solomonove kode so izjemno uspešne na področju hranjenja podatkov (CD, DVD) ter prenašanja

Prikaži več

Ime in priimek

Ime in priimek Polje v osi tokovne zanke Seminar pri predmetu Osnove Elektrotehnike II, VSŠ (Uporaba programskih orodij v elektrotehniki) Ime Priimek, vpisna številka, skupina Ljubljana,.. Kratka navodila: Seminar mora

Prikaži več

6.1 Uvod 6 Igra Chomp Marko Repše, Chomp je nepristranska igra dveh igralcev s popolno informacijo na dvo (ali vec) dimenzionalnem prostoru

6.1 Uvod 6 Igra Chomp Marko Repše, Chomp je nepristranska igra dveh igralcev s popolno informacijo na dvo (ali vec) dimenzionalnem prostoru 6.1 Uvod 6 Igra Chomp Marko Repše, 30.03.2009 Chomp je nepristranska igra dveh igralcev s popolno informacijo na dvo (ali vec) dimenzionalnem prostoru in na končni ali neskončni čokoladi. Igralca si izmenjujeta

Prikaži več

Microsoft PowerPoint _12_15-11_predavanje(1_00)-IR-pdf

Microsoft PowerPoint _12_15-11_predavanje(1_00)-IR-pdf uporaba for zanke i iz korak > 0 oblika zanke: for i iz : korak : ik NE i ik DA stavek1 stavek2 stavekn stavek1 stavek2 stavekn end i i + korak I&: P-XI/1/17 uporaba for zanke i iz korak < 0 oblika zanke:

Prikaži več

Teorija kodiranja in kriptografija 2013/ AES

Teorija kodiranja in kriptografija 2013/ AES Teorija kodiranja in kriptografija 23/24 AES Arjana Žitnik Univerza v Ljubljani, Fakulteta za matematiko in fiziko Ljubljana, 8. 3. 24 AES - zgodovina Septembra 997 je NIST objavil natečaj za izbor nove

Prikaži več

Numeri na analiza - podiplomski ²tudij FGG doma e naloge - 1. skupina V prvem delu morate re²iti toliko nalog, da bo njihova skupna vsota vsaj 10 to k

Numeri na analiza - podiplomski ²tudij FGG doma e naloge - 1. skupina V prvem delu morate re²iti toliko nalog, da bo njihova skupna vsota vsaj 10 to k Numeri na analiza - podiplomski ²tudij FGG doma e naloge -. skupina V prvem delu morate re²iti toliko nalog, da bo njihova skupna vsota vsaj 0 to k in da bo vsaj ena izmed njih vredna vsaj 4 to ke. Za

Prikaži več

STAVKI _5_

STAVKI _5_ 5. Stavki (Teoremi) Vsebina: Stavek superpozicije, stavek Thévenina in Nortona, maksimalna moč na bremenu (drugič), stavek Tellegena. 1. Stavek superpozicije Ta stavek določa, da lahko poljubno vezje sestavljeno

Prikaži več

PowerPoint Presentation

PowerPoint Presentation I&R: P-X/1/15 operatorji, ki jih uporabljamo za delo z vektorskimi veličinami vektorski oklepaj [ ] ločnica med elementi vrstičnega vektorja je vejica, ali presledek ločnica med elementi stolpčnega vektorja

Prikaži več

POPOLNI KVADER

POPOLNI KVADER List za mlade matematike, fizike, astronome in računalnikarje ISSN 031-662 Letnik 18 (1990/1991) Številka 3 Strani 134 139 Edvard Kramar: POPOLNI KVADER Ključne besede: matematika, geometrija, kvader,

Prikaži več

Strojna oprema

Strojna oprema Asistenta: Mira Trebar, Miha Moškon UIKTNT 2 Uvod v programiranje Začeti moramo razmišljati algoritmično sestaviti recept = napisati algoritem Algoritem za uporabo poljubnega okenskega programa. UIKTNT

Prikaži več

NAVODILA AVTORJEM PRISPEVKOV

NAVODILA AVTORJEM PRISPEVKOV Predmetna komisija za nižji izobrazbeni standard matematika Opisi dosežkov učencev 6. razreda na nacionalnem preverjanju znanja Slika: Porazdelitev točk pri matematiki (NIS), 6. razred 1 ZELENO OBMOČJE

