glava.dvi

Velikost: px
Začni prikazovanje s strani:

Download "glava.dvi"

Transkripcija

1 Lastnosti verjetnosti 1. Za dogodka A in B velja: P(A B) = P(A) + P(B) P(A B) 2. Za dogodke A, B in C velja: P(A B C) = P(A) + P(B) + P(C) P(A B) P(A C) P(B C) + P(A B C) Kako lahko to pravilo posplošimo še na več dogodkov? Aleksandar Jurišić 1

2 Če so dogodki A i, i I paroma nezdružljivi, velja P( i I ) = i I P(A i ) Velja tudi za neskončne množice dogodkov. Aleksandar Jurišić 2

3 Aksiomi Kolmogorova Dogodek predstavimo z množico zanj ugodnih izidov; gotov dogodek G ustreza univerzalni množici; nemogoč dogodek pa prazni množici. Neprazna družina dogodkov D je algebra, če velja: A D A D A, B D A B D Aleksandar Jurišić 3

4 Pri neskončnih množicah dogodkov moramo drugo zahtevo posplošiti A i D,i I i I A i D Dobljeni strukturi rečemo σ-algebra. Aleksandar Jurišić 4

5 Naj bo D σ-algebra v G. Verjetnost na G je preslikava P : D R z lastnostmi: 1. P(A) 0 2. P(G) = 1 3. Če so dogodki A i, i I paroma nezdružljivi, je P( i I A i ) = i I P(A i ). Trojica (G, D, P) določa verjetnostni prostor. Iz teh treh aksiomov lahko izpeljemo vse ostale lastnosti verjetnosti (Hladnik, str. 12). Aleksandar Jurišić 5

6 ... Pogojna verjetnost P(A B) = P(B A) = P(A B) P(B) P(A B) P(A) = P(A B) = P(B) P(A B) = P(A B) = P(A) P(B A) Skupaj dobimo: P(A) P(B A) = P(B) P(A B). Dogodka A in B sta neodvisna, če velja P(A B) = P(A) Zato za neodvisna dogodka A in B velja P(A B) = P(A) P(B). Za nezdružljiva dogodka A in B velja P(A B) = 0. Aleksandar Jurišić 6

7 Primer: Iz posode, v kateri imamo 8 belih in 2 rdeči krogli, dvakrat na slepo izberemo po eno kroglo. Kolikšna je verjetnost dogodka, da je prva krogla bela (B 1 ) in druga rdeča (R 2 ). 1. Če po prvem izbiranju izvlečeno kroglo ne vrnemo v posodo (odvisnost), je: P(B 1 R 2 ) = P(B 1 ) P(R 2 B 1 ) = = Če po prvem izbiranju izvlečeno kroglo vrnemo v posodo (neodvisnost), je: P(B 1 R 2 ) = P(B 1 ) P(R 2 B 1 ) = P(B 1 ) P(R 2 ) = = 0.16 Aleksandar Jurišić 7

8 ... Pogojna verjetnost Dogodka A in B sta neodvisna, če je P(A B) = P(A B). P(A B C) = P(A) P(B A) P(C (A B)) Dogodki A i, i I so neodvisni, če je P(A j ) = P(A j j 1 i=1 A i), j I. Za neodvisne dogodke A i, i I velja P( i I A i ) = i I P(A i ) Aleksandar Jurišić 8

9 Obrazec za razbitja in Bayesov obrazec Naj bo A i, i I razbitje gotovega dogodka: i I A i = G in dogodki so paroma nezdružljivi A i A j = N,i j. Tedaj je za vsak dogodek B P(B) = i I P(A i ) P(B A i ) Na stvar lahko pogledamo tudi kot na dvokoračni poskus: v prvem koraku se zgodi natanko eden od dogodkov A i, v drugem pa B. Aleksandar Jurišić 9

10 Včasih nas zanima po uspešnem izhodu tudi drugega koraka, verjetnost tega, da se je na prvem koraku zgodil dogodek A i. Odgovor dobimo iz zgornjega obrazca in mu pravimo Bayesov obrazec: P(A k B) = P(A k) P(B A k ) i I P(A i) P(B A i ) Aleksandar Jurišić 10

11 Bernoullijevo zaporedje neodvisnih poskusov O zaporedju neodvisnih poskusov X 1, X 2,...,X n,... govorimo tedaj, ko so verjetnosti izidov v enem poskusu neodvisne od tega, kaj se zgodi v drugih poskusih. Zaporedje neodvisnih poskusov se imenuje Bernoullijevo zaporedje, če se more zgoditi v vsakem poskusu iz zaporedja neodvisnih poskusov le dogodek A z verjetnostjo P(A) = p ali dogodek A z verjetnostjo P(A) = 1 P(A) = 1 p = q. Primer: Primer Bernoullijevega zaporedja poskusov je met kocke, kjer ob vsaki ponovitvi poskusa pade šestica (dogodek A) z verjetnostjo P(A) = p = 1/6 ali ne pade šestica (dogodek A) z verjetnostjo P(A) = q = 5/6. Aleksandar Jurišić 11

12 V Bernoullijevem zaporedju neodvisnih poskusov nas zanima, kolikšna je verjetnost, da se v n zaporednih poskusih zgodi dogodek A natanko k krat. To se lahko zgodi na primer tako, da se najprej zgodi k krat dogodek A in nato v preostalih (n k) poskusih zgodi nasprotni dogodek A: P( k (X i = A) n (X i = A)) = k P(A) n P(A) = p k q n k i=1 i=k+1 i=1 i=k+1 Aleksandar Jurišić 12

13 Dogodek P n (k), da se dogodek A v n zaporednih poskusih zgodi natanko k krat, se lahko zgodi tudi na druge načine in sicer je teh toliko, na kolikor načinov lahko izberemo k poskusov iz n poskusov. Teh je ( n k). Ker so ti načini nezdružljivi med seboj, je verjetnost dogodka P n (k) enaka ( n P n (k) = k ) p k (1 p) n k Tej zvezi pravimo Bernoullijev obrazec. Aleksandar Jurišić 13

14 ... Bernoullijevo zaporedje neodvisnih poskusov Primer: Iz posode, v kateri imamo 8 belih in 2 rdeči krogli, na slepo izberemo po eno kroglo in po izbiranju izvlečeno kroglo vrnemo v posodo. Kolikšna je verjetnost, da v petih poskusih izberemo 3 krat belo kroglo? Dogodek A je, da izvlečem belo kroglo. Potem je p = P(A) = 8 10 = 0.8 q = 1 p = = 0.2 Verjetnost, da v petih poskusih izberemo 3 krat belo kroglo, je: ( ) 5 P 5 (3) = (1 0.8) 5 3 = Aleksandar Jurišić 14

15 Računanje P n (k) Uporaba rekurzije: P n (0) = q n P n (k) = (n k + 1)p P n (k 1), k = 1,... kq Stirlingov obrazec: n! ( n ) n. 2πn e Poissonov obrazec: za p blizu 0 P n (k) (np)k e np k! Laplaceov točkovni obrazec: P n (k) 1 e (k np)2 2npq 2πnpq Aleksandar Jurišić 15

16 Računanje P n (k) Program R: Vrednost P n (k) dobimo z ukazom dbinom(k,size=n,prob=p) > dbinom(50,size=1000,prob=0.05) [1] Aleksandar Jurišić 16

17 Izpeljava rekurzivne zveze P n (k) P n (k 1) = ( n ) k p k q n k ( n ) k 1 p k 1 q = n k+1 Torej je res: = P n (k) = n! (k 1)!(n k + 1)! p k!(n k)! n! q = (n k + 1)p kq (n k + 1)p P n (k 1), k = 1,... kq Aleksandar Jurišić 17

