Non-Cooled Power System for Venus Lander

Velikost: px
Začni prikazovanje s strani:

Download "Non-Cooled Power System for Venus Lander"

Transkripcija

1 T15:28:54+00:00Z Non-Cooled Power System for Venus Lander Denise Salazar * The University of Texas at Austin, TX Geoffrey A. Landis NASA John H. Glenn Research Center, Cleveland, OH and Anthony J. Colozza Vantage Partners, LLC, Cleveland, OH The Planetary Science Decadal Survey of stated that the exploration of Venus is of significant interest. Studying the seismic activity of the planet is of particular importance because the findings can be compared to the seismic activity of Earth. Further, the geological and atmospheric properties of Venus will shed light into the past and future of Earth. This paper presents a radioisotope power system (RPS) design for a small low-power Venus lander. The feasibility of the new power system is then compared to that of primary batteries. A requirement for the power source system is to avoid moving parts in order to not interfere with the primary objective of the mission to collect data about the seismic activity of Venus using a seismometer. The target mission duration of the lander is 117 days, a significant leap from Venera 13, the longest-lived lander on the surface of Venus, which survived for 2 hours. One major assumption for this mission design is that the power source system will not provide cooling to the other components of the lander. This assumption is based on high-temperature electronics technology that will enable the electronics and components of the lander to operate at Venus surface temperature. For the proposed RPS, a customized General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHS- RTG) is designed and analyzed. The GPHS-RTG is chosen primarily because it has no moving parts and it is capable of operating for long duration missions on the order of years. This power system is modeled as a spherical structure for a fundamental thermal analysis. The total mass and electrical output of the system are calculated to be 24 kilograms and 26 Watts, respectively. An alternative design for a battery-based power system uses Sodium Sulfur batteries. To deliver a similar electrical output for 117 days, the battery mass is calculated to be 234 kilograms. Reducing mission duration or power required will reduce the required battery mass. Finally, the advantages and disadvantages of both power systems with regard to science return, risk, and cost are briefly compared. The design of the radioisotope power system is considerably riskier because it is novel and would require additional years of further refinement, manufacturing, safety analysis, and testing that the primary batteries do not need. However, the lifetime of the radioisotope power system makes its science return more promising. NASA Space Academy 2013, NASA Glenn Research Center, Cleveland OH. AIAA Student Member. NASA John Glenn Research Center, mailstop 302-1, Brookpark Road, Cleveland OH AIAA Associate Fellow. Vantage Partners, LLC, John Glenn Research Center, mailstop 309-1, Brookpark Road, Cleveland OH

2 GIS = Graphite Impact Shell GPHS = General Purpose Heat Source MEL = Mass Equipment List NaS = Sodium Sulfur PbTe = Lead Telluride PG = Pyrolytic Graphite QTY = Quantity RPS = Radioisotope Power System RTG = Radioisotope Thermoelectric Generator SiGe = Silicon Geranium alloy SiMo = Silicon Molybdenum alloy TE = Thermoelectric TRL = Technology Readiness Level ZT = Figure of Merit Acronyms Nomenclature = heat transfer area for the fins, in square meters = surface area of a sphere, in square meters = battery capacity, in Watt hours = thickness of the Titanium wall, in meters = heat transfer coefficient, in Watts/m 2 -Kelvin = mass of batteries, in kilograms = mass of the fins, in kilograms = mass of the Titanium pressure vessel wall, in kilograms = pressure difference for the pressure vessel, in Pascals = power required using battery, in Watts = heat energy or power output, in Watts = excess heat energy radiated through the fins, in Watts = thermal heat energy input from GPHS modules, in Watts = heat energy leakage through the microtherm insulation, in Watts = heat energy lost through the thermoelectrics, in Watts = resistance of Microtherm insulation, in Kelvin per Watt = radius of GPHS spherical model, in meters = outside radius: radius of Microtherm and GPHS spherical model, in meters = mission duration using battery, in hours = temperature of the cold side of the thermoelectric, in Kelvin = temperature of the hot side of the thermoelectric, in Kelvin = ambient temperature of the surface of Venus, in Kelvin = volume of the spherical model including the modules, thermoelectrics, and insulation, in cubic meters = total volume of the fins, in cubic meters = width of one fin, in meters = modified figure of merit, dimensionless = efficiency of a thermoelectric device for electricity generation, dimensionless = energy efficiency of batteries, percentage = thermal resistivity of microtherm, in meter-kelvin per Watt = density of pyrolytic graphite, in kilograms per cubic meter = density of Titanium, in kilograms per cubic meters = temperature gradient, hot side minus cold side, in Kelvin = ultimate tensile strength, or maximum working stress that Titanium can tolerate, in Pascals = specific energy of batteries, in Watt-hours per kilogram 2

3 T I. Introduction he Planetary Science Decadal survey of stated that an in-situ mission to Venus is one of five top candidates for future missions. 1 Even though Venus is the planet most similar to the Earth in size and density, high temperatures and pressures at the surface make it also extremely harsh surface environment 2. Obtaining science from the surface is a difficult task to design and implement. However, it is also invaluable and a mission to Venus is of interest to the science community. The geological and atmospheric properties of Venus will shed light into the past and future of Earth. Therefore, a mission to Venus in the Discovery class is proposed for a 2020 launch. The Russian Venera landers from 1961 to 1983 stand out as successful past missions to Venus. The Venera 4 probe was the first to conduct direct sampling of the atmosphere of Venus. The Venera 7 lander was the first manmade object to return data to Earth after landing on another planet. The Venera 9 orbiter was the first spacecraft to orbit Venus and the lander the first mission to transmit photographs from the surface of another world. The Venera 13 lander, which survived for 127 minutes is the longest-lived lander ever to survive on Venus.. Other past missions to Venus include the orbiter and probes of Pioneer Venus (1978), the landers and balloons of Vega 1 and 2 (1984), the Magellan orbiter (1989) and Venus Express (2005), and the fly-bys of Galileo (1989), Cassini (1997), and Messenger (2004). It has been about three decades since the last lander to Venus and it is time to design another mission to touchdown on the planet. The present study analyzes a power system for a Venus surface lander 3, consisting of a relay orbiter, a descent package, and a lander. The lander will be designed to live for 1 Venus solar day, or 117 Earth days, which is a significant leap from the survival time of the longest lived lander on the surface of Venus to date. The primary objective of the mission will be to record seismic activity with a seismometer. This mission presents a significant challenge to the power system design. II. Venus Environment The surface of Venus has an average temperature of 450 degrees Celsius ( K) at an atmospheric pressure of about 92 bars. The temperature is hot enough to melt lead, and the pressure is 92 times the pressure found on the surface of Earth. Even though no human could survive in these extreme conditions, a robot could plausibly be designed to withstand these conditions. The atmosphere of Venus is composed primarily of carbon dioxide and its clouds contain sulfuric acid droplets. The structure of the Venus atmosphere is shown in Fig The sulfuric-acid cloud layers in the middle atmosphere prevents the majority of sunlight from reaching the surface. The wind speeds reduce significantly to about 0.3 to 0.6 meters per second at the surface. It is a challenging task to design a lander that will survive for a long duration on the surface. The surface temperature and pressure are hurdles to overcome or adapt to. This study analyzes the possible power systems for a Venus surface mission. III. Power System Study This study analyzes the possible power systems for a lander on the surface of Venus that will survive for at least 1 Venus solar day. Previous studies have analyzed the use of a radioisotope power system (RPS) for use on the surface of Venus. 5,6,7,8,9,10 However, all of them required the power system to provide cooling to other components of their spacecraft, especially the science package. 11 This study 3 is different in that no cooling will be provided. This assumption is based on use of high Figure 1. Atmospheric profile of Venus

4 temperature electronics technology that will enable the electronics and components of the lander to operate at Venus ambient temperature at the surface. 12,13 A. Requirements The power system shall operate on the surface of Venus for 1 Venus solar day (117 Earth days). The power system shall operate at the Venus ambient temperature of 450 degrees Celsius (723 K) and pressure of 92 bars. The unshielded part of the power system shall be coated for protection from the corrosive environment. The power system shall have no moving parts to reduce the likelihood of failure inherent in such parts. The seismometer shall then avoid vibrations from the power system. The intended target for the lander and descent package will be the North Polar regions. This region is chosen to allow communications via a relay orbiter placed in a polar elliptical orbit, with apoapsis over the North pole. B. Assumptions It is assumed that the components of the lander will not require any cooling. They will be able to operate at Venus ambient temperatures and pressures. Therefore the power system will not be required to provide cooling to the components. The power levels required for the mission will be low. An initial baseline estimate of power required is 20 Watts. C. Trades Two cases were analyzed and then compared: RPS for Case 1, and primary batteries for Case 2. Case 1 typically operates on the order of years and therefore meets the first requirement. A customized GPHS-RTG system that also meets the second, third, and fourth requirements was designed in this paper. It is assumed that all the electronics and sensors will operate at Venus ambient temperatures and pressures. This assumption is driven by high-temperature electronics technology that is expected to be fully operational by the time frame of the design phase for this mission. 13,14 Eliminating cooling from the lander will reduce its mass and power consumption. The second power system case considered using high temperature primary batteries. This case depends on mission duration. It may be a better choice if the length of time needed for the seismometer to record a sufficient amount of data is on the order of hours, days, or even months. The design for Case 2 is also significantly simpler than the design for Case 1. The benefits of using batteries versus the battery mass needed for 117 days will be discussed. Another option that will not be explored is a solar array and battery combination because of the landing location at the North Pole. Although the use of solar arrays may be a feasible choice at the equator, 14 it is not a feasible choice near the polar regions due to the low sun angle. D. Case 1: Radioisotope Power System A customized General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHS-RTG) is chosen as the RPS for Case 1. RPS have been used in many earlier missions, are capable of operating for long duration missions, on the order of years, and have no moving parts. Figure 2 displays a cutaway view of a GPHS-RTG. A GPHS-RTG contains 18 stacked GPHS modules which contain a heat source. The modules are surrounded by thermoelectric materials that convert a temperature differential between a hot side heated by the isotope, and a cold side rejecting heat into the environment, into an electrical output. The cold side temperature of 450 degrees Celsius at the surface of Venus causes the temperature differential for the thermoelectrics to decrease, and therefore the efficiency of the thermoelectrics to decrease as well. However, the decrease in efficiency is not enough to rule out the customized GPHS-RTG as a feasible power source. 4