Prikaži več

MAGIČNI KVADRATI DIMENZIJE 4n+2

MAGIČNI KVADRATI DIMENZIJE 4n+2 List za mlade matematike, fizike, astronome in računalnikarje ISSN 0351-6652 Letnik 18 (1990/1991) Številka 6 Strani 322 327 Borut Zalar: MAGIČNI KVADRATI DIMENZIJE 4n + 2 Ključne besede: matematika, aritmetika,

Prikaži več

RAM stroj Nataša Naglič 4. junij RAM RAM - random access machine Bralno pisalni, eno akumulatorski računalnik. Sestavljajo ga bralni in pisalni

RAM stroj Nataša Naglič 4. junij RAM RAM - random access machine Bralno pisalni, eno akumulatorski računalnik. Sestavljajo ga bralni in pisalni RAM stroj Nataša Naglič 4. junij 2009 1 RAM RAM - random access machine Bralno pisalni, eno akumulatorski računalnik. Sestavljajo ga bralni in pisalni trak, pomnilnik ter program. Bralni trak- zaporedje

Prikaži več

Mladi za napredek Maribora srečanje DOLŽINA»SPIRALE«Matematika Raziskovalna naloga Februar 2015

Mladi za napredek Maribora srečanje DOLŽINA»SPIRALE«Matematika Raziskovalna naloga Februar 2015 Mladi za napredek Maribora 015 3. srečanje DOLŽINA»SPIRALE«Matematika Raziskovalna naloga Februar 015 Kazalo 1. Povzetek...3. Uvod...4 3. Spirala 1...5 4. Spirala...6 5. Spirala 3...8 6. Pitagorejsko drevo...10

Prikaži več

Ravninski grafi Tina Malec 6. februar 2007 Predstavili bomo nekaj osnovnih dejstev o ravninskih grafih, pojem dualnega grafa (k danemu grafu) ter kako

Ravninski grafi Tina Malec 6. februar 2007 Predstavili bomo nekaj osnovnih dejstev o ravninskih grafih, pojem dualnega grafa (k danemu grafu) ter kako Ravninski grafi Tina Malec 6. februar 2007 Predstavili bomo nekaj osnovnih dejstev o ravninskih grafih, pojem dualnega grafa (k danemu grafu) ter kako ugotoviti, ali je nek graf ravninski. 1 Osnovni pojmi

Prikaži več

KOTNE FUNKCIJE Kotne funkcije uporabljamo le za pravokotni trikotnik! Sinus kota α je enak razmerju dolžin kotu nasprotne katete in hipotenuze. sin α

KOTNE FUNKCIJE Kotne funkcije uporabljamo le za pravokotni trikotnik! Sinus kota α je enak razmerju dolžin kotu nasprotne katete in hipotenuze. sin α KOTNE FUNKCIJE Kotne funkije uporljmo le z prvokotni trikotnik! Sinus kot α je enk rzmerju dolžin kotu nsprotne ktete in hipotenuze. sin α = Kosinus kot α je enk rzmerju dolžin kotu priležne ktete in hipotenuze.

Prikaži več

INDIVIDUALNI PROGRAM PREDMET: MATEMATIKA ŠOL. LETO 2015/2016 UČITELJ: ANDREJ PRAH Učenec: Razred: 7. Leto šolanja: Ugotovitev stanja: Učenec je lani n

INDIVIDUALNI PROGRAM PREDMET: MATEMATIKA ŠOL. LETO 2015/2016 UČITELJ: ANDREJ PRAH Učenec: Razred: 7. Leto šolanja: Ugotovitev stanja: Učenec je lani n INDIVIDUALNI PROGRAM PREDMET: MATEMATIKA ŠOL. LETO 2015/2016 UČITELJ: ANDREJ PRAH Učenec: Razred: 7. Leto šolanja: Ugotovitev stanja: Učenec je lani neredno opravljal domače naloge. Pri pouku ga je bilo

Prikaži več

Namesto (x,y)R uporabljamo xRy

Namesto (x,y)R uporabljamo xRy RELACIJE Namesto (x,y) R uporabljamo xry Def.: Naj bo R AxA D R = { x; y A: xry } je domena ali definicijsko obmocje relacije R Z R = { y; x A: xry } je zaloga vrednosti relacije R Za zgled od zadnjič:

Prikaži več

PowerPointova predstavitev

PowerPointova predstavitev Obravnava kotov za učence s posebnimi potrebami Reading of angles for pupils with special needs Petra Premrl OŠ Danila Lokarja Ajdovščina OSNOVNA ŠOLA ENAKOVREDNI IZOBRAZBENI STANDARD NIŽJI IZOBRAZBENI

Prikaži več

Priloga 1 Ljubljana 2018 MATEMATIKA Katalog znanja za osebe z mednarodno zaščito

Priloga 1 Ljubljana 2018 MATEMATIKA Katalog znanja za osebe z mednarodno zaščito Priloga 1 Ljubljana 2018 MATEMATIKA Katalog znanja za osebe z mednarodno zaščito KAZALO 1 UVOD... 3 2 IZPITNI CILJI... 4 3 ZGRADBA IN VREDNOTENJE IZPITA... 5 3.1 Shema izpita... 5 3.2 Tipi nalog in vrednotenje...

Prikaži več

Matematika 2 - ustna vprašanja 1) Determinanta, poddeterminanta (1,3)...3 2) Lastnosti determinante (5)...3 3) Cramerjevo pravilo (9)...3 4) Računanje

Matematika 2 - ustna vprašanja 1) Determinanta, poddeterminanta (1,3)...3 2) Lastnosti determinante (5)...3 3) Cramerjevo pravilo (9)...3 4) Računanje Matematika 2 - ustna vprašanja 1) Determinanta, poddeterminanta (1,3)...3 2) Lastnosti determinante (5)...3 3) Cramerjevo pravilo (9)...3 4) Računanje z vektorji, kot med vektorij (11)...3 5) Skalarni

Prikaži več

Arial 26 pt, bold

Arial 26 pt, bold 3 G MATEMATIKA Milan Černel Osnovna šola Brežice POUČEVANJE MATEMATIKE temeljni in zahtevnejši šolski predmet, pomembna pri razvoju celovite osebnosti učenca, prilagajanje oblik in metod poučevanja učencem

Prikaži več

1. izbirni test za MMO 2018 Ljubljana, 16. december Naj bo n naravno število. Na mizi imamo n 2 okraskov n različnih barv in ni nujno, da imam

1. izbirni test za MMO 2018 Ljubljana, 16. december Naj bo n naravno število. Na mizi imamo n 2 okraskov n različnih barv in ni nujno, da imam 1. izbirni test za MMO 018 Ljubljana, 16. december 017 1. Naj bo n naravno število. Na mizi imamo n okraskov n različnih barv in ni nujno, da imamo enako število okraskov vsake barve. Dokaži, da se okraske

Prikaži več

glava.dvi

glava.dvi Lastnosti verjetnosti 1. Za dogodka A in B velja: P(A B) = P(A) + P(B) P(A B) 2. Za dogodke A, B in C velja: P(A B C) = P(A) + P(B) + P(C) P(A B) P(A C) P(B C) + P(A B C) Kako lahko to pravilo posplošimo

Prikaži več

Slide 1

Slide 1 Primer modeliranja z DE MODEIANJE Tripsin je encim rebušne slinavke, ki nasane iz ripsinogena. V reakciji nasopa ripsin ko kaalizaor, zao je hiros nasajanja ripsina sorazmerna z njegovo koncenracijo....

Prikaži več

Vsebinska struktura predmetnih izpitnih katalogov za splošno maturo

Vsebinska struktura predmetnih izpitnih katalogov za splošno maturo Ljubljana 017 MATEMATIKA Predmetni izpitni katalog za splošno maturo Predmetni izpitni katalog se uporablja od spomladanskega izpitnega roka 019, dokler ni določen novi. Veljavnost kataloga za leto, v

Prikaži več

DN5(Kor).dvi

DN5(Kor).dvi Koreni Število x, ki reši enačbo x n = a, imenujemo n-ti koren števila a in to označimo z n a. Pri tem je n naravno število, a pa poljubno realno število. x = n a x n = a. ( n a ) n = a. ( n a ) m = n