18 Laplaceov intervalski obrazec Zanima nas, kolikšna je verjetnost P n (k 1, k 2 ), da se v Bernoullijevem zaporedju neodvisnih poskusov v n zaporednih poskusih zgodi dogodek A vsaj k 1 krat in manj kot k 2 krat. Označimo x k = k np npq in x k = x k+1 x k = 1 npq. Tedaj je, če upoštevamo Laplaceov točkovni obrazec P n (k 1, k 2 ) = k 2 1 k=k 1 P n (k) = 1 k 2 1 2π k=k 1 e 1 2 x2 k xk Za (zelo) velike n lahko vsoto zamenjamo z integralom P n (k 1,k 2 ) 1 2π xk2 x k1 e 1 2 x2 dx Aleksandar Jurišić 18

19 Funkcija napake Φ(x) Funkcija napake imenujemo funkcijo Φ(x) = 1 x 2π 0 e 1 2 t2 dt Funkcija napake je liha, zvezno odvedljiva, strogo naraščajoča funkcija. Φ( ) = 1 2, Φ(0) = 0, Φ( ) = 1 2 in P n(k 1,k 2 ) Φ(x k2 ) Φ(x k1 ). Vrednosti funkcije napake najdemo v tabelah ali pa je vgrajena v statističnih programih. > x2 <- ( *0.05)/sqrt(1000*0.05*0.95)\\[-6pt] > x1 <- (0-1000*0.05)/sqrt(1000*0.05*0.95)\\[-6pt] > pnorm(x2)-pnorm(x1)\\[-6pt] \lbrack 1\rbrack\ 0.5 > Phi <- function(x)\{pnorm(x)-0.5\}\\[-6pt] > curve(phi,-6,6) Aleksandar Jurišić 19

20 Bernoullijev zakon velikih števil IZREK 1 (J. Bernoulli, 1713) Naj bo k frekvenca dogodka A v n neodvisnih ponovitvah danega poskusa, v katerem ima dogodek A verjetnost p. Tedaj za vsa ε > 0 velja lim P( k n n p < ε) = 1. Ta izrek opravičuje statistično definicijo verjetnosti. Aleksandar Jurišić 20

21 Slučajne spremenljivke in porazdelitve Denimo, da imamo poskus, katerega izidi so števila (npr. pri metu kocke so izidi števila pik). Se pravi, da je poskusom prirejena neka količina, ki more imeti različne vrednosti. Torej je spremenljivka. Katero od mogočih vrednosti zavzame v določeni ponovitvi poskusa, je odvisno od slučaja. Zato ji rečemo slučajna spremenljivka. Da je slučajna spremenljivka znana, je potrebno vedeti 1. kakšne vrednosti more imeti (zaloga vrednosti) in 2. kolikšna je verjetnost vsake izmed možnih vrednosti ali intervala vrednosti. Predpis, ki določa te verjetnosti, imenujemo porazdelitveni zakon. Aleksandar Jurišić 21

22 Slučajne spremenljivke označujemo z velikimi tiskanimi črkami iz konca abecede, vrednosti spremenljivke pa z enakimi malimi črkami. Tako je npr. (X = x i ) dogodek, da slučajna spremenljivka X zavzame vrednost x i. Porazdelitveni zakon slučajne spremenljivke X je poznan, če je mogoče za vsako realno število x določiti verjetnost F(x) = P(X < x) F(x) imenujemo porazdelitvena funkcija. Aleksandar Jurišić 22

23 Najpogosteje uporabljamo naslednji vrsti slučajnih spremenljivk: 1. diskretna slučajna spremenljivka, pri kateri je zaloga vrednosti neka števna množica; 2. zvezna slučajna spremenljivka, ki lahko zavzame vsako realno število znotraj določenega intervala. Aleksandar Jurišić 23

24 Lastnosti porazdelitvene funkcije 1. Funkcija F je definirana na vsem R in velja 0 F(x) 1, x R 2. Funkcija F je naraščajoča x 1 < x 2 = F(x 1 ) F(x 2 ) 3. F( ) = 0 in F( ) = 1 4. Funkcija je v vsaki točki zvezna od leve F(x ) = F(x) 5. Funkcija ima lahko v nekaterih točkah skok. Vseh skokov je največ števno mnogo. 6. P(x 1 X < x 2 ) = F(x 2 ) F(x 1 ) 7. P(x 1 < X < x 2 ) = F(x 2 ) F(x 1 +) 8. P(X x) = 1 F(x) 9. P(X = x) = F(x+) F(x) Aleksandar Jurišić 24

25 Diskretne slučajne spremenljivke Zaloga vrednosti diskretne slučajne spremenljivke X je števna množica {x 1, x 2,...,x m,...}. Dogodki X = x k k = 1, 2, sestavljajo popoln sistem dogodkov. Označimo verjetnost posameznega dogodka s P(X = x i ) = p i Vsota verjetnosti vseh dogodkov je enaka 1: p 1 + p p m + = 1 Aleksandar Jurišić 25

26 Verjetnostna tabela Verjetnostna tabela prikazuje diskretno slučajno spremenljivko s tabelo tako, da so v prvi vrstici zapisane vse vrednosti x i, pod njimi pa so pripisane pripadajoče verjetnosti: ( ) x1 x X : 2 x m p 1 p 2 p m Porazdelitvena funkcija je v tem primeru F(x k ) = P(X < x k ) = k 1 i=1 p i Aleksandar Jurišić 26

27 Enakomerna diskretna porazdelitev Končna diskretna slučajna spremenljivka se porazdeljuje enakomerno, če so vse njene vrednosti enako verjetne. Primer take slučajne spremenljivke je število pik pri metu kocke ( ) X : 1/6 1/6 1/6 1/6 1/6 1/6 Aleksandar Jurišić 27

28 Binomska porazdelitev Binomska porazdelitev ima zalogo vrednosti {0, 1, 2,, n} in verjetnosti, ki jih računamo po Bernoullijevem obrazcu: ( ) n P(X = k) = p k (1 p) n k k k = 0, 1, 2,, n. Binomska porazdelitev je natanko določena z dvema podatkoma parametroma: n in p. Če se slučajna spremenljivka X porazdeljuje binomsko s parametroma n in p, zapišemo: X : B(n,p) > h <- dbinom(0:15,size=15,prob=0.3)\\[-6pt] > plot(0:15,h,type= h,xlab= k,ylab= b(n,p) )\\[-6pt] > points(0:15,h,pch=16,cex=2) Aleksandar Jurišić 28

29 Binomska porazdelitev / Primer Naj bo slučajna spremenljivka X določena s številom fantkov v družini s 4 otroki. Denimo, da je enako verjetno, da se v družini rodi fantek ali deklica: P(F) = p = 1/2, P(D) = q = 1/2. Spremenljivka X se tedaj porazdeljuje binomsko B(4, 1/2) in njena verjetnostna shema je: ( ) X : 1/16 4/16 6/16 4/16 1/16 ( ) 4 (1 )2 Npr. P(X = 2) = P 4 (2) = ( )4 2 = Porazdelitev obravnavane slučajne spremenljivke je simetrična. Pokazati se da, da je binomska porazdelitev simetrična, če je p = 0.5. Sicer je asimetrična. Aleksandar Jurišić 29

30 Poissonova porazdelitev P(λ) Poissonova porazdelitev ima zalogo vrednosti {0, 1, 2,...}, verjetnostna funkcija pa je p k = P(#dogodkov = k) = λ ke λ k! kjer je λ > 0 dani parameter pogostost nekega dogodka. Posebno pomembna je v teoriji množične strežbe. p k+1 = λ k + 1 p k, p 0 = e λ Aleksandar Jurišić 30