5 1. GPHS module GPHS modules are the isotope heat source for the GPHS-RTG. Each GPHS module contains 0.6 kilograms of Pu 238 O The dimensions of one GPHS module are 9.96 by 9.43 by 5.82 centimeters. Figure 3 shows an expanded view of a GPHS module. 16 Each GPHS module has 4 fuel pellets. Each pellet is encapsulated in an iridium alloy clad that will resist oxidation in the event of an impact and accident. 17 The fuel pellet and iridium alloy clad together are called the fueled clad. Two fueled clads are contained within in a Graphite Impact shell (GIS) which also provides protection in case of an accident. Two GISs are contained within an aeroshell made of carbon material. The customized GPHS-RTG for this lander will use two GPHS modules. Each module produces an initial thermal heat output of about 250 Watts. 18 Therefore, the customized GPHS-RTG for the lander will produce an initial thermal heat energy of about 500 Watts. Figure 2. Cutaway view of a GPHS-RTG. Figure 3. Expanded view of a GPHS module. 2. Thermoelectric Converter A thermoelectric material creates an electric potential from a temperature differential. There are two junctions, the hot shoe and the cold shoe, that are joined by two metals. The GPHS module is the heat source to the hot shoes and therefore the hot shoes are in contact with the GPHS module. Thermoelectric converters have low efficiencies compared to dynamic systems such as Stirling converters, but have no moving parts. For high temperature operation, such as on Venus, Silicon Geranium (SiGe) thermoelectric materials will perform well. Lead Telluride (PbTe) was excluded as a possible material for this group because its maximum operating temperature is 900 K, well below the hot junction temperature of the GPHS modules (1275 K). 19 SiGe material is one of the few that function at high temperatures. It also has a flight history of operating on missions from Viking to Galileo, and therefore the reliability and technology readiness is well demonstrated. For this study, a p-type SiGe metal alloy leg and an n-type SiGe metal alloy leg are chosen. Figure 4 displays an expanded view SiGe thermoelectric that was used on a GPHS-RTG. The hot shoe is made of Silicon-Molybdenum (SiMo). The cold shoe is a stack assembly of tungsten, copper, molybdenum, stainless steel, and alumina parts. The total length of the SiGe thermocouple is 3.11 centimeters. The largest cross section of the thermocouple is located at its hot shoe: 2.9 by 2.9 centimeters. A full description of SiGe thermoelectric materials and its dimensions can be found in reference 10. The thermoelectric material s ability to produce power is characterized by its figure of merit (ZT). This can be seen in Fig Figure of merit depends on the properties of the thermoelectric material. It takes into account thermal conductivity and electrical conductivity of the material. The higher the figure of merit, the more efficiently the material is able to produce thermoelectric power. As shown in Fig. 5, SiGe can operate at high temperatures. The standard GPHS-RTG used on missions in the 1970s has 576 thermoelectrics and 18 modules. For the power level required here, we estimate that each module needs 32 thermoelectrics. The arrangement of the thermoelectrics around the module will not be analyzed. In a typical GPHS-RTG the unicouples are connected in two series-parallel electric wiring circuits. The temperatures that are utilized in a thermal analysis later in this paper is displayed in Table 1. The hot junction of the thermoelectrics is the heat provided by the GPHS modules. The cold junction of the thermoelectrics 5

6 is designed to be 50 Kelvin higher than the ambient temperature at the surface of Venus. From Fig. 5, at the average temperature of about 1000 Kelvin, the ZT for SiGe is about 0.7. Figure 4. Expanded view of a SiGe thermocouple. Figure 5. Figure of merit ZT versus temperature for several thermoelectric materials. Table 1. Summary of important temperatures. Hot Junction of the thermoelectrics Cold Junction of the thermoelectrics Ambient temperature at surface of Venus Average temperature of the junctions 1275 Kelvin 773 Kelvin 723 Kelvin 1024 Kelvin A3. Insulation/Wall/Coating/Fins Since the thermoelectric conversion relies on a temperature difference between the hot (GPHS) and cold (Venus environment) sides, it is necessary to insulate the GPHS to keep the heat from leaking away to the environment: any heat lost by conduction to the environment represents power lost, rather than available to be converted to electrical power. The insulation chosen to surround the modules and thermoelectrics is Microtherm Super A insulation. ** This material will survive on the surface of Venus because its maximum temperature limit is 1423 K for long term exposure. It has a thermal conductivity of W/m-K at 1073 K, and a density of 450 kg/m 3. This thermal insulation is an excellent choice for this RPS because it has very low thermal conductivity at extremely high temperatures. It is important to note that the thermal conductivity of the Microtherm insulation is dependent on temperature. Fig. 6 displays this relationship.** Another possible form of insulation not considered is aerogel. Although lighter than Microtherm it was considered riskier for this mission because of its lower level of development. Figure 6. Thermal conductivity of Microtherm versus temperature. ** Microtherm Inc. Microtherm Super A product characteristics at: 6

7 The Microtherm insulation needs to be kept in vacuum in order to function optimally. The carbon dioxide in the atmosphere of Venus will cause the thermal conductivity of the insulation to increase, which is not desired. A pressure vessel will be used to allow the insulation to function and protect it from the atmosphere of Venus. One of the difficulties of the extreme environment of Venus is that its temperature would melt, crush, and destroy common materials for most spacecraft. Titanium is the chosen material for the vessel due to its high strength, low thermal conductivity, and a melting point of about 1900 K, well above the ambient temperature of the surface of Venus. Fins will surround the titanium wall to radiate waste heat from the cold side of the thermocouple to the environment. Pyrolytic Graphite (PG) is the material chosen for the fins, because it has a thermal conductivity of 1700 W/m-K and it is stable up to 2200 degrees Celsius (2493 K). PG has a density of 2220 kg/m 3. The outer layer of the wall and the fins will be coated with a film of gold for acid resistance. Gold is chosen for the coating because it is one the least reactive metals, is corrosion resistant, and has a melting point well above the ambient temperature of the surface of Venus. The gold coating on the titanium wall and fins will protect the power system from the corrosive Venus environment. The design also has a gas management valve to allow Helium, a byproduct of the radioactive decay of Plutonium-238, to escape during the pre-launch and cruise phases (this is considered not critical during the mission phase).. 4. Spherical Model For simplicity the power generator was modeled as a spherical structure for a fundamental thermal analysis as a first-look at what this design will entail. Figure 8 shows an overall schematic of the power system. Note that this figure is not drawn to scale. The fins are hooplike structures around the spherical model. However they will be sized as rectangular shaped later in this paper in order to obtain their approximate mass. The figure shows one thermoelectric element of the 64 in the system (32 per module). The following assumptions were made: Two GPHS stacked on top of each other have the approximate dimensions of 10 cm by 10 cm by 10 cm. The diameter of the central sphere for the thermal model is chosen to equal the diagonal of this cube, meters, and hence the GPHS modules fit inside the central sphere The insulation surrounding the modules was modeled as a sphere. The thickness Figure 7. Cut out section of the customized GPHS-RTG power system. Figure 8: Heat transfer elements of the customized GPHS- RTG. Minteq Pyrogenics Group. Product characteristics at: 7

8 of the insulation is equal to the length of the SiGe thermoelectrics: meters. The thermal conductivity of the Microtherm insulation was assumed to be a constant value of W/m- K, equal to the conductivity at the highest temperature. The dependence on temperature (figure 6) was neglected. Since the thermal conductivity is lower at lower temperatures, this assumption is conservative; the actual thermal leak through the insulation will be lower. The actual GPHS modules are smaller than the interior sphere, and hence fit into the interior sphere with extra (wasted) space. If this extra space is filled with insulation, the heat transfer from the interior would be reduced. Thus, modeling the GPHS as a sphere is a conservative assumption. Thermal resistance across the thin titanium shell is low compared to the insulation, and is neglected in this analysis. The thermal heat energy input from the two modules is equal to three components: heat energy lost through insulation, heat energy loss through the thermoelectrics, plus the electrical energy output to the lander, as shown in Eq. (1) and Fig. 8. The thermal heat from the two GPHS modules transfers to either the hot shoe of the thermoelectric converters or to the Microtherm insulation. The Microtherm insulation impedes heat energy from escaping. The heat energy that does escape through the Microtherm insulation travels to the exterior of the thermal enclosure, assumed to be at Venus ambient temperature. The heat energy input to the thermoelectrics is either transferred to the lander as an electrical output or wasted due to the inefficiency of the thermoelectric converters. The cooling fins radiate the waste heat to the environment of Venus. This inefficiency takes into account the thermal and electrical conductivity of the thermoelectric material. This equation assumed no mass flow. (1) The heat energy loss through the insulation is equal to the excess heat energy radiated through the fins. A steady state is assumed. Heat transfer through the titanium wall with the gold coating is ignored. The analysis for this case consisted of determining the components of the heat flow shown in Eq. (1). The resistance of the Microtherm insulation was modeled using Eq. (2). (2) The reciprocal of the thermal conductivity is the thermal resistivity of Microtherm, 23 meter Kelvin per Watt. The initial radius in Eq. (2) is the radius of the spherical model of the two stacked GPHS modules. This was calculated to be meters. The thickness of the Microtherm insulation equals the length of the SiGe thermoelectrics: meters. Therefore the outside radius of the spherical model is meters. These variables are used in Eq. (2) to calculate the conduction resistance: 5.58 K per Watt. Dividing the temperature gradient through the insulation by the resistance results in heat energy loss through the insulation. This is shown in Eq. (3). (3) The temperature gradient of the thermoelectrics (502 K) is the same for the insulation. The heat energy loss through the Microtherm insulation was calculated to be 89.9 Watts. Subtracting the heat energy loss through the insulation from the initial thermal source strength (500 Watts) leaves Watts transferred across the thermoelectric elements. The efficiency of the thermoelectric devices for electricity generation is calculated from the temperature and ZT value using Eq. (4): (4) An efficiency of 6.26% was determined. The efficiency is low because of the nature of thermoelectric converters. and the high temperature of the cold side, T c, causes the temperature gradient between the hot and cold shoes to 8