Prikaži več

Microsoft Word - Seštevamo stotice.doc

Microsoft Word - Seštevamo stotice.doc UČNA PRIPRAVA: MATEMATIKA UČNI SKLOP: Računske operacije UČNA TEMA: Seštevamo in odštevamo stotice Seštevamo stotice UČNE METODE: razlaga, prikazovanje, demonstracija, grafično in pisno delo UČNE OBLIKE:

Prikaži več

H-Razcvet

H-Razcvet Univerza v Ljubljani Fakulteta za računalništvo in informatiko Fakulteta za matematiko in fiziko Gregor Šulgaj H-Razcvet DIPLOMSKO DELO INTERDISCIPLINARNI ŠTUDIJSKI PROGRAM PRVE STOPNJE RAČUNALNIŠTVA IN

Prikaži več

Uvod v diferencialne enačbe, kompleksno in Fourierovo analizo Bojan Magajna Fakulteta za matematiko in fiziko, Univerza v Ljubljani

Uvod v diferencialne enačbe, kompleksno in Fourierovo analizo Bojan Magajna Fakulteta za matematiko in fiziko, Univerza v Ljubljani Uvod v diferencialne enačbe, kompleksno in Fourierovo analizo Bojan Magajna Fakulteta za matematiko in fiziko, Univerza v Ljubljani UVOD V DIFERENCIALNE ENAČBE, KOMPLEKSNO IN FOURIEROVO ANALIZO Povzetek

Prikaži več

OSNOVE LOGIKE 1. Kaj je izjava? Kaj je negacija izjave? Kaj je konjunkcija in kaj disjunkcija izjav? Povejte, kako je s pravilnostjo negacije, konjunk

OSNOVE LOGIKE 1. Kaj je izjava? Kaj je negacija izjave? Kaj je konjunkcija in kaj disjunkcija izjav? Povejte, kako je s pravilnostjo negacije, konjunk OSNOVE LOGIKE 1. Kaj je izjava? Kaj je negacija izjave? Kaj je konjunkcija in kaj disjunkcija izjav? Povejte, kako je s pravilnostjo negacije, konjunkcije in disjunkcije. Izjava je vsaka poved, za katero

Prikaži več

Poglavje 3 Reševanje nelinearnih enačb Na iskanje rešitve enačbe oblike f(x) = 0 (3.1) zelo pogosto naletimo pri reševanju tehničnih problemov. Pri te

Poglavje 3 Reševanje nelinearnih enačb Na iskanje rešitve enačbe oblike f(x) = 0 (3.1) zelo pogosto naletimo pri reševanju tehničnih problemov. Pri te Poglavje 3 Reševanje nelinearnih enačb Na iskanje rešitve enačbe oblike f(x) = 0 (3.1) zelo pogosto naletimo pri reševanju tehničnih problemov. Pri tem je lahko nelinearna funkcija f podana eksplicitno,

Prikaži več

Matematika II (UNI) Izpit (23. avgust 2011) RE ITVE Naloga 1 (20 to k) Vektorja a = (0, 1, 1) in b = (1, 0, 1) oklepata trikotnik v prostoru. Izra una

Matematika II (UNI) Izpit (23. avgust 2011) RE ITVE Naloga 1 (20 to k) Vektorja a = (0, 1, 1) in b = (1, 0, 1) oklepata trikotnik v prostoru. Izra una Matematika II (UNI) Izpit (. avgust 11) RE ITVE Naloga 1 ( to k) Vektorja a = (, 1, 1) in b = (1,, 1) oklepata trikotnik v prostoru. Izra unajte: kot med vektorjema a in b, pravokotno projekcijo vektorja

Prikaži več

Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y

Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y 2 ). Rešitev: Diferencialna enačba ima ločljive spremenljivke,

Prikaži več

P181C10111

P181C10111 Š i f r a k a n d i d a t a : Državni izpitni center *P181C10111* SPOMLADANSKI IZPITNI ROK MATEMATIKA Izpitna pola Sobota, 9. junij 018 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno

Prikaži več

LaTeX slides

LaTeX slides Statistični modeli - interakcija - Milena Kovač 23. november 2007 Biometrija 2007/08 1 Število živorojenih pujskov Biometrija 2007/08 2 Sestavimo model! Vplivi: leto, farma Odvisna spremenljivka: število