31 Pascalova porazdelitev P(m, p) Pascalova porazdelitev ima zalogo vrednosti {m, m+1, m+2,...}, verjetnostna funkcija pa je ( ) k 1 p k = p m q k m m 1 kjer je 0 < p < 1 dani parameter verjetnost dogodka A v posameznem poskusu. Opisuje porazdelitev števila poskusov potrebnih, da se dogodek A zgodi m krat. Za m = 1, porazdelitvi G(p) = P(1, p) pravimo geometrijska porazdelitev. Opisuje porazdelitev števila poskusov potrebnih, da se dogodek A zgodi prvič. Aleksandar Jurišić 31

32 Hipergeometrijska porazdelitev H(n; M, N) Hipergeometrijska porazdelitev ima zalogo vrednosti {0, 1, 2,...}, verjetnostna funkcija pa je ( M )( N M ) k p k = ( N n) n k kjer so k n min(m,n M) dani parametri. Opisuje verjetnost dogodka, da je med n izbranimi kroglicami natanko k belih, če je v posodi M belih in N M črnih kroglic in izbiramo n krat brez vračanja. Aleksandar Jurišić 32

33 Zvezne slučajne spremenljivke Slučajna spremenljivka X je zvezno porazdeljena, če obstaja taka integrabilna funkcija p, imenovana gostota verjetnosti, da za vsak x R velja: F(x) = P(X < x) = x p(t)dt kjer p(x) 0. To verjetnost si lahko predstavimo tudi grafično v koordinatnem sistemu, kjer na abscisno os nanašamo vrednosti slučajne spremenljivke, na ordinatno pa gostoto verjetnosti p(x). Verjetnost je tedaj predstavljena kot ploščina pod krivuljo, ki jo določa p(x). Velja p(x) = F (x) ter p(x)dx = 1 in P(x 1 X < x 2 ) = x2 x 1 p(t)dt. Aleksandar Jurišić 33

Osnove verjetnosti in statistika

Osnove verjetnosti in statistika Osnove verjetnosti in statistika Gašper Fijavž Fakulteta za računalništvo in informatiko Univerza v Ljubljani Ljubljana, 26. februar 2010 Poskus in dogodek Kaj je poskus? Vržemo kovanec. Petkrat vržemo

Prikaži več

Univerza v Mariboru Fakulteta za naravoslovje in matematiko Oddelek za matematiko in računalništvo Enopredmetna matematika IZPIT IZ VERJETNOSTI IN STA

Univerza v Mariboru Fakulteta za naravoslovje in matematiko Oddelek za matematiko in računalništvo Enopredmetna matematika IZPIT IZ VERJETNOSTI IN STA Enopredmetna matematika IN STATISTIKE Maribor, 31. 01. 2012 1. Na voljo imamo kovanca tipa K 1 in K 2, katerih verjetnost, da pade grb, je p 1 in p 2. (a) Istočasno vržemo oba kovanca. Verjetnost, da je

Prikaži več

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5. februar 2018 Navodila Pazljivo preberite

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5. februar 2018 Navodila Pazljivo preberite Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5 februar 018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Nalog je

Prikaži več

VST: 1. kviz

VST: 1. kviz jsmath Učilnica / VST / Kvizi / 1. kviz / Pregled poskusa 1 1. kviz Pregled poskusa 1 Končaj pregled Začeto dne nedelja, 25. oktober 2009, 14:17 Dokončano dne nedelja, 25. oktober 2009, 21:39 Porabljeni

Prikaži več

1 Diskretni naklju ni vektorji 1 1 Diskretni naklju ni vektorji 1. Dopolni tabelo tako, da bosta X in Y neodvisni. X Y x x x x x

1 Diskretni naklju ni vektorji 1 1 Diskretni naklju ni vektorji 1. Dopolni tabelo tako, da bosta X in Y neodvisni. X Y x x x x x 1 Diskretni naklju ni vektorji 1 1 Diskretni naklju ni vektorji 1. Dopolni tabelo tako, da bosta X in Y neodvisni. X Y 0 1 2 1 1-1 x x 20 10 1 0 x x x 10 1 1 x x x 20 x x x 1 Dolo i ²e spremenljivko Z,

Prikaži več

00main.dvi

00main.dvi UNIVERZA V LJUBLJANI Fakulteta za elektrotehniko Vitomir Štruc, Simon Dobrišek INFORMACIJA IN KODI DOPOLNILNI UČBENIK Z VAJAMI UNIVERZITETNI ŠTUDIJSKI PROGRAM II. STOPNJE ELEKTROTEHNIKA - AVTOMATIKA IN

Prikaži več

REŠENE NALOGE IZ VERJETNOSTI IN STATISTIKE Martin Raič Datum zadnje spremembe: 11. junij 2019

REŠENE NALOGE IZ VERJETNOSTI IN STATISTIKE Martin Raič Datum zadnje spremembe: 11. junij 2019 REŠENE NALOGE IZ VERJETNOSTI IN STATISTIKE Martin Raič Datum zadnje spremembe: junij 209 Kazalo Osnove kombinatorike 3 2 Elementarna verjetnost 5 3 Pogojna verjetnost 0 4 Slučajne spremenljivke 7 5 Slučajni

Prikaži več

Osnove matematicne analize 2018/19

Osnove matematicne analize  2018/19 Osnove matematične analize 2018/19 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D f R priredi natanko

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-avgust-17.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-avgust-17.dvi Vpisna številka Priimek, ime Smer: K KT WA Izpit pri predmetu MATEMATIKA I Računski del Ugasni in odstrani mobilni telefon. Uporaba knjig in zapiskov ni dovoljena. Dovoljeni pripomočki so: kemični svinčnik,

Prikaži več

Jože Berk, Jana Draksler in Marjana Robič Skrivnosti števil in oblik Vsebinsko izpopolnjeno podpoglavje VERJETNOST 9

Jože Berk, Jana Draksler in Marjana Robič Skrivnosti števil in oblik Vsebinsko izpopolnjeno podpoglavje VERJETNOST 9 Jože Berk, Jana Draksler in Marjana Robič Skrivnosti števil in oblik Vsebinsko izpopolnjeno podpoglavje VERJETNOST 9 Podpoglavje Verjetnost (poglavje Obdelava podatkov) se v učbeniku Skrivnosti števil

Prikaži več

Univerza v Mariboru Fakulteta za naravoslovje in matematiko Oddelek za matematiko in ra unalni²tvo Izobraºevalna matematika Pisni izpit pri predmetu K

Univerza v Mariboru Fakulteta za naravoslovje in matematiko Oddelek za matematiko in ra unalni²tvo Izobraºevalna matematika Pisni izpit pri predmetu K 31. januar 2014 1. [25] V kino dvorano z 10 vrstami po 10 o²tevil enih sedeºev vstopi 100 ljudi. Od tega je 40 deklet in 60 fantov. Na koliko na inov se lahko posedejo, (a) e ni nobenih omejitev? (b) e

Prikaži več

Matematika 2

Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 23. april 2014 Soda in liha Fourierjeva vrsta Opomba Pri razvoju sode periodične funkcije f v Fourierjevo vrsto v razvoju nastopajo

Prikaži več

Slide 1

Slide 1 SLUČAJNE SPREMENLJIVKE Povezave med verjetnostjo P, porazdelitveno funcijo F in gostoto porazdelitve p. P F (x) =P( x) P(a b)=f (b)-f (a) F p Slučajna spremenljiva ima gostoto p. Kašno gostoto ima Y=+l?