9 decrease and thus decreases efficiency of the thermoelectrics. The power output for the converter is therefore 25.7 Watts. A summary of heat energy input and output is shown in table Microtherm Insulation The mass of the Microtherm insulation is calculated from its volume and density. Using the spherical model with the inside radius Table 2. Summary of heat energy meters and the outside radius meters, the volume of insulation is m 3. The density of the Microtherm insulation was stated as 450 kg/m 3, resulting in a mass of 1.85 kg for the insulation. 6. Titanium Wall The mass and thickness of the spherical pressure vessel were found 89.9 Watts Watts 25.7 Watts 500 Watts using Eqs. (5) and (6) respectively. The pressure difference between the inside and the outside of the pressure vessel is 920 kilopascals (92 bar). The volume of the spherical model is m 3 (using the exterior radius of meters). The density of titanium is 4540 kg/m 3. The ultimate tensile strength of titanium was assumed to be about 200 megapascals. Using these variables the mass and thickness of the titanium wall were calculated to be 2.14 kilograms and meters respectively. (5) (6) 7. Fins Cooling fins are sized to remove waste heat from the thermoelectric elements and transfer it to the atmosphere. The cold shoes of the thermoelectrics are connected directly to the base of the cooling fins. Convective heat transfer occurs between the cooling fins at T c, 773 K and the carbon dioxide atmosphere on Venus at T V, 723 K. Sizing the cooling fins depends on many factors including: the temperature at the cold junction of the thermoelectric, the ambient temperature of Venus at the surface, the cooling fin diameter, cooling fin thickness, number of cooling fins, and the convective heat transfer coefficient to the surroundings. The following assumptions were made: For initial analytical purposes 1000 Watts per m 2 -K was used as a rough estimate for the convective heat transfer coefficient for this study. This approximation is taken from predictions of heat transfer coefficients of supercritical carbon dioxide with lubricating oil. 21 It is assumed that the heat energy ejected to the atmosphere through the fins is equal to the waste heat from the thermoelectric elements It is assumed that all the heat transfer to radiate the excess heat energy from the fins is done by convection. Therefore the heat transfer area of the fins is approximated using Newton s law of cooling. The shape of the fins are assumed to be rectangular prisms. The number of fins is assumed to be 25. Each fin is assumed to be tapered, with a thickness of 5 mm (0.005) m at the root, 0.5 mm ( m) at the tip, for an average thickness w of m meters. Efficiency of fins is not considered. Equation (7) combines the first two assumptions and Newton s law of cooling. Equation (8) displays the required exposed surface area of all of the fins. Using this equation, an exposed heat transfer area of m 2 was found. (Since both sides of the fin are exposed to the atmosphere, the size of each fin is half this). The total mass of the fins is then calculated from the area times the thickness, times the density of the material, as shown in Eq. (9), to find the mass of the fins: 2.39 kg. (7) 9

10 (8) (9) 8. Final MEL: Each GPHS module has a mass of 1.44 kilograms 10. Assumptions were made for the masses of the SiGe thermoelectrics and the gas management valve. Mass of the insulation, titanium wall, and fins were found in previous subsections. The power distribution to the components of the lander is not analyzed. The wiring needed for the power distribution is assumed to be 10% of the total mass. Table 3 summaries a mass equipment list (MEL) for this power system. A 25% margin for growth is added to each item in the list. The margin is high because this is a new design. A Scilab script was used to perform all calculations. The customized GPHS-RTG with 2 modules created in this study has a total mass of just under 24 kilograms, including margin. Table 3: Final Mass Equipment List for RPS power system, Case 1 Description QTY Unit Mass Basic Mass Growth Growth Total Mass Lander (kg) (kg) (%) (kg) (kg) Power Subsystem GPHS % Microtherm Insulation % SiGe TE % Gas Valve % Titanium Cover % Fins % Wiring % Recommendations A more in depth-analysis of the GPHS-RTG system needs to be done. The spherical model used for the RPS was useful for initial analytical purposes for this study. The GPHS modules will be rectangular prisms of dimensions 9.96 cm by 9.43 cm by 5.82 cm each. The final schematic of the insulation around the modules will also most likely not be a spherical structure. A spherical structure would be difficult to manufacture but a cylindrical shape would be easier. Heat energy loss through insulation and thermoelectrics of the final and actual RPS structure must be calculated again. This study did not analyze the arrangement of the thermoelectrics surrounding the GPHS modules. Further review of this mission will require this analysis. This study found a general approximation for the size and mass of the fins. Sizing the fins again will require finding an exact heat transfer coefficient. This study also did not look into the arrangement of the fins around the customized GPHS-RTG. Number of cooling fins, fin thickness, and fin length should be optimized. Properties of Titanium at Venus ambient temperature and pressure should be used in future calculations. Analysis of the power management and distribution for Case 1 should be performed. E. Case 2: Primary Batteries Case 2 analyzes powering the mission with primary batteries. This may be a better choice if the amount of time the lander needs to collect a sufficient amount of data is within the lifespan of the battery. Primary batteries are useful for short duration missions or long term tasks that use very little power. The mission duration is 117 days. 10

11 The batteries will not be recharged. Therefore the battery mass needed for 117 days will play a significant role in deciding if this is a feasible case. Primary batteries for use on Venus were analyzed by Landis and Harrison 22. Possible batteries considered were Sodium Nickel Chloride batteries, Lithium-Thionyl Chloride batteries, and Sodium Sulfur batteries. Lithium-Thionyl Chloride batteries were not analyzed further because their maximum temperature rating was 200 degrees Celsius (473 K), well below the ambient temperature at the surface of Venus. Sodium Nickel Chloride batteries, although they have been projected to operate at 500 degrees Celsius (773 K), had a smaller projected specific energy (200 Watt hours per kilogram) than the Sodium Sulfur batteries (300 Watt hours per kilogram). 23 NaS batteries have also been tested in space on the space shuttle flight STS-87 in November Therefore Sodium Sulfur batteries were chosen for Case NaS batteries Figure 9 is a schematic cutaway of a NaS battery. This battery consists of a sodium anode, a solid beta alumina separator and electrolyte, and a sulfur cathode. At Venus conditions of 450 degrees Celsius (723 K) and 92 bar pressure, the reaction reactants (Sodium and Sulfur) and products (sodium sulfide) are all in liquid-liquid phase, which is needed for the reaction to occur. 24 Therefore the NaS battery meets the second requirement because it operates at the conditions found on the surface of Venus. To estimate the battery mass needed for this mission, the following assumptions were used: Baseline estimate of power required: 20 Watts. Mission duration: 117 Earth days, (2808 hours). Energy efficiency of 80%. Specific energy of 300 Watt hours per kilogram. Using these variables, an approximate battery capacity and battery mass were calculated to be Watt hours and 234 kilograms respectively using Eqs. (10) and (11). (10) (11) As with Case 1, the power management and distribution for Case 2 is assumed to be 10% of the total mass. Therefore the mass for power distribution is 25 kg, and the final mass of Case 2 is 260 kg. Due to the mass, this power system is large and cumbersome compared to Case 1. Figures 10 and 11 display the possible battery mass if the power required and mission duration are varied. If the mission duration of 117 days is a requirement, the power required must be reduced in order to minimize the battery mass. Table 4 displays various battery masses needed for a range of power required. If the power required is reduced to 5 Watts, then the battery mass, 58.5 kilograms, is comparable to the total mass of Case 1. Figure 10. Power required versus battery mass. 11