Prikaži več

jj

jj PREDMETNI IZPITNI KATALOG ZA POKLICNO MATURO MATEMATIKA Predmetni izpitni katalog je določil Strokovni svet RS za splošno izobraževanje na 60. seji 27. 8. 2003 in se uporablja v programih za pridobitev

Prikaži več

ZveznostFunkcij11.dvi

ZveznostFunkcij11.dvi II. LIMITA IN ZVEZNOST FUNKCIJ. Preslikave med množicami Funkcija ali preslikava med dvema množicama A in B je predpis f, ki vsakemu elementu x množice A priredi natanko določen element y množice B. Važno

Prikaži več

Matematika 2

Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 23. april 2014 Soda in liha Fourierjeva vrsta Opomba Pri razvoju sode periodične funkcije f v Fourierjevo vrsto v razvoju nastopajo

Prikaži več

Analiza dosežkov poskusnega preverjanja znanja v 3. razredu iz matematike

Analiza dosežkov poskusnega preverjanja znanja v 3. razredu iz matematike Analiza dosežkov poskusnega preverjanja znanja v 3. razredu iz matematike Analiza dosežkov poskusnega preverjanja znanja v 3. razredu iz matematike Avtorji: dr. Darjo Felda, dr. Lea Kozel, Alenka Lončarič,

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNIŠTVO Matematika 2. kolokvij 4. januar 212 Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Veljale bodo samo rešitve na papirju, kjer

Prikaži več

Wienerjevemu indeksu podobni indeksi na grafih

Wienerjevemu indeksu podobni indeksi na grafih UNIVERZA NA PRIMORSKEM FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN INFORMACIJSKE TENOLOGIJE Matematične znanosti, stopnja Daliborko Šabić Wienerjevemu indeksu podobni indeksi na grafih Magistrsko delo Mentor:

Prikaži več

OdvodFunkcijEne11.dvi

OdvodFunkcijEne11.dvi III. ODVODI FUNKCIJ ENE REALNE SPREMENLJIVKE 1. Odvajanje funkcij ene spremenljivke Odvajanje je ena najpomembnejši operacij na funkcija. Z uporabo odvoda, kadar le-ta obstaja, lako veliko bolje spoznamo

Prikaži več

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 31. avgust 2018 Navodila Pazljivo preberite

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 31. avgust 2018 Navodila Pazljivo preberite Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 31 avgust 018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Za pozitiven

Prikaži več

Univerza v Mariboru Fakulteta za naravoslovje in matematiko Oddelek za matematiko in računalništvo Enopredmetna matematika IZPIT IZ VERJETNOSTI IN STA

Univerza v Mariboru Fakulteta za naravoslovje in matematiko Oddelek za matematiko in računalništvo Enopredmetna matematika IZPIT IZ VERJETNOSTI IN STA Enopredmetna matematika IN STATISTIKE Maribor, 31. 01. 2012 1. Na voljo imamo kovanca tipa K 1 in K 2, katerih verjetnost, da pade grb, je p 1 in p 2. (a) Istočasno vržemo oba kovanca. Verjetnost, da je

Prikaži več

Optimizacija z roji delcev - Seminarska naloga pri predmetu Izbrana poglavja iz optimizacije

Optimizacija z roji delcev - Seminarska naloga pri predmetu Izbrana poglavja iz optimizacije Univerza v Ljubljani Fakulteta za matematiko in fiziko Seminarska naloga pri predmetu Izbrana poglavja iz optimizacije 2. junij 2011 Koncept PSO Motivacija: vedenje organizmov v naravi Ideja: koordinirano

Prikaži več

UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO Oddelek za matematiko in računalništvo DIPLOMSKO DELO Peter Škofič Maribor, 2014

UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO Oddelek za matematiko in računalništvo DIPLOMSKO DELO Peter Škofič Maribor, 2014 UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO Oddelek za matematiko in računalništvo DIPLOMSKO DELO Peter Škofič Maribor, 2014 UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO

Prikaži več

Microsoft Word - avd_vaje_ars1_1.doc

Microsoft Word - avd_vaje_ars1_1.doc ARS I Avditorne vaje Pri nekem programu je potrebno izvršiti N=1620 ukazov. Pogostost in trajanje posameznih vrst ukazov računalnika sta naslednja: Vrsta ukaza Štev. urinih period Pogostost Prenosi podatkov

Prikaži več