Prikaži več

2. Model multiple regresije

2. Model multiple regresije 2. Model multiple regresije doc. dr. Miroslav Verbič miroslav.verbic@ef.uni-lj.si www.miroslav-verbic.si Ljubljana, februar 2014 2.1 Populacijski regresijski model in regresijski model vzorčnih podatkov

Prikaži več

Verjetnost in vzorčenje: teoretske porazdelitve standardne napake ocenjevanje parametrov as. dr. Nino RODE prof. dr. Blaž MESEC

Verjetnost in vzorčenje: teoretske porazdelitve standardne napake ocenjevanje parametrov as. dr. Nino RODE prof. dr. Blaž MESEC Verjetnost in vzorčenje: teoretske porazdelitve standardne napake ocenjevanje parametrov as. dr. Nino RODE prof. dr. Blaž MESEC VERJETNOST osnovni pojmi Poskus: dejanje pri katerem je izid negotov met

Prikaži več

Brownova kovariancna razdalja

Brownova kovariancna razdalja Brownova kovariančna razdalja Nace Čebulj Fakulteta za matematiko in fiziko 8. januar 2015 Nova mera odvisnosti Motivacija in definicija S primerno izbiro funkcije uteži w(t, s) lahko definiramo mero odvisnosti

Prikaži več

RAČUNALNIŠKA ORODJA V MATEMATIKI

RAČUNALNIŠKA ORODJA V MATEMATIKI DEFINICIJA V PARAVOKOTNEM TRIKOTNIKU DEFINICIJA NA ENOTSKI KROŢNICI GRAFI IN LASTNOSTI SINUSA IN KOSINUSA POMEMBNEJŠE FORMULE Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z

Prikaži več

Vrste

Vrste Matematika 1 17. - 24. november 2009 Funkcija, ki ni algebraična, se imenuje transcendentna funkcija. Podrobneje si bomo ogledali naslednje transcendentne funkcije: eksponentno, logaritemsko, kotne, ciklometrične,

Prikaži več

Vaje: Matrike 1. Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N 0 1 n ; n N Pokaži, da je množica x 0 y 0 x

Vaje: Matrike 1. Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N 0 1 n ; n N Pokaži, da je množica x 0 y 0 x Vaje: Matrike 1 Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N n 1 1 0 1 ; n N 0 2 Pokaži, da je množica x 0 y 0 x y x + z ; x, y, z R y x z x vektorski podprostor v prostoru matrik

Prikaži več

5 SIMPLICIALNI KOMPLEKSI Definicija 5.1 Vektorji r 0,..., r k v R n so afino neodvisni, če so vektorji r 1 r 0, r 2 r 0,..., r k r 0 linearno neodvisn

5 SIMPLICIALNI KOMPLEKSI Definicija 5.1 Vektorji r 0,..., r k v R n so afino neodvisni, če so vektorji r 1 r 0, r 2 r 0,..., r k r 0 linearno neodvisn 5 SIMPLICIALNI KOMPLEKSI Definicija 5.1 Vektorji r 0,..., r k v R n so afino neodvisni, če so vektorji r 1 r 0, r 2 r 0,..., r k r 0 linearno neodvisni. Če so krajevni vektorji do točk a 0,..., a k v R

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 3. februar Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Veljale bodo samo rešitve na papirju, kjer

Prikaži več

M

M Š i f r a k a n d i d a t a : Državni izpitni center *M16140111* Osnovna raven MATEMATIKA Izpitna pola 1 SPOMLADANSKI IZPITNI ROK Sobota, 4. junij 016 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat

Prikaži več

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6. julij 2018 Navodila Pazljivo preberite be

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6. julij 2018 Navodila Pazljivo preberite be Ime in priimek: Vpisna št: FAKULEA ZA MAEMAIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6 julij 2018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Za pozitiven rezultat

Prikaži več

Mladi za napredek Maribora srečanje DOLŽINA»SPIRALE«Matematika Raziskovalna naloga Februar 2015

Mladi za napredek Maribora srečanje DOLŽINA»SPIRALE«Matematika Raziskovalna naloga Februar 2015 Mladi za napredek Maribora 015 3. srečanje DOLŽINA»SPIRALE«Matematika Raziskovalna naloga Februar 015 Kazalo 1. Povzetek...3. Uvod...4 3. Spirala 1...5 4. Spirala...6 5. Spirala 3...8 6. Pitagorejsko drevo...10

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/testi in izpiti/ /IZPITI/FKKT-februar-14.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/testi in izpiti/ /IZPITI/FKKT-februar-14.dvi Kemijska tehnologija, Kemija Bolonjski univerzitetni program Smer: KT K WolframA: DA NE Računski del izpita pri predmetu MATEMATIKA I 6. 2. 2014 Čas reševanja je 75 minut. Navodila: Pripravi osebni dokument.

Prikaži več

RAM stroj Nataša Naglič 4. junij RAM RAM - random access machine Bralno pisalni, eno akumulatorski računalnik. Sestavljajo ga bralni in pisalni

RAM stroj Nataša Naglič 4. junij RAM RAM - random access machine Bralno pisalni, eno akumulatorski računalnik. Sestavljajo ga bralni in pisalni RAM stroj Nataša Naglič 4. junij 2009 1 RAM RAM - random access machine Bralno pisalni, eno akumulatorski računalnik. Sestavljajo ga bralni in pisalni trak, pomnilnik ter program. Bralni trak- zaporedje

Prikaži več

Biometrija 1 Poglavje 1 PORAZDELITVE NAKLJUČNIH SPREMENLJIVK Porazdelitve nam predstavljajo pogostnost posameznih vrednosti. Predstavimo jih lahko s š

Biometrija 1 Poglavje 1 PORAZDELITVE NAKLJUČNIH SPREMENLJIVK Porazdelitve nam predstavljajo pogostnost posameznih vrednosti. Predstavimo jih lahko s š Biometrija 1 Poglavje 1 PORAZDELITVE NAKLJUČNIH SPREMENLJIVK Porazdelitve nam predstavljajo pogostnost posameznih vrednosti. Predstavimo jih lahko s številom posameznih vrednosti (dogodkov) ali z deleži

Prikaži več

UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO Oddelek za matematiko in računalništvo DIPLOMSKO DELO Peter Škofič Maribor, 2014

UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO Oddelek za matematiko in računalništvo DIPLOMSKO DELO Peter Škofič Maribor, 2014 UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO Oddelek za matematiko in računalništvo DIPLOMSKO DELO Peter Škofič Maribor, 2014 UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO

Prikaži več

MERE SREDNJE VREDNOSTI

MERE SREDNJE VREDNOSTI OPIS PODATKOV ENE SPREMENLJIVKE frekvenčne porazdelitve in mere srednje vrednosti as. dr. Nino RODE Uni-Lj. Fakulteta za socialno delo O ČEM BOMO GOVORILI NAMEN OPISNE STATISTIKE Kako opisati podatke OPIS

Prikaži več

Lehmerjev algoritem za racunanje najvecjega skupnega delitelja

Lehmerjev algoritem za racunanje najvecjega skupnega delitelja Univerza v Ljubljani Fakulteta za računalništvo in informatiko ter Fakulteta za Matematiko in Fiziko Mirjam Kolar Lehmerjev algoritem za računanje največjega skupnega delitelja DIPLOMSKO DELO NA INTERDISCIPLINARNEM

Prikaži več

Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y

Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y 2 ). Rešitev: Diferencialna enačba ima ločljive spremenljivke,

Prikaži več

Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t

Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t 0.5 1.5 2.0 t a.) Nari²ite tri grafe: graf (klasi ne)