12 2. Recommendations A few recommendations are suggested. Depth of discharge of the NaS batteries was not considered in the analysis and should be incorporated. Degradation of the battery over 117 days should be studied. Analysis of the power management and distribution for Case 1 should be performed. IV. Conclusion This study focused on the power system for a future long-duration Venus lander. The requirements for the power system included: mission duration of 1 Venus solar day (117 Earth days), operation at Venus ambient temperature and pressure, protection from corrosion, selection of a system with no moving parts, and location at the pole. The assumptions of the power system included providing no cooling to the high temperature electronics and components of the lander and assuming an initial baseline low power level of 20 Watts. The assumption that no cooling is provided to the lander requires high-temperature electronics, an assumption not included in previous mission concept studies. Two cases were considered for this study. A customized GPHS-RTG was chosen for the first case. Its design consisted of 2 GPHS modules, Microtherm insulation, a titanium pressure vessel wall, gold coating on the wall, 64 SiGe thermoelectrics, a gas management valve, and 25 cooling fins. A simplified spherical model was assumed to perform the thermal analysis and calculate each component from the conservation of energy assumption. The heat energy loss through the insulation was calculated to be Watts, leaving Watts for the thermoelectrics to work with. The efficiency of the thermoelectrics was determined to be 6.26%, resulting in electrical output to the lander of Watts and final mass of the power system of kilograms. Sodium sulfur batteries were chosen for Case 2, with an assumed specific energy of 300 W-hrs/kg. For a power requirement of 20 Watts and mission duration of 117 Earth days, total battery mass required was 234 kilograms. The battery mass required could be reduced significantly if power required or mission duration or both were also reduced. Comparing the two cases boils down to three factors: risk, science return, and cost. The RPS design for Case 1 needs to be further analyzed, developed, built, and tested. On the other hand the battery design for Case 2 already exists, although it needs to be validated for Venus operation, in a facility such as the Glenn Extreme Environment Rig (GEER). The primary battery power system wins in the near-term, risk-adverse case. However battery mass is directly proportional to the design lifetime whereas the RPS will survive much longer than the intended 117 days requirement. The possible longer lifetime of the RPS translates to the ability to collect more science return from the lander. The RPS case wins in the longer-term, because of its higher science return. Cost is a third factor when comparing the two cases. The total masses for Case 1 and 2 are 24 kilograms and 260 kilograms respectively. Therefore, when it comes to launch cost, Case 1 will cost significantly less than Case 2. However, if the mission duration and/or power required are reduced, then the battery power system becomes more attractive. If the power requirement can be reduced to 5 Watts. the required battery mass becomes 58.5 kilograms. In conclusion, both cases have their benefits and disadvantages for different mission scenarios. It is too early in the design process to select one over the other. Acknowledgments The authors would like to acknowledge the work of Nathan Boll and Christopher Stelter on the HADES conceptual design project for a Venus lander (reference 3), which was the original instigation of this work. We thank Steven R. Oleson and Paul C. Schmitz for their invaluable help. They would also like to acknowledge the NASA Space Academy and the Texas Space Grant Consortium who made this work possible. 12 Figure 11. Mission duration versus battery mass. Table 4: Battery mass for a range of power required. Power Required (W) Battery Mass (kg)

13 References 1 Committee on the Planetary Science Decadal Survey, Space Studies Board, Division on Engineering and physical Sciences, Vision and Voyages for Planetary Science in the Decade , The National Academies Press, Washington, D. C., Hunten; D. M., Colin, L., Donahue, T. M., and Moroz, V. I. (eds.), Venus, University of Arizona Press, Boll, N., et al., "Venus High Temperature Atmospheric Dropsonde and Extreme Environment Seismometer (HADES), to be presented, 65th International Astronautical Congress, Toronto ON, Sept. 30-Oct. 2, Jakosky, B. M., "Atmospheres of the Terrestrial Planets", in Beatty, Petersen and Chaikin (eds.), The New Solar System, 4th edition, Sky Publishing Company, 1999, pp Stofan, E. R., Saunders, R. S., Senske, D., Nock, K., Tralli, D., and Lundgren, P., Venus Interior Structure Mission (VISM): Establishing a seismic network on Venus, Workshop on Advanced Technologies for Planetary Instruments, Lunar and Planetary Institute, Part 1 p (SEE N ), Landis, G. A., Robotic Exploration of the Surface and Atmosphere of Venus, paper IAC-04-Q.2.A.08, Acta Astronautica, Vol. 59, No. 7, pp (October 2006). 7 Lorenz, R. D., Mehoke, D., and Hill, S., Venus Pathfinder: a Stand-Alone Long-Lived Venus Lander Concept, 8 th International Planetary Probe Workshop (IPPW-8), Portsmouth, VA, June 6-10, Landis, G. A., Dyson, R., Oleson, S., Warner, J., Colozza, A., and Schmitz, P., Venus Rover Design Study, paper AA , AIAA Space 2011 Conference & Exposition, Long Beach CA, Sept , Colozza, A. J. Radioisotope Stirling Engine Powered Airship for Low Altitude Operation on Venus, NASA/CR (2012). 10 Oleson, S. R. COMPASS Final Report: Advanced Lithium Ion Venus Explorer (ALIVE), NASA CD Dyson, R. W., and Bruder, G. A. Progress Towards the Development of a Long-Lived Venus Lander Duplex System, AIAA , 8th International Energy Conversion Engineering Conference (IECEC), Nashville, TN, July NASA TM Hunter, G. W., Neudeck, P. G., Okojie, R. S., Beheim, G. M., Krasowski, M. J. Ponchak, G. E. and Chen, L.-Y., High Temperature Electronics, Communications, and Supporting technologies for Venus Missions, 5th International Planetary Probe Workshop, IPPW-5, Bordeaux, France; June Neudeck, P. G., Okojie, R. S., Chen, L.-Y. and Liang-Yu, High-Temperature Electronics A Role for Wide Bandgap Semiconductors, Proceedings of the IEEE, Vol. 90, No. 6, June Landis, G. A. and Haag, E. Analysis of Solar Cell Efficiency for Venus Atmosphere and Surface Missions, AIAA 11 th International Energy Conversion Engineering Conference. San Jose, CA, July Balint, T. S., Radioisotope Power Systems for In-Situ Exploration of Titan and Venus, 4 th International Planetary Probe Workshop, Pasadena, CA, June Antonio Sanchez-Torres, A., Radioisotope Power Systems for Space Applications, Radioisotopes -Applications in Physical Sciences, Prof. Nirmal Singh (ed.), ISBN: , InTech, (2011). Available from: 13

14 17 Bennet, G. L., et al.,. Mission of Daring: The General Purpose Heat Source Radioisotope Thermoelectric Generator, AIAA , 4 th International Energy Conversion Engineering Conference and Exhibit (IECEC), San Diego, CA, June 26-29, Angelo, J. A. Jr., Buden, D., Space Nuclear Power, 1 st ed., Orbit Book Company, Inc, Malabar, Florida, 1985, pp. 9, Dughaish, Z. H. Lead Telluride as a thermoelectric material for thermoelectric power generation,. Physica B 322 (2002) Tritt, T. M., Subramanian, M. A. Thermoelectric Materials, Phenomena, and Applications: A Bird s Eye View, MRS Bulletin. Volume 31, March Dang, C., and Hihara, E., Prediction of Cooling Heat Transfer Coefficient of Supercritical CO2 With Small Amount of Entrained Lubricating Oil Entrained by Neural Network Method. Purdue University International Refrigeration and Air Conditioning Conference. Paper Landis, G. A., and Harrison, R., Batteries for Venus Surface Operation, Journal of Propulsion and Power. Vol. 26, No. 4. July-August Hall, J. L., Bullock, M., Senske., D. A., Cutts, J. A., Grammier, R., et al., Venus Flagship Mission Study, NASA Jet Propulsion Laboratory, California Institute of Technology, April 17, Sudworth, J. L., and Tilley, A. R., The Sodium Sulfur Battery, Chapman and Hall, London,

Športno društvo Jesenice, Ledarska 4, 4270 Jesenice, Tel.: (04) , Fax: (04) , Drsalni klub Jesenice in Zv

Športno društvo Jesenice, Ledarska 4, 4270 Jesenice, Tel.: (04) , Fax: (04) ,   Drsalni klub Jesenice in Zv Drsalni klub Jesenice in Zveza drsalnih športov Slovenije RAZPISUJETA TEKMOVANJE V UMETNOSTNEM DRSANJU Biellman Cup 1. Organizator: Drsalni klub Jesenice, Ledarska ulica 4, 4270 JESENICE www.dkjesenice.si

Prikaži več

Društvo za elektronske športe - spid.si Vaneča 69a 9201 Puconci Pravila tekmovanja na EPICENTER LAN 12 Hearthstone Na dogodku izvaja: Blaž Oršoš Datum

Društvo za elektronske športe - spid.si Vaneča 69a 9201 Puconci Pravila tekmovanja na EPICENTER LAN 12 Hearthstone Na dogodku izvaja: Blaž Oršoš Datum Pravila tekmovanja na EPICENTER LAN 12 Hearthstone Na dogodku izvaja: Blaž Oršoš Datum: 5. januar 2016 Društvo za elektronske športe [1/5] spid.si Slovenska pravila 1 OSNOVNE INFORMACIJE 1.1 Format tekmovanja

Prikaži več

PRESENT SIMPLE TENSE The sun gives us light. The sun does not give us light. Does It give us light? Raba: Za splošno znane resnice. I watch TV sometim

PRESENT SIMPLE TENSE The sun gives us light. The sun does not give us light. Does It give us light? Raba: Za splošno znane resnice. I watch TV sometim PRESENT SIMPLE TENSE The sun gives us light. The sun does not give us light. Does It give us light? Za splošno znane resnice. I watch TV sometimes. I do not watch TV somtimes. Do I watch TV sometimes?

Prikaži več

Preštudirati je potrebno: Floyd, Principles of Electric Circuits Pri posameznih poglavjih so označene naloge, ki bi jih bilo smiselno rešiti. Bolj pom

Preštudirati je potrebno: Floyd, Principles of Electric Circuits Pri posameznih poglavjih so označene naloge, ki bi jih bilo smiselno rešiti. Bolj pom Preštudirati je potrebno: Floyd, Principles of Electric Circuits Pri posameznih poglavjih so označene naloge, ki bi jih bilo smiselno rešiti. Bolj pomembne, oziroma osnovne naloge so poudarjene v rumenem.