Prikaži več

EKVITABILNE PARTICIJE IN TOEPLITZOVE MATRIKE Aleksandar Jurišić Politehnika Nova Gorica in IMFM Vipavska 13, p.p. 301, Nova Gorica Slovenija Štefko Mi

EKVITABILNE PARTICIJE IN TOEPLITZOVE MATRIKE Aleksandar Jurišić Politehnika Nova Gorica in IMFM Vipavska 13, p.p. 301, Nova Gorica Slovenija Štefko Mi EKVITABILNE PARTICIJE IN TOEPLITZOVE MATRIKE Aleksandar Jurišić Politehnika Nova Gorica in IMFM Vipavska 13, p.p. 301, Nova Gorica Slovenija Štefko Miklavič 30. okt. 2003 Math. Subj. Class. (2000): 05E{20,

Prikaži več

Microsoft Word - UP_Lekcija04_2014.docx

Microsoft Word - UP_Lekcija04_2014.docx 4. Zanka while Zanke pri programiranju uporabljamo, kadar moramo stavek ali skupino stavkov izvršiti večkrat zaporedoma. Namesto, da iste (ali podobne) stavke pišemo n-krat, jih napišemo samo enkrat in

Prikaži več

Microsoft Word - SI_vaja1.doc

Microsoft Word - SI_vaja1.doc Univerza v Ljubljani, Zdravstvena fakulteta Sanitarno inženirstvo Statistika Inštitut za biostatistiko in medicinsko informatiko Š.l. 2011/2012, 3. letnik (1. stopnja), Vaja 1 Naloge 1. del: Opisna statistika

Prikaži več

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 31. avgust 2018 Navodila Pazljivo preberite

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 31. avgust 2018 Navodila Pazljivo preberite Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 31 avgust 018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Za pozitiven

Prikaži več

ZveznostFunkcij11.dvi

ZveznostFunkcij11.dvi II. LIMITA IN ZVEZNOST FUNKCIJ. Preslikave med množicami Funkcija ali preslikava med dvema množicama A in B je predpis f, ki vsakemu elementu x množice A priredi natanko določen element y množice B. Važno

Prikaži več

Turingov stroj in programiranje Barbara Strniša Opis in definicija Definirajmo nekaj oznak: Σ abeceda... končna neprazna množica simbolo

Turingov stroj in programiranje Barbara Strniša Opis in definicija Definirajmo nekaj oznak: Σ abeceda... končna neprazna množica simbolo Turingov stroj in programiranje Barbara Strniša 12. 4. 2010 1 Opis in definicija Definirajmo nekaj oznak: Σ abeceda... končna neprazna množica simbolov (običajno Σ 2) Σ n = {s 1 s 2... s n ; s i Σ, i =

Prikaži več

Kazalo 1 DVOMESTNE RELACIJE Operacije z dvomestnimi relacijami Predstavitev relacij

Kazalo 1 DVOMESTNE RELACIJE Operacije z dvomestnimi relacijami Predstavitev relacij Kazalo 1 DVOMESTNE RELACIJE 1 1.1 Operacije z dvomestnimi relacijami...................... 2 1.2 Predstavitev relacij............................... 3 1.3 Lastnosti relacij na dani množici (R X X)................

Prikaži več

PREDMETNI KURIKULUM ZA RAZVOJ METEMATIČNIH KOMPETENC

PREDMETNI KURIKULUM ZA RAZVOJ METEMATIČNIH KOMPETENC MATEMATIKA 1.razred OSNOVE PREDMETA POKAZATELJI ZNANJA SPRETNOSTI KOMPETENCE Naravna števila -pozna štiri osnovne računske operacije in njihove lastnosti, -izračuna številske izraze z uporabo štirih računskih

Prikaži več

6.1 Uvod 6 Igra Chomp Marko Repše, Chomp je nepristranska igra dveh igralcev s popolno informacijo na dvo (ali vec) dimenzionalnem prostoru

6.1 Uvod 6 Igra Chomp Marko Repše, Chomp je nepristranska igra dveh igralcev s popolno informacijo na dvo (ali vec) dimenzionalnem prostoru 6.1 Uvod 6 Igra Chomp Marko Repše, 30.03.2009 Chomp je nepristranska igra dveh igralcev s popolno informacijo na dvo (ali vec) dimenzionalnem prostoru in na končni ali neskončni čokoladi. Igralca si izmenjujeta

Prikaži več

3. Preizkušanje domnev

3. Preizkušanje domnev 3. Preizkušanje domnev doc. dr. Miroslav Verbič miroslav.verbic@ef.uni-lj.si www.miroslav-verbic.si Ljubljana, februar 2014 3.1 Izračunavanje intervala zaupanja za vrednosti regresijskih koeficientov Motivacija

Prikaži več

Urejevalna razdalja Avtorji: Nino Cajnkar, Gregor Kikelj Mentorica: Anja Petković 1 Motivacija Tajnica v posadki MARS - a je pridna delavka, ampak se

Urejevalna razdalja Avtorji: Nino Cajnkar, Gregor Kikelj Mentorica: Anja Petković 1 Motivacija Tajnica v posadki MARS - a je pridna delavka, ampak se Urejevalna razdalja Avtorji: Nino Cajnkar, Gregor Kikelj Mentorica: Anja Petković 1 Motivacija Tajnica v posadki MARS - a je pridna delavka, ampak se velikokrat zmoti. Na srečo piše v programu Microsoft

Prikaži več

C:/Users/Matevz/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-januar-februar-15.dvi

C:/Users/Matevz/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-januar-februar-15.dvi Kemijska tehnologija, Kemija Bolonjski univerzitetni program Smer: KT K WolframA: DA NE Čas reševanja je 75 minut. Navodila: Računski del izpita pri predmetu MATEMATIKA I Ugasni in odstrani mobilni telefon.

Prikaži več

Microsoft PowerPoint - p_TK_inzeniring_1_dan_v5_shortTS.ppt [Compatibility Mode]

Microsoft PowerPoint - p_TK_inzeniring_1_dan_v5_shortTS.ppt [Compatibility Mode] Telekomunikacijski inženiring dr. Iztok Humar Vsebina Značilnosti TK prometa, preprosti modeli, uporaba Uvod Značilnosti telekomunikacijskega prometa Modeliranje vodovno komutiranih zvez Erlang B Erlang

Prikaži več

Microsoft PowerPoint _12_15-11_predavanje(1_00)-IR-pdf

Microsoft PowerPoint _12_15-11_predavanje(1_00)-IR-pdf uporaba for zanke i iz korak > 0 oblika zanke: for i iz : korak : ik NE i ik DA stavek1 stavek2 stavekn stavek1 stavek2 stavekn end i i + korak I&: P-XI/1/17 uporaba for zanke i iz korak < 0 oblika zanke:

Prikaži več

NEKAJ VPRAŠANJ IZ MATEMATIKE 2 1. Katero točko evklidskega prostora R n imenujemo notranjo (zunanjo, robno) točko množice M R n? 2. Za poljubno množic

NEKAJ VPRAŠANJ IZ MATEMATIKE 2 1. Katero točko evklidskega prostora R n imenujemo notranjo (zunanjo, robno) točko množice M R n? 2. Za poljubno množic NEKAJ VPRAŠANJ IZ MATEMATIKE 2 1. Katero točko evklidskega prostora R n imenujemo notranjo (zunanjo, robno) točko množice M R n? 2. Za poljubno množico M R n evklidskega prostora R n definirajte množice

Prikaži več

Poslovilno predavanje

Poslovilno predavanje Poslovilno predavanje Matematične teme z didaktiko Marko Razpet, Pedagoška fakulteta Ljubljana, 20. november 2014 1 / 32 Naše skupne ure Matematične tehnologije 2011/12 Funkcije več spremenljivk 2011/12

Prikaži več

FGG13

FGG13 10.8 Metoda zveznega nadaljevanja To je metoda za reševanje nelinearne enačbe f(x) = 0. Če je težko poiskati začetni približek (še posebno pri nelinearnih sistemih), si lahko pomagamo z uvedbo dodatnega

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNIŠTVO Matematika 4 Pini izpit 2. januar 22 Ime in priimek: Vpina št: Navodila Pazljivo preberite beedilo naloge, preden e lotite reševanja. Veljale bodo amo rešitve na papirju, kjer

Prikaži več

PRIPRAVA NA 1. Š. N.: KVADRATNA FUNKCIJA IN KVADRATNA ENAČBA 1. Izračunaj presečišča parabole y=5 x x 8 s koordinatnima osema. R: 2 0, 8, 4,0,,0

PRIPRAVA NA 1. Š. N.: KVADRATNA FUNKCIJA IN KVADRATNA ENAČBA 1. Izračunaj presečišča parabole y=5 x x 8 s koordinatnima osema. R: 2 0, 8, 4,0,,0 PRIPRAVA NA 1. Š. N.: KVADRATNA FUNKCIJA IN KVADRATNA ENAČBA 1. Izračunaj presečišča parabole y=5 x +18 x 8 s koordinatnima osema. R: 0, 8, 4,0,,0 5. Zapiši enačbo kvadratne funkcije f (x )=3 x +1 x+8

Prikaži več

P181C10111

P181C10111 Š i f r a k a n d i d a t a : Državni izpitni center *P181C10111* SPOMLADANSKI IZPITNI ROK MATEMATIKA Izpitna pola Sobota, 9. junij 018 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno

Prikaži več

Osnove statistike v fizični geografiji 2

Osnove statistike v fizični geografiji 2 Osnove statistike v geografiji - Metodologija geografskega raziskovanja - dr. Gregor Kovačič, doc. Bivariantna analiza Lastnosti so med sabo odvisne (vzročnoposledično povezane), kadar ena lastnost (spremenljivka

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-junij-17.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-junij-17.dvi Vpisna številka Priimek, ime Smer: K KT WA Izpit pri predmetu MATEMATIKA I Računski del Ugasni in odstrani mobilni telefon. Uporaba knjig in zapiskov ni dovoljena. Dovoljeni pripomočki so: kemični svinčnik,

Prikaži več

Mrežni modeli polimernih verig Boštjan Jenčič 22. maj 2013 Eden preprostejših opisov polimerne verige je mrežni model, kjer lahko posamezni segmenti p

Mrežni modeli polimernih verig Boštjan Jenčič 22. maj 2013 Eden preprostejših opisov polimerne verige je mrežni model, kjer lahko posamezni segmenti p Mrežni modeli polimernih verig Boštjan Jenčič. maj 013 Eden preprostejših opisov polimerne verige je mrežni model, kjer lahko posameni segmenti polimera asedejo golj ogljišča v kvadratni (ali kubični v

Prikaži več

GeomInterp.dvi

GeomInterp.dvi Univerza v Ljubljani Fakulteta za matematiko in fiziko Seminar za Numerično analizo Geometrijska interpolacija z ravninskimi parametričnimi polinomskimi krivuljami Gašper Jaklič, Jernej Kozak, Marjeta

Prikaži več

7. VAJA A. ENAČBA ZBIRALNE LEČE

7. VAJA A. ENAČBA ZBIRALNE LEČE 7. VAJA A. ENAČBA ZBIRALNE LEČE 1. UVOD Enačbo leče dobimo navadno s pomočjo geometrijskih konstrukcij. V našem primeru bomo do te enačbe prišli eksperimentalno, z merjenjem razdalj a in b. 2. NALOGA Izračunaj

Prikaži več

Študij AHITEKTURE IN URBANIZMA, šol. l. 2016/17 Vaje iz MATEMATIKE 9. Integral Določeni integral: Določeni integral: Naj bo f : [a, b] R funkcija. Int

Študij AHITEKTURE IN URBANIZMA, šol. l. 2016/17 Vaje iz MATEMATIKE 9. Integral Določeni integral: Določeni integral: Naj bo f : [a, b] R funkcija. Int Študij AHITEKTURE IN URBANIZMA, šol. l. 6/7 Vje iz MATEMATIKE 9. Integrl Določeni integrl: Določeni integrl: Nj bo f : [, b] R funkcij. Intervl [, b] rzdelimo n n podintervlov z delilnimi točkmi: = x

Prikaži več

Optimizacija z roji delcev - Seminarska naloga pri predmetu Izbrana poglavja iz optimizacije

Optimizacija z roji delcev - Seminarska naloga pri predmetu Izbrana poglavja iz optimizacije Univerza v Ljubljani Fakulteta za matematiko in fiziko Seminarska naloga pri predmetu Izbrana poglavja iz optimizacije 2. junij 2011 Koncept PSO Motivacija: vedenje organizmov v naravi Ideja: koordinirano

Prikaži več

Osnove teorije kopul in maksmin kopule

Osnove teorije kopul in maksmin kopule Fakulteta za matematiko in fiziko Univerze v Ljubljani Seminar Inštituta za biostatistiko in medicinsko informatiko 26. maj 25 Osnove teorije kopul Definicija kopule Definicija Funkcija C : A A 2 [, ],

Prikaži več

Slide 1

Slide 1 Vsak vektor na premici skozi izhodišče lahko zapišemo kot kjer je v smerni vektor premice in a poljubno število. r a v Vsak vektor na ravnini skozi izhodišče lahko zapišemo kot kjer sta v, v vektorja na

Prikaži več

PowerPoint Presentation

PowerPoint Presentation Integral rešujemo nalogo: Dana je funkcija f. Najdimo funkcijo F, katere odvod je enak f. Če je F ()=f() pravimo, da je F() primitivna funkcija za funkcijo f(). Primeri: f ( ) = cos f ( ) = sin f () =

Prikaži več

(Microsoft Word - 3. Pogre\232ki in negotovost-c.doc)

(Microsoft Word - 3. Pogre\232ki in negotovost-c.doc) 3.4 Merilna negotovost Merilna negotovost je parameter, ki pripada merilnem rezltat. Označje razpršenost vrednosti, ki jih je mogoče z določeno verjetnostjo pripisati merjeni veličini. Navaja kakovost

Prikaži več

VAJE

VAJE UČNI LIST Geometrijska telesa Opomba: pri nalogah, kjer računaš maso jeklenih teles, upoštevaj gostoto jekla 7,86 g / cm ; gostote morebitnih ostalih materialov pa so navedene pri samih nalogah! Fe 1)

Prikaži več

FAKULTETA ZA STROJNIŠTVO Matematika 2 Pisni izpit 9. junij 2005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite bese

FAKULTETA ZA STROJNIŠTVO Matematika 2 Pisni izpit 9. junij 2005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite bese FAKULTETA ZA STROJNIŠTVO Matematika Pisni izpit 9. junij 005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Veljale bodo

Prikaži več

1. izbirni test za MMO 2018 Ljubljana, 16. december Naj bo n naravno število. Na mizi imamo n 2 okraskov n različnih barv in ni nujno, da imam