Prikaži več

Microsoft Word - Met_postaja_Jelendol1.doc

Microsoft Word - Met_postaja_Jelendol1.doc Naše okolje, junij 212 METEOROLOŠKA POSTAJA JELENDOL Meteorological station Jelendol Mateja Nadbath V Jelendolu je padavinska meteorološka postaja; Agencija RS za okolje ima v občini Tržič še padavinsko

Prikaži več

Microsoft Word - M docx

Microsoft Word - M docx Š i f r a k a n d i d a t a : Državni izpitni center *M12224223* Višja raven JESENSKI IZPITNI ROK Izpitna pola 3 Pisno sporočanje A) Pisni sestavek (v eni od stalnih sporočanjskih oblik) (150 180 besed)

Prikaži več

ARRS-BI-FR-PROTEUS-JR-Prijava/2011 Stran 1 od 7 Oznaka prijave: Javni razpis za sofinanciranje znanstvenoraziskovalnega sodelovanja med Republiko Slov

ARRS-BI-FR-PROTEUS-JR-Prijava/2011 Stran 1 od 7 Oznaka prijave: Javni razpis za sofinanciranje znanstvenoraziskovalnega sodelovanja med Republiko Slov Stran 1 od 7 Oznaka prijave: Javni razpis za sofinanciranje znanstvenoraziskovalnega sodelovanja med Republiko Slovenijo in Francosko republiko Program PROTEUS v letih 2012-2013 (Uradni list RS, št. 10/2011,

Prikaži več

Microsoft Word - ARRS-MS-BR-07-A-2009.doc

Microsoft Word - ARRS-MS-BR-07-A-2009.doc RAZPIS: Javni razpis za sofinanciranje znanstvenoraziskovalnega sodelovanja med Republiko Slovenijo in Federativno Republiko Brazilijo v letih 2010 2012 (Uradni list RS št. 53/2009) Splošna opomba: Vnosna

Prikaži več

Microsoft Word - ARRS-MS-CEA-03-A-2009.doc

Microsoft Word - ARRS-MS-CEA-03-A-2009.doc RAZPIS: Javni razpis za sofinanciranje znanstvenoraziskovalnega sodelovanja med Republiko Slovenijo in Komisariatom za atomsko energijo (CEA) Francoske republike v letih 2009-2011 Splošna opomba: Vnosna

Prikaži več

Microsoft Word - SevnoIII.doc

Microsoft Word - SevnoIII.doc Naše okolje, april 8 METEOROLOŠKA POSTAJA SEVNO Meteorological station Sevno Mateja Nadbath V Sevnem je klimatološka meteorološka postaja Agencije RS za okolje. Sevno leži na prisojnem pobočju Sevniškega

Prikaži več

2_Novosti na področju zakonodaje

2_Novosti na področju zakonodaje Agencija za civilno letalstvo Slovenija Civil Aviation Agency Slovenia Novosti s področja regulative Matej Dolinar 2. konferenca na temo začetne in stalne plovnosti 11. Maj 2018 Vsebina Viri Spremembe

Prikaži več

Microsoft Word - Meteoroloıka postaja Kanèevci1.doc

Microsoft Word - Meteoroloıka postaja Kanèevci1.doc Naše okolje, april 21 METEOROLOŠKA POSTAJA KANČEVCI/IVANOVCI Meteorological station Kančevci/Ivanovci Mateja Nadbath N a vzhodnem delu Goričkega, na stiku vasi Kančevci in Ivanovci, je padavinska postaja.

Prikaži več

ZAHTEVA ZA VZDRŽEVANJE LEI (sklad) REQUEST FOR A MAINTENANCE OF LEI (fund) 1. PODATKI O SKLADU / FUND DATA: LEI: Ime / Legal Name: Druga imena sklada

ZAHTEVA ZA VZDRŽEVANJE LEI (sklad) REQUEST FOR A MAINTENANCE OF LEI (fund) 1. PODATKI O SKLADU / FUND DATA: LEI: Ime / Legal Name: Druga imena sklada ZAHTEVA ZA VZDRŽEVANJE LEI (sklad) REQUEST FOR A MAINTENANCE OF LEI (fund) 1. PODATKI O SKLADU / FUND DATA: LEI: Ime / Legal Name: Druga imena sklada / Other Fund Names: Matična številka / Business Register

Prikaži več

Microsoft Word - Meteoroloıka postaja Kobarid3.doc

Microsoft Word - Meteoroloıka postaja Kobarid3.doc Naše okolje, avgust 28 METEOROLOŠKA POSTAJA KOBARID Meteorological station Kobarid Mateja Nadbath V zahodni polovici Slovenije je ena izmed meteoroloških padavinskih postaj v Kobaridu. To je kraj v Srednji

Prikaži več

REŠEVANJE DIFERENCIALNIH ENAČB Z MEHANSKIMI RAČUNSKIMI STROJI Pino Koc Seminar za učitelje matematike FMF, Ljubljana, 25. september 2015 Vir: [1] 1

REŠEVANJE DIFERENCIALNIH ENAČB Z MEHANSKIMI RAČUNSKIMI STROJI Pino Koc Seminar za učitelje matematike FMF, Ljubljana, 25. september 2015 Vir: [1] 1 REŠEVANJE DIFERENCIALNIH ENAČB Z MEHANSKIMI RAČUNSKIMI STROJI Pino Koc Seminar za učitelje matematike FMF, Ljubljana, 25. september 2015 Vir: [1] 1 Nekateri pripomočki in naprave za računanje: 1a) Digitalni

Prikaži več

SKUPNE EU PRIJAVE PROJEKTOV RAZISKOVALNE SFERE IN GOSPODARSTVA Maribor, Inovacije v MSP Innovation in SMEs dr. Igor Milek, SME NKO SPIRIT S

SKUPNE EU PRIJAVE PROJEKTOV RAZISKOVALNE SFERE IN GOSPODARSTVA Maribor, Inovacije v MSP Innovation in SMEs dr. Igor Milek, SME NKO SPIRIT S SKUPNE EU PRIJAVE PROJEKTOV RAZISKOVALNE SFERE IN GOSPODARSTVA Maribor, 10.10.2016 Inovacije v MSP Innovation in SMEs dr. Igor Milek, SME NKO SPIRIT Slovenija, javna agencija Pregled predstavitve Koncept

Prikaži več

Microsoft Word - ARRS-MS-FI-06-A-2010.doc

Microsoft Word - ARRS-MS-FI-06-A-2010.doc RAZPIS: Javni razpis za sofinanciranje znanstvenoraziskovalnega sodelovanja med Republiko Slovenijo in Republiko Finsko v letih 2011-2012 (Uradni list RS, št. 49/2010) Splošne opombe: Obrazec izpolnjujte

Prikaži več

Uradni list Republike Slovenije Št. 39 / / Stran 6173 EVROPSKA ŠOLA:... Učenec:... Datum rojstva:... Letnik:... Razrednik:... ŠOLSKO POROČI

Uradni list Republike Slovenije Št. 39 / / Stran 6173 EVROPSKA ŠOLA:... Učenec:... Datum rojstva:... Letnik:... Razrednik:... ŠOLSKO POROČI Uradni list Republike Slovenije Št. 39 / 8. 6. 2018 / Stran 6173 EVROPSKA ŠOLA:... Učenec:... Datum rojstva:... Letnik:... Razrednik:... ŠOLSKO POROČILO šolsko leto Sodeluje pri učenju. Pozorno posluša.

Prikaži več

Elektro predloga za Powerpoint

Elektro predloga za Powerpoint AKTIVNOSTI NA PODROČJU E-MOBILNOSTI Ljubljana, 15. februar 2017 Uršula Krisper Obstoječe stanje Oskrba 120 polnilnic Lastniki in upravljalci Brezplačno polnjenje Identifikacija z RFID ali GSM ali Urbana

Prikaži več

Workhealth II

Workhealth II SEMINAR Development of a European Work-Related Health Report and Establishment of Mechanisms for Dissemination and Co- Operation in the New Member States and Candidate Countries - WORKHEALTH II The European

Prikaži več

Microsoft Word - GB-PSP-2006.doc

Microsoft Word - GB-PSP-2006.doc Partnerships in Science Projects in Slovenia Application Form 2006 Slovenski partnerski program za znanstveno sodelovanje A joint scheme between the Slovenian Research Agency and the British Council. (skupni

Prikaži več

VISOKA ZDRAVSTVENA ŠOLA V CELJU DIPLOMSKO DELO VLOGA MEDICINSKE SESTRE PRI OBRAVNAVI OTROKA Z EPILEPSIJO HEALTH EDUCATION OF A NURSE WHEN TREATING A C

VISOKA ZDRAVSTVENA ŠOLA V CELJU DIPLOMSKO DELO VLOGA MEDICINSKE SESTRE PRI OBRAVNAVI OTROKA Z EPILEPSIJO HEALTH EDUCATION OF A NURSE WHEN TREATING A C VISOKA ZDRAVSTVENA ŠOLA V CELJU DIPLOMSKO DELO VLOGA MEDICINSKE SESTRE PRI OBRAVNAVI OTROKA Z EPILEPSIJO HEALTH EDUCATION OF A NURSE WHEN TREATING A CHILD WITH EPILEPSY Študentka: SUZANA ZABUKOVNIK Mentorica:

Prikaži več

Predmet: Course title: UČNI NAČRT PREDMETA/COURSE SYLLABUS Matematična fizika II Mathematical Physics II Študijski programi in stopnja Študijska smer

Predmet: Course title: UČNI NAČRT PREDMETA/COURSE SYLLABUS Matematična fizika II Mathematical Physics II Študijski programi in stopnja Študijska smer Predmet: Course title: UČNI NAČRT PREDMETA/COURSE SYLLABUS Matematična fizika II Mathematical Physics II Študijski programi in stopnja Študijska smer Letnik Semestri Fizika, prva stopnja, univerzitetni