1. izbirni test za MMO 2018 Ljubljana, 16. december Naj bo n naravno število. Na mizi imamo n 2 okraskov n različnih barv in ni nujno, da imam 1. izbirni test za MMO 018 Ljubljana, 16. december 017 1. Naj bo n naravno število. Na mizi imamo n okraskov n različnih barv in ni nujno, da imamo enako število okraskov vsake barve. Dokaži, da se okraske

Prikaži več

2. LINEARNA ALGEBRA

2. LINEARNA ALGEBRA UPORABNA MATEMATIKA V LOGISTIKI za višješolsko strokovno izobraževanje (OPISNA ) 1 Cilj tega sklopa predavanja je predstaviti obvladovanje računskih spretnosti pri reševanju logističnih problemov in pri

Prikaži več

11. Navadne diferencialne enačbe Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogo

11. Navadne diferencialne enačbe Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogo 11. Navadne diferencialne enačbe 11.1. Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogoju y(x 0 ) = y 0, kjer je f dana dovolj gladka funkcija

Prikaži več

Microsoft Word - ELEKTROTEHNIKA2_ junij 2013_pola1 in 2

Microsoft Word - ELEKTROTEHNIKA2_ junij 2013_pola1 in 2 Šifra kandidata: Srednja elektro šola in tehniška gimnazija ELEKTROTEHNIKA PISNA IZPITNA POLA 1 12. junij 2013 Čas pisanja 40 minut Dovoljeno dodatno gradivo in pripomočki: Kandidat prinese nalivno pero

Prikaži več

CpE & ME 519

CpE & ME 519 2D Transformacije Zakaj potrebujemo transformacije? Animacija Več instanc istega predmeta, variacije istega objekta na sceni Tvorba kompliciranih predmetov iz bolj preprostih Transformacije gledanja Kaj

Prikaži več

PowerPointova predstavitev

PowerPointova predstavitev Obravnava kotov za učence s posebnimi potrebami Reading of angles for pupils with special needs Petra Premrl OŠ Danila Lokarja Ajdovščina OSNOVNA ŠOLA ENAKOVREDNI IZOBRAZBENI STANDARD NIŽJI IZOBRAZBENI

Prikaži več

4.Racionalna števila Ulomek je zapis oblike. Sestavljen je iz števila a (a ), ki ga imenujemo števec, in iz števila b (b, b 0), ki ga imenujemo imenov

4.Racionalna števila Ulomek je zapis oblike. Sestavljen je iz števila a (a ), ki ga imenujemo števec, in iz števila b (b, b 0), ki ga imenujemo imenov 4.Racionalna števila Ulomek je zapis oblike. Sestavljen je iz števila a (a ), ki ga imenujemo števec, in iz števila b (b, b 0), ki ga imenujemo imenovalec, ter iz ulomkove črte. Racionalna števila so števila,

Prikaži več

Ime in priimek

Ime in priimek Polje v osi tokovne zanke Seminar pri predmetu Osnove Elektrotehnike II, VSŠ (Uporaba programskih orodij v elektrotehniki) Ime Priimek, vpisna številka, skupina Ljubljana,.. Kratka navodila: Seminar mora

Prikaži več

Popravki nalog: Numerična analiza - podiplomski študij FGG : popravljena naloga : popravljena naloga 14 domače naloge - 2. skupina

Popravki nalog: Numerična analiza - podiplomski študij FGG : popravljena naloga : popravljena naloga 14 domače naloge - 2. skupina Popravki nalog: Numerična analiza - podiplomski študij FGG 9.8.24: popravljena naloga 4 3..25: popravljena naloga 4 domače naloge - 2. skupina V drugem delu morate rešiti toliko nalog, da bo njihova skupna

Prikaži več

predstavitev fakultete za matematiko 2017 A

predstavitev fakultete za matematiko 2017 A ZAKAJ ŠTUDIJ MATEMATIKE? Ker vam je všeč in vam gre dobro od rok! lepa, eksaktna veda, ki ne zastara matematičnoanalitično sklepanje je uporabno povsod matematiki so zaposljivi ZAKAJ V LJUBLJANI? najdaljša

Prikaži več

3. Metode, ki temeljijo na minimalnem ostanku Denimo, da smo z Arnoldijevim algoritmom zgenerirali ON bazo podprostora Krilova K k (A, r 0 ) in velja

3. Metode, ki temeljijo na minimalnem ostanku Denimo, da smo z Arnoldijevim algoritmom zgenerirali ON bazo podprostora Krilova K k (A, r 0 ) in velja 3. Metode, ki temeljijo na minimalnem ostanku Denimo, da smo z Arnoldijevim algoritmom zgenerirali ON bazo podprostora Krilova K k (A, r 0 ) in velja AV k = V k H k + h k+1,k v k+1 e T k = V kh k+1,k.

Prikaži več

Statistika, Prakticna matematika, , izrocki

Statistika, Prakticna matematika, , izrocki Srednje vrednosti Srednja vrednost...... številske spremenljivke X je tako število, s katerim skušamo kar najbolje naenkrat povzeti vrednosti na posameznih enotah: Polovica zaposlenih oseb ima bruto osebni

Prikaži več

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Katja Ciglar Analiza občutljivosti v Excel-u Seminarska naloga pri predmetu Optimizacija v fina

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Katja Ciglar Analiza občutljivosti v Excel-u Seminarska naloga pri predmetu Optimizacija v fina UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Katja Ciglar Analiza občutljivosti v Excel-u Seminarska naloga pri predmetu Optimizacija v financah Ljubljana, 2010 1. Klasični pristop k analizi

Prikaži več

Uvod v diferencialne enačbe, kompleksno in Fourierovo analizo Bojan Magajna Fakulteta za matematiko in fiziko, Univerza v Ljubljani

Uvod v diferencialne enačbe, kompleksno in Fourierovo analizo Bojan Magajna Fakulteta za matematiko in fiziko, Univerza v Ljubljani Uvod v diferencialne enačbe, kompleksno in Fourierovo analizo Bojan Magajna Fakulteta za matematiko in fiziko, Univerza v Ljubljani UVOD V DIFERENCIALNE ENAČBE, KOMPLEKSNO IN FOURIEROVO ANALIZO Povzetek

Prikaži več

Univerza v Ljubljani Fakulteta za elektrotehniko Fakulteta za računalništvo in informatiko MATEMATIKA I Gabrijel Tomšič Bojan Orel Neža Mramor Kosta L

Univerza v Ljubljani Fakulteta za elektrotehniko Fakulteta za računalništvo in informatiko MATEMATIKA I Gabrijel Tomšič Bojan Orel Neža Mramor Kosta L Univerza v Ljubljani Fakulteta za elektrotehniko Fakulteta za računalništvo in informatiko MATEMATIKA I Gabrijel Tomšič Bojan Orel Neža Mramor Kosta Ljubljana, 2004 Poglavje 3 Funkcije 3.1 Osnovni pojmi

Prikaži več

Poskusi s kondenzatorji

Poskusi s kondenzatorji Poskusi s kondenzatorji Samo Lasič, Fakulteta za Matematiko in Fiziko, Oddelek za fiziko, Ljubljana Povzetek Opisani so nekateri poskusi s kondenzatorji, ki smo jih izvedli z merilnim vmesnikom LabPro.