Prikaži več

Slovenska predloga za KE

Slovenska predloga za KE 23. posvetovanje "KOMUNALNA ENERGETIKA / POWER ENGINEERING", Maribor, 2014 1 ANALIZA VPLIVA PRETOKA ENERGIJE PREKO RAZLIČNIH NIZKONAPETOSTNIH VODOV NA NAPETOSTNI PROFIL OMREŽJA Ernest BELIČ, Klemen DEŽELAK,

Prikaži več

UČNI NAČRT PREDMETA / COURSE SYLLABUS Predmet: Matematična fizika II Course title: Mathematical Physics II Študijski program in stopnja Study programm

UČNI NAČRT PREDMETA / COURSE SYLLABUS Predmet: Matematična fizika II Course title: Mathematical Physics II Študijski program in stopnja Study programm UČNI NAČRT PREDMETA / COURSE SYLLABUS Predmet: Matematična fizika II Course title: Mathematical Physics II Študijski program in stopnja Study programme and level Univerzitetni študijski program 1.stopnje

Prikaži več

Oznaka prijave: Javni razpis za sofinanciranje znanstvenoraziskovalnega sodelovanja med Republiko Slovenijo in Združenimi državami Amerike v letih 201

Oznaka prijave: Javni razpis za sofinanciranje znanstvenoraziskovalnega sodelovanja med Republiko Slovenijo in Združenimi državami Amerike v letih 201 Oznaka prijave: Javni razpis za sofinanciranje znanstvenoraziskovalnega sodelovanja med Republiko Slovenijo in Združenimi državami Amerike v letih 2014-2015 (Uradni list RS, št. 107/2013, z dne 20.12.2013)

Prikaži več

PRILOGA 1 Seznam standardov Direktiva Sveta z dne 20. junija 1990 o približevanju zakonodaje držav članic o aktivnih medicinskih pripomočkih za vsadit

PRILOGA 1 Seznam standardov Direktiva Sveta z dne 20. junija 1990 o približevanju zakonodaje držav članic o aktivnih medicinskih pripomočkih za vsadit PRILOGA 1 Seznam standardov Direktiva Sveta z dne 20. junija 1990 o približevanju zakonodaje držav članic o aktivnih medicinskih pripomočkih za vsaditev (UL L št. 189 z dne 20. 7. 1990, str. 17; v nadaljnjem

Prikaži več

Slide 1

Slide 1 INTERAKTIVNA MULTIMEDIJA P9 doc. dr. Matej Zajc QWERTY 1870 Christopher Latham Sholes Uporaba: tipkarski stroj: Remington Pozicija črk upočasni uporabnika Pogosto uporabljane črke so narazen The popular

Prikaži več

Microsoft Word - A-3-Dezelak-SLO.doc

Microsoft Word - A-3-Dezelak-SLO.doc 20. posvetovanje "KOMUNALNA ENERGETIKA / POWER ENGINEERING", Maribor, 2011 1 ANALIZA OBRATOVANJA HIDROELEKTRARNE S ŠKOLJČNIM DIAGRAMOM Klemen DEŽELAK POVZETEK V prispevku je predstavljena možnost izvedbe

Prikaži več

P183A22112

P183A22112 Š i f r a k a n d i d a t a : Državni izpitni center *P183A22112* ZIMSKI IZPITNI ROK ANGLEŠČINA Izpitna pola 2 Pisno sporočanje A) Krajši pisni sestavek (60 70 besed) B) Daljši pisni sestavek (150 160

Prikaži več

PROFILNA TEHNIKA / OPREMA DELOVNIH MEST PROFILE TECHNIC / WORKSTATION ACCESSORIES INFO ELEMENTI / INFO ELEMENTS INFO TABLA A4 / INFO BOARD A4 U8L U8 U

PROFILNA TEHNIKA / OPREMA DELOVNIH MEST PROFILE TECHNIC / WORKSTATION ACCESSORIES INFO ELEMENTI / INFO ELEMENTS INFO TABLA A4 / INFO BOARD A4 U8L U8 U INFO ELEMENTI / INFO ELEMENTS INFO TABLA A4 / INFO BOARD A4 L 8264 Material: jeklo (lakirano RAL 016) Material: steel (painted RAL 016) Teža / Weight = 1895 g Delovne informacije Pritrdilni set / Fastening

Prikaži več

Microsoft Word - Delovni list.doc

Microsoft Word - Delovni list.doc SVETOVNE RELIGIJE Spoznal boš: krščanstvo - nastanek, širjenje, duhovna in socialna sporočila, vpliv na kulturo islam: nastanek, širjenje, duhovna in socialna sporočila, vpliv na kulturo stik med religijama

Prikaži več

Osnovna šola dr. Jožeta Pučnika Osnovna Črešnjevec 47, 2130 Slovenska Bistrica Tel:(02) ; Fax: (02) www.

Osnovna šola dr. Jožeta Pučnika Osnovna Črešnjevec 47, 2130 Slovenska Bistrica Tel:(02) ; Fax: (02) www. Osnovna šola dr. Jožeta Pučnika Osnovna Črešnjevec 47, 2130 Slovenska Bistrica Tel:(02) 8055150; Fax: (02)8055158 o-cresnjevec.mb@guest.arnes.si; www.cresnjevec.si POROČILO NACIONALNEGA UNESCO PROJEKTA

Prikaži več

Strojni{ki vestnik 46(2000)10, Journal of Mechanical Engineering 46(2000)10, ISSN ISSN UDK : UDC 6

Strojni{ki vestnik 46(2000)10, Journal of Mechanical Engineering 46(2000)10, ISSN ISSN UDK : UDC 6 Strojni{ki vestnik 46(2)1,66-67 Journal of Mechanical Engineering 46(2)1,66-67 ISSN 39-248 ISSN 39-248 UDK 621.5.48:621.5.11 UDC 621.5.48:621.5.11 A. Izvirni Poredo{ znanstveni - D. @iher: ~lanek Vpliv

Prikaži več

KLIMATSKE ZNAČILNOSTI LETA 1993 Aleška Bernot-lvančič* Leto 1993 je bilo glede na podatke 30-letnega klimatološkega niza nadpovprečno toplo, s

KLIMATSKE ZNAČILNOSTI LETA 1993 Aleška Bernot-lvančič* Leto 1993 je bilo glede na podatke 30-letnega klimatološkega niza nadpovprečno toplo, s KLIMATSKE ZNAČILNOSTI LETA 1993 Aleška Bernot-lvančič* Leto 1993 je bilo glede na podatke 30-letnega klimatološkega niza 1961-90 nadpovprečno toplo, sončno in suho. Po vremenu bi ga lahko razdelili na

Prikaži več

Strojni{ki vestnik 46(2000)7, Journal of Mechanical Engineering 46(2000)7, ISSN ISSN UDK 620.9:64.06(497.5) UDC 620.

Strojni{ki vestnik 46(2000)7, Journal of Mechanical Engineering 46(2000)7, ISSN ISSN UDK 620.9:64.06(497.5) UDC 620. Strojni{ki vestnik 46(2)7,475-482 Journal of Mechanical Engineering 46(2)7,475-482 ISSN 39-248 ISSN 39-248 UDK 62.9:64.6(497.5) UDC 62.9:64.6(497.5) Strokovni B. Frankovi} ~lanek - (1.4) K. Leni}: Dolo~anje

Prikaži več

Strojni{ki vestnik 46(2000)8, Journal of Mechanical Engineering 46(2000)8, ISSN ISSN UDK 536.3:536.2: UDC 536.

Strojni{ki vestnik 46(2000)8, Journal of Mechanical Engineering 46(2000)8, ISSN ISSN UDK 536.3:536.2: UDC 536. Strojni{ki vestnik 6(00)8,9-502 Journal of Mechanical Engineering 6(00)8,9-502 ISSN 0039-280 ISSN 0039-280 UDK 536.3:536.2:697.97 UDC 536.3:536.2:697.97 M. Pregledni Prek - znanstveni P. Novak: Analiti~na

Prikaži več

Microsoft Word - Met postajaLig.docx

Microsoft Word - Met postajaLig.docx Naše okolje, december 215 METEOROLOŠKA POSTAJA LIG Meteorological station Lig Mateja Nadbath VLigu je meteorološka postaja. Postaja je padavinska. Lig je razložen kraj na slemenu Kanalskega Kolovrata,

Prikaži več

Microsoft Word - P101-A doc

Microsoft Word - P101-A doc Š i f r a k a n d i d a t a : Državni izpitni center *P101A22112* SPOMLADANSKI IZPITNI ROK ANGLEŠČINA Izpitna pola 2 Pisno sporočanje A) Krajši pisni sestavek B) Vodeni spis Sobota, 29. maj 2010 / 60 minut

Prikaži več

Powerpoint template pool EN

Powerpoint template pool EN Termična optimizacija pri načrtovanju vezij Delavnica Miha Karlovšek, Ljubljana, Maj 2018 Miha.Karlovsek@hella.com HF-7761EN_C (2014-07) Termična optimizacija Postavitev komponent Dobra optimizacija bakrenih

Prikaži več

Slide 1

Slide 1 INCLUSIVE EDUCATION IN SLOVENIA Natalija Vovk-Ornik, Koper, 7th Oktober 2014 Educational system to publish_10_2015_si The Republic of Slovenia Area: 20,273 km² Population: 2,023,358 Capital: Ljubljana

Prikaži več

Strojniški vestnik (44) št. 3-4, str , 1998 Journal of Mechanical Engineering (44) No. 3-4, pp , 1998 Tiskano v Sloveniji. Vse pravice pri

Strojniški vestnik (44) št. 3-4, str , 1998 Journal of Mechanical Engineering (44) No. 3-4, pp , 1998 Tiskano v Sloveniji. Vse pravice pri Strojniški vestnik (44) št. 3-4, str. 84-96, 1998 Journal of Mechanical Engineering (44) No. 3-4, pp. 84-96, 1998 Tiskano v Sloveniji. Vse pravice pridržane. Printed in Slovenia. All rights reserved. UDK