Prikaži več

IzumLin(b).dvi

IzumLin(b).dvi Izumiranje linij Milan Hladnik Moderni izzivi poučevanja matematike 23. september 2011 Namen seminarja Podati preprost model o rasti števila moških potomcev iz generacije v generacijo. Moški so običajno

Prikaži več

Poglavje 3 Reševanje nelinearnih enačb Na iskanje rešitve enačbe oblike f(x) = 0 (3.1) zelo pogosto naletimo pri reševanju tehničnih problemov. Pri te

Poglavje 3 Reševanje nelinearnih enačb Na iskanje rešitve enačbe oblike f(x) = 0 (3.1) zelo pogosto naletimo pri reševanju tehničnih problemov. Pri te Poglavje 3 Reševanje nelinearnih enačb Na iskanje rešitve enačbe oblike f(x) = 0 (3.1) zelo pogosto naletimo pri reševanju tehničnih problemov. Pri tem je lahko nelinearna funkcija f podana eksplicitno,

Prikaži več

IND/L Zakon o državni statistiki (Uradni list RS, št. 45/1995 in št. 9/2001) Letni program statističnih raziskovanj (Uradni list RS, št. 97/2013) Spor

IND/L Zakon o državni statistiki (Uradni list RS, št. 45/1995 in št. 9/2001) Letni program statističnih raziskovanj (Uradni list RS, št. 97/2013) Spor IND/L Zakon o državni statistiki (Uradni list RS, št. 45/1995 in št. 9/2001) Letni program statističnih raziskovanj (Uradni list RS, št. 97/2013) Sporočanje podatkov je obvezno. Vprašalnik za statistično

Prikaži več

Osnove verjetnostne metode doc. dr. R. Škrekovski Oddelek za Matematiko Fakulteta za Matematiko in Fiziko Univerza v Ljubljani

Osnove verjetnostne metode doc. dr. R. Škrekovski Oddelek za Matematiko Fakulteta za Matematiko in Fiziko Univerza v Ljubljani Osnove verjetnostne metode doc. dr. R. Škrekovski Oddelek za Matematiko Fakulteta za Matematiko in Fiziko Univerza v Ljubljani naslov: Osnove verjetnostne metode avtorske pravice: dr. Riste Škrekovski

Prikaži več

NAVODILA AVTORJEM PRISPEVKOV

NAVODILA AVTORJEM PRISPEVKOV Predmetna komisija za nižji izobrazbeni standard matematika Opisi dosežkov učencev 6. razreda na nacionalnem preverjanju znanja Slika: Porazdelitev točk pri matematiki (NIS), 6. razred 1 ZELENO OBMOČJE

Prikaži več

Funkcije in grafi

Funkcije in grafi 14 Funkcije in grafi Funkcije Zapisi funkcij Sorazmernost Obratna sorazmernost Potenčne funkcije Polinomske funkcije Druge funkcije Prileganje podatkom 14.1 Funkcije Spremenljivke Odvisnost spremenljivk

Prikaži več

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 2017

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 2017 UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 217 ii Kazalo Diferencialni račun vektorskih funkcij 1 1.1 Skalarne funkcije...........................

Prikaži več

DOMACA NALOGA - LABORATORIJSKE VAJE NALOGA 1 Dani sta kompleksni stevili z in z Kompleksno stevilo je definirano kot : z = a + b, a p

DOMACA NALOGA - LABORATORIJSKE VAJE NALOGA 1 Dani sta kompleksni stevili z in z Kompleksno stevilo je definirano kot : z = a + b, a p DOMACA NALOGA - LABORATORIJSKE VAJE NALOGA 1 Dani sta kompleksni stevili z 1 5 2 3 in z 2 3 8 5. Kompleksno stevilo je definirano kot : z = a + b, a predstavlja realno, b pa imaginarno komponento. z 1

Prikaži več

MATLAB programiranje MATLAB... programski jezik in programersko okolje Zakaj Matlab? tipičen proceduralni jezik enostaven za uporabo hitro učenje prir

MATLAB programiranje MATLAB... programski jezik in programersko okolje Zakaj Matlab? tipičen proceduralni jezik enostaven za uporabo hitro učenje prir MATLAB programiranje MATLAB... programski jezik in programersko okolje Zakaj Matlab? tipičen proceduralni jezik enostaven za uporabo hitro učenje priročno programsko okolje tolmač interpreter (ne prevajalnik)

Prikaži več

1 Naloge iz Matematične fizike II /14 1. Enakomerno segreto kocko vržemo v hladnejšo vodo stalne temperature. Kako se spreminja s časom temperat

1 Naloge iz Matematične fizike II /14 1. Enakomerno segreto kocko vržemo v hladnejšo vodo stalne temperature. Kako se spreminja s časom temperat 1 Naloge iz Matematične fizike II - 2013/14 1. Enakomerno segreto kocko vržemo v hladnejšo vodo stalne temperature. Kako se spreminja s časom temperatura v kocki? Kakšna je časovna odvisnost toplotnega

Prikaži več

Učinkovita izvedba algoritma Goldberg-Tarjan Teja Peklaj 26. februar Definicije Definicija 1 Naj bo (G, u, s, t) omrežje, f : E(G) R, za katero v

Učinkovita izvedba algoritma Goldberg-Tarjan Teja Peklaj 26. februar Definicije Definicija 1 Naj bo (G, u, s, t) omrežje, f : E(G) R, za katero v Učinkovita izvedba algoritma Goldberg-Tarjan Teja Peklaj 26. februar 2009 1 Definicije Definicija 1 Naj bo (G, u, s, t) omrežje, f : E(G) R, za katero velja 0 f(e) u(e) za e E(G). Za v V (G) definiramo presežek

Prikaži več

Zgledi:

Zgledi: a) za funkcijo f(x)= 1/3x 1 izračunaj ničlo, zapiši začetno vrednost in nariši graf (x=3, začetna vrednost: f(0)= 1, graf seka abscisno os v točki (3,0), ordinatno os pa v točki (0, 1)) b) nariši graf

Prikaži več

Podatkovni model ER

Podatkovni model ER Podatkovni model Entiteta- Razmerje Iztok Savnik, FAMNIT 2018/19 Pregled: Načrtovanje podatkovnih baz Konceptualno načtrovanje: (ER Model) Kaj so entite in razmerja v aplikacijskem okolju? Katere podatke

Prikaži več

Del 1 Limite

Del 1 Limite Del 1 Limite POGLAVJE 1 Zaporedja realnih števil 1. Osnovne lastnosti realnih števil Naravna števila označujemo z N, cela z Z, racionalna z Q in realna z R. Naravna števila so nastala iz potrebe po preštevanju.

Prikaži več

ELEKTRIČNI NIHAJNI KROG TEORIJA Električni nihajni krog je električno vezje, ki služi za generacijo visokofrekvenče izmenične napetosti. V osnovi je "

ELEKTRIČNI NIHAJNI KROG TEORIJA Električni nihajni krog je električno vezje, ki služi za generacijo visokofrekvenče izmenične napetosti. V osnovi je ELEKTRIČNI NIHAJNI KROG TEORIJA Električni nihajni krog je električno vezje, ki služi za generacijo visokofrekvenče izmenične napetosti. V osnovi je "električno" nihalo, sestavljeno iz vzporedne vezave

Prikaži več

ANALITIČNA GEOMETRIJA V RAVNINI

ANALITIČNA GEOMETRIJA V RAVNINI 3. Analitična geometrija v ravnini Osnovna ideja analitične geometrije je v tem, da vaskemu geometrijskemu objektu (točki, premici,...) pridružimo števila oz koordinate, ki ta objekt popolnoma popisujejo.

Prikaži več

Microsoft Word - RAZISKAVA_II._del.doc

Microsoft Word - RAZISKAVA_II._del.doc DEJAVNIKI VARNOSTI CESTNEGA PROMETA V SLOVENIJI Raziskava II. del Inštitut za kriminologijo pri Pravni fakulteti v Ljubljani Ljubljana, avgusta 2010 Vodja raziskave: dr. Dragan Petrovec Izvajalci in avtorji:

Prikaži več