Prikaži več

PAST CONTINUOUS Past continuous uporabljamo, ko želimo opisati dogodke, ki so se dogajali v preteklosti. Dogodki so se zaključili v preteklosti in nič

PAST CONTINUOUS Past continuous uporabljamo, ko želimo opisati dogodke, ki so se dogajali v preteklosti. Dogodki so se zaključili v preteklosti in nič PAST CONTNUOUS Past continuous uporabljamo, ko želimo opisati dogodke, ki so se dogajali v preteklosti. Dogodki so se zaključili v preteklosti in nič več ne trajajo. Dogodki so v preteklosti trajali dalj

Prikaži več

Oznaka prijave: Javni razpis za sofinanciranje znanstvenoraziskovalnega sodelovanja med Republiko Slovenijo in Združenimi državami Amerike v letih 201

Oznaka prijave: Javni razpis za sofinanciranje znanstvenoraziskovalnega sodelovanja med Republiko Slovenijo in Združenimi državami Amerike v letih 201 Oznaka prijave: Javni razpis za sofinanciranje znanstvenoraziskovalnega sodelovanja med Republiko Slovenijo in Združenimi državami Amerike v letih 2015-2016 (Uradni list RS, št. 92/2014, z dne 19.12.2014)

Prikaži več

APERION TECH RIDER (ionosfera) ODER page 2 VARNOST, DOSTOP, PARKING page 2 ELEKTRIKA page 2 OZVOČENJE page 2 REŽIJA page 2 MONITORING page 2 TONSKA VA

APERION TECH RIDER (ionosfera) ODER page 2 VARNOST, DOSTOP, PARKING page 2 ELEKTRIKA page 2 OZVOČENJE page 2 REŽIJA page 2 MONITORING page 2 TONSKA VA APERION TECH RIDER (ionosfera) ODER page 2 VARNOST, DOSTOP, PARKING page 2 ELEKTRIKA page 2 OZVOČENJE page 2 REŽIJA page 2 MONITORING page 2 TONSKA VAJA page 2 OSTALE TEHNIČNE ZAHTEVE page 2 STAGE page

Prikaži več

3.07.2017 4.07.2017 5.07.2017 6.07.2017 7.07.2017 10.07.2017 11.07.2017 12.07.2017 13.07.2017 14.07.2017 17.07.2017 18.07.2017 19.07.2017 20.07.2017 21.07.2017 24.07.2017 25.07.2017 26.07.2017 27.07.2017

Prikaži več

untitled

untitled 1 Plinske cenovne arbitraže in priložnosti za arbitražo v energetskem sektorju STALNA ARBITRAŽA PRI GOSPODARSKI ZBORNICI SLOVENIJE KONFERENCA SLOVENSKE ARBITRAŽE Ljubljana, 4. november 2013 Matjaž Ulčar,

Prikaži več

stevilka 3_09.pmd

stevilka 3_09.pmd KOVNIH SIMPOZIJEV V OBDOBJU APRIL JUNIJ 2009 Anka Lisec V SLOVENIJI 2. 3. april 2009 Posvet o izobraževanju na področjih zemljiškega menedžmenta in ekonomike prostora (2. 4.) in okrogla miza»izobraževalni

Prikaži več

PH in NEH - dobra praksa

PH in NEH - dobra praksa Strokovno izpopolnjevanje, UL-FA, 5.4.219 SKORAJ NIČ-ENERGIJSKE JAVNE STAVBE V SLOVENIJI Kako izpolniti zahteve za racionalno in visoko učinkovito javno skoraj nič-energijsko stavbo ter doseči pričakovano

Prikaži več

UDK : : Termohidravlične razmere laminarnega toka tekočine y ozkih kanalih Thermo-Hydraulic Conditions of Laminar Fluid Flow in

UDK : : Termohidravlične razmere laminarnega toka tekočine y ozkih kanalih Thermo-Hydraulic Conditions of Laminar Fluid Flow in UDK 621.436:621.43.013:66.045 Termohidravlične razmere laminarnega toka tekočine y ozkih kanalih Thermo-Hydraulic Conditions of Laminar Fluid Flow in Narrow Channels MARJAN DELIČ - LEOPOLD ŠKERGET - IVAN

Prikaži več

ČLANI SKUPINE: Zasedbo Linkin Park sestavlja šest, po njihovem mnenju dolgočasnih, ljudi: Vokalist Chester Bobnar Rob Vokalist Mike Basist Pheonix DJ

ČLANI SKUPINE: Zasedbo Linkin Park sestavlja šest, po njihovem mnenju dolgočasnih, ljudi: Vokalist Chester Bobnar Rob Vokalist Mike Basist Pheonix DJ ČLANI SKUPINE: Zasedbo Linkin Park sestavlja šest, po njihovem mnenju dolgočasnih, ljudi: Vokalist Chester Bobnar Rob Vokalist Mike Basist Pheonix DJ Hahn Kitarist Brad CHESTER Ime: Chester Bennington

Prikaži več

Strojni{ki vestnik 47(2001)7, Journal of Mechanical Engineering 47(2001)7, ISSN ISSN UDK :006.06: UDC 69

Strojni{ki vestnik 47(2001)7, Journal of Mechanical Engineering 47(2001)7, ISSN ISSN UDK :006.06: UDC 69 Strojni{ki vestnik 47(21)7,325-335 Journal of Mechanical Engineering 47(21)7,325-335 ISSN 39-248 ISSN 39-248 UDK 699.86:6.6:536.21 UDC 699.86:6.6:536.21 Strokovni ~lanek (1.4) B. ^erne - S. Medved: Toplotne

Prikaži več

Microsoft Word - OBR-N_S_24_001-01_ za objavo.docx

Microsoft Word - OBR-N_S_24_001-01_ za objavo.docx Laboratorij za kovine, korozijo in protikorozijsko zaščito, Dimičeva ulica 12, 1000 Ljubljana ima fleksibilni obseg akreditacije (glej prilogo k akreditacijski listini LP 005). V spodnji tabeli so navedene

Prikaži več

Strojni{ki vestnik 46(2000)8, Journal of Mechanical Engineering 46(2000)8, ISSN ISSN UDK :536.2:

Strojni{ki vestnik 46(2000)8, Journal of Mechanical Engineering 46(2000)8, ISSN ISSN UDK :536.2: Strojni{ki vestnik 46(2000)8,564-572 Journal of Mechanical Engineering 46(2000)8,564-572 ISSN 0039-2480 ISSN 0039-2480 UDK 621.313.12:536.2:621.574.013 UDC 621.313.12:536.2:621.574.013 J. Strokovni Remec

Prikaži več

Strojni{ki vestnik 47(2001)3, Journal of Mechanical Engineering 47(2001)3, ISSN ISSN UDK :531.4/ UDC 62

Strojni{ki vestnik 47(2001)3, Journal of Mechanical Engineering 47(2001)3, ISSN ISSN UDK :531.4/ UDC 62 Strojni{ki vestnik 47(2001)3,129-139 Journal of Mechanical Engineering 47(2001)3,129-139 ISSN 0039-2480 ISSN 0039-2480 UDK 620.171:531.4/539.62 UDC 620.171:531.4/539.62 Pregledni M. znanstveni Kalin -

Prikaži več

Strojni{ki vestnik 49(2003)11, Journal of Mechanical Engineering 49(2003)11, ISSN ISSN UDK : UDC :

Strojni{ki vestnik 49(2003)11, Journal of Mechanical Engineering 49(2003)11, ISSN ISSN UDK : UDC : Strojni{ki vestnik 49(2003)11,549-557 Journal of Mechanical Engineering 49(2003)11,549-557 ISSN 0039-2480 ISSN 0039-2480 UDK 697.97:725.89 UDC 697.97:725.89 Strokovni ~lanek (1.04) Arthur J. H., et al.:

Prikaži več

Microsoft PowerPoint - Umanotera ppt [Read-Only] [Compatibility Mode]

Microsoft PowerPoint - Umanotera ppt [Read-Only] [Compatibility Mode] Blaženje podnebnih sprememb: strošek ali razvojna priložnost? mag. Mojca Vendramin Okoljska Kuznetsova krivulja Pritiski na okolje na prebiv. Dohodek na prebivalca Neposredni vpliv različnih cen CO 2

Prikaži več

UDK :539.41: Vzporedna analiza toplotnih napetosti v vrtečih sc diskih z enakomerno trdnostjo Simultaneous Analysis of Thermal Stres

UDK :539.41: Vzporedna analiza toplotnih napetosti v vrtečih sc diskih z enakomerno trdnostjo Simultaneous Analysis of Thermal Stres UDK 539.377:539.41:624.073.112 Vzporedna analiza toplotnih napetosti v vrtečih sc diskih z enakomerno trdnostjo Simultaneous Analysis of Thermal Stresses in Rotating Disks of Uniform Strength ANDRÒ ALUJEVIČ

Prikaži več

Resonance v Osončju Resonanca 1:2 Druge orbitalne resonance: 2:3 Pluto Neptune 2:4 Tethys Mimas (Saturnovi luni) 1:2 Dione Enceladus (Saturnovi luni)

Resonance v Osončju Resonanca 1:2 Druge orbitalne resonance: 2:3 Pluto Neptune 2:4 Tethys Mimas (Saturnovi luni) 1:2 Dione Enceladus (Saturnovi luni) Resonance v Osončju Resonanca 1:2 Druge orbitalne resonance: 2:3 Pluto Neptune 2:4 Tethys Mimas (Saturnovi luni) 1:2 Dione Enceladus (Saturnovi luni) 3:4 Hyperion Titan (Saturnovi luni) 1:2:4 Ganymede

Prikaži več

U D K : Sodobni izolacijski materiali in evakuirane ploščate strukture Modern Insulating Materials and Flat Evacuated Structures VINCENC N

U D K : Sodobni izolacijski materiali in evakuirane ploščate strukture Modern Insulating Materials and Flat Evacuated Structures VINCENC N U D K 662.99:699.86 Sodobni izolacijski materiali in evakuirane ploščate strukture Modern Insulating Materials and Flat Evacuated Structures VINCENC NEMANIČ - PETER NOVAK V prispevku so podane omejitve

Prikaži več

Slide 1

Slide 1 Zagotavljanje kakovosti v Programu Svit na področju patohistologije Snježana Frković Grazio Patologija v presejanju za raka DČD dejavnost patologije igra v presejanju pomembno vlogo, saj je obravnava udeležencev

Prikaži več

ARS1

ARS1 Nepredznačena in predznačena cela števila Dvojiški zapis Nepredznačeno Predznačeno 0000 0 0 0001 1 1 0010 2 2 0011 3 3 Pri odštevanju je stanje C obratno (posebnost ARM)! - če ne prekoračimo 0 => C=1 -

Prikaži več

Sprememba obsega pogodbe o vzpostavitvi in vzdrževanju akreditacije

Sprememba obsega pogodbe o vzpostavitvi in vzdrževanju akreditacije SEZNAM METOD PO KATERIH SE IZVAJAJO AKREDITIRANI POSTOPKI PRESKUSNEGA LABORATORIJA TEMAT D.O.O. (LP-097), REV. 01 LIST OF METHODS ACCORDING TO WHICH THE ACCREDITED PROCEDURES ARE BEING PERFORMED IN THE

Prikaži več

GEOLOGIJA 2312, (1980), Ljubljana UDK (083.58)=863 Nova grafična izvedba števne mreže A new graphical technique to record the observed d

GEOLOGIJA 2312, (1980), Ljubljana UDK (083.58)=863 Nova grafična izvedba števne mreže A new graphical technique to record the observed d GEOLOGIJA 2312, 323 328 (1980), Ljubljana UDK 551.24(083.58)=863 Nova grafična izvedba števne mreže A new graphical technique to record the observed data in geology Ladislav Placer Geološki zavod, 61000

Prikaži več

Microsoft PowerPoint - Predstavitev SC5_ Luka Živić.ppt

Microsoft PowerPoint - Predstavitev SC5_ Luka Živić.ppt Obzorje 2020 5. družbeni izziv Podnebni ukrepi, okolje, učinkovitost virov in surovine Ministrstvo za izobraževanje, znanost in šport Luka Živić luka.zivic@gov.si 01 478 47 56 Delovni program za leti 2014

Prikaži več

EN : EN 13813: 2002 IZJAVA O LASTNOSTIH Sikafloor-20 PurCem EN 13813: Tip izdelka: Enotna identifikaci

EN : EN 13813: 2002 IZJAVA O LASTNOSTIH Sikafloor-20 PurCem EN 13813: Tip izdelka: Enotna identifikaci EN 1504-2: 2004 13 0086 EN 13813: 2002 IZJAVA O LASTNOSTIH Sikafloor-20 PurCem 020802020010000011088 EN 13813:2002 1. Tip izdelka: Enotna identifikacijska oznaka tipa proizvoda: 2. Tip, serijska ali zaporedna

Prikaži več

Obzorje 2020 KI SI, Ljubljana 2. februar 2016 Hitra pot do inovacij Fast Track to Innovation Pilot (FTI Pilot) dr. Igor Milek, SME NKO SPIRIT Slovenij

Obzorje 2020 KI SI, Ljubljana 2. februar 2016 Hitra pot do inovacij Fast Track to Innovation Pilot (FTI Pilot) dr. Igor Milek, SME NKO SPIRIT Slovenij Obzorje 2020 KI SI, Ljubljana 2. februar 2016 Hitra pot do inovacij Fast Track to Innovation Pilot (FTI Pilot) dr. Igor Milek, SME NKO SPIRIT Slovenija, javna agencija Pregled predstavitve Kaj je FTI Pilot?

Prikaži več

SEZNAM STANDARDOV Zap. št. Oznaka standarda 1. SIST EN 50162: SIST-TS CLC/TS : SIST EN 50129: SIST-TP CLC/TR :2007

SEZNAM STANDARDOV Zap. št. Oznaka standarda 1. SIST EN 50162: SIST-TS CLC/TS : SIST EN 50129: SIST-TP CLC/TR :2007 SEZNAM STANDARDOV Zap. št. Oznaka a 1. SIST 50162:2005 2. SIST-TS 50459-5:2006 3. SIST 50129:2003 4. SIST-TP 50126-2:2007 Naslov a Protikorozijska zaščita z uporabo blodečega toka iz enosmernih tokovnih

Prikaži več

Volume 11 / Issue 1 MAY

Volume 11 / Issue 1 MAY Volume 11 / Issue 1 MAY 2018 www.fe.um.si/en/jet.html 2 JET JET 3 VOLUME 11 / Issue 1 Revija Journal of Energy Technology (JET) je indeksirana v bazah INSPEC in Proquest s Technology Research Database.

Prikaži več

3.06.2019 4.06.2019 5.06.2019 6.06.2019 7.06.2019 10.06.2019 11.06.2019 12.06.2019 13.06.2019 14.06.2019 17.06.2019 18.06.2019 19.06.2019 20.06.2019 21.06.2019 24.06.2019 26.06.2019 27.06.2019 28.06.2019

Prikaži več

MiT_1_2007.vp

MiT_1_2007.vp UDK 539.55:620.17:669.14 ISSN 1580-2949 Original scientific article/izvirni znanstveni ~lanek MTAEC9, 41(1)35(2007) AN INTEGRITY ANALYSIS OF WASHING-MACHINE HOLDERS ANALIZA CELOVITOSTI NOSILCA KADI V PRALNEM

Prikaži več

Oznaka standarda Naslov standarda Naslov referenčnega standarda v angleškem jeziku Oznaka referenčnega standarda Oznaka nadomeščenega standarda Datum,

Oznaka standarda Naslov standarda Naslov referenčnega standarda v angleškem jeziku Oznaka referenčnega standarda Oznaka nadomeščenega standarda Datum, več ne SIST EN ISO 6185-1:2002 Napihljivi čolni 1. del: Čolni z motorjem z največjo močjo 4,5 kw (ISO 6185-1:2001) Inflatable boats Part 1: Boats with a maximum motor power rating of 4,5 kw (ISO 6185-1:2001)

Prikaži več

3dsMax-Particle-Paint

3dsMax-Particle-Paint PARTICLE PAINT Gola pokrajina je v najbolj ekstremnih okoljih arktike ali puščave. Pa še v tem delu je pokrajina posejana s kamenjem. Povsod drugod pa naletimo na gosto posejanost rastlinja, od trave,

Prikaži več

Microsoft Word - si-6 Uporaba informacijsko-komunikacijske tehnologije IKT v gospodinjstvih 1 cetrt 05.doc

Microsoft Word - si-6 Uporaba informacijsko-komunikacijske tehnologije IKT v gospodinjstvih 1 cetrt 05.doc 9. JANUAR 2006 9 JANUARY 2006 št./no 6 29 INFORMACIJSKA DRUŽBA INFORMATION SOCIETY št./no 1 UPORABA INFORMACIJSKO-KOMUNIKACIJSKE TEHNOLOGIJE (IKT) V GOSPODINJSTVIH IN PO POSAMEZNIKIH, SLOVENIJA, 1. ČETRTLETJE

Prikaži več

Strojni{ki vestnik 50(2004)7/8, Journal of Mechanical Engineering 50(2004)7/8, ISSN ISSN UDK :534-8 UDC 681.1

Strojni{ki vestnik 50(2004)7/8, Journal of Mechanical Engineering 50(2004)7/8, ISSN ISSN UDK :534-8 UDC 681.1 Strojni{ki vestnik 50(2004)7/8,376-385 Journal of Mechanical Engineering 50(2004)7/8,376-385 ISSN 0039-2480 ISSN 0039-2480 UDK 681.125:534-8 UDC 681.125:534-8 Bolte`ar 004.94 M.: Ugotavljanje ob~utljivosti

Prikaži več

PowerPointova predstavitev

PowerPointova predstavitev Značilnosti odzivanja ciljne populacije v Program Svit Tatjana Kofol Bric, Marcel Kralj, Aleš Korošec, Dominika Novak Mlakar, Tanja Metličar, Ana Lucija Škrjanec SVITOVI DNEVI 2014 Vključevanje oseb v

Prikaži več

Navodila za izpolnjevanje predlog o skupnih sredstvih in skupni izpostavljenosti tveganju za namene zbiranja faktorjev za izračun nadomestila

Navodila za izpolnjevanje predlog o skupnih sredstvih in skupni izpostavljenosti tveganju za namene zbiranja faktorjev za izračun nadomestila Navodila za izpolnjevanje predlog o skupnih sredstvih in skupni izpostavljenosti tveganju za namene zbiranja faktorjev za izračun nadomestila April 2019 1 Splošna navodila za obe predlogi 1 Polja»Ime«,»Koda

Prikaži več

PowerPointova predstavitev

PowerPointova predstavitev EU aktivnosti za čezmejno izmenjavo podatkov pacientov Registri bolnikov Skupna Aktivnost PARENT doc. dr. Matic Meglič, MBA Čezmejno ZV v EU, Ljubljana 18/10/2012 Zdravnik, doktorat s področja ezdravja,

Prikaži več