M. V. Gorelenkova, N. N. Gorelenkov, E. A. Azizov, A. N. Romannikov. Troitsk Institute for Innovative and Fusion Research (TRINITI)

Velikost: px
Začni prikazovanje s strani:

Download "M. V. Gorelenkova, N. N. Gorelenkov, E. A. Azizov, A. N. Romannikov. Troitsk Institute for Innovative and Fusion Research (TRINITI)"

Transkripcija

1 KINETIC THEORY OF PLASMA ADIABATIC MAJOR RADIUS COMPRESSION IN TOKAMAKS. M. V. Gorelenkova, N. N. Gorelenkov, E. A. Azizov, A. N. Romannikov Troitsk Institute for Innovative and Fusion Research (TRINITI) Troitsk, Moscow region, Russia, H. W. Herrmann Princeton Plasma Physics Laboratory, P.0. Box 451, Princeton, NJ A kinetic approach isdeveloped to understand the individual charged particle behavior as well as plasma macro parameters (temperature, density, etc.) during the adiabatic R-compression in a tokamak. The perpendicular electric eld from Ohm's law at zero resistivity E = v E B=c is made use of to obtain the equation for particle velocity evolution in order to describe the particle motion during the R-compression. Expressions for both passing and trapped particle energy and pitch angle change are obtained for a plasma with high aspect ratio and circular magnetic surfaces. The particle behavior near the trapped passing boundary during the compression is also studied to understand the shift induced loss of alpha particles produced by D-T fusion reactions in Tokamak Fusion Test Reactor experiments. Qualitative agreement is obtained with the experiments. Solving the drift kinetic equation in the collisional case, i.e. when the collisional frequency coll of given species exceeds the inverse compression time 1 compr, we obtain that the temperature and the density evolution is reduced to the MHD results T R 4=3 and n R 2, respectively. In the opposite case, coll 1 compr, the longitudinal and perpendicular components of the temperature evolve like T k R 2 and T? R 1. The eect of toroidicity is negligible in both cases. Present address: Princeton Plasma Physics Laboratory, P.0. Box 451, Princeton, NJ

2 I. INTRODUCTION Adiabatic compression is known to be one of the methods for auxiliary plasma heating in tokamak experiments [1{3]. Two basic scenarios for the compression were proposed: a- compression or minor radius compression when a toroidal magnetic eld is increased and avertical magnetic eld B z is adjusted for equilibrium, and R-compression when toroidal magnetic eld is xed and the plasma column is forced to decrease its major radii by changing B z. The compression may be considered adiabatic if it is done during the time compr longer than the Alfven time and shorter than the energy connement time. When the compression is collisional, i.e compr coll = 1, where is collisional frequency, the particle distribution function is Maxwellian during the compression and Magneto Hydro Dynamic (MHD) is valid, which may be used to derive the compression scaling laws for plasma parameters (see for example [2]). However in the opposite case, compr coll = 1, the distribution function is to be found from the drift kinetic equation and the conservation laws. Even in the collisional case for bulk plasma ions some species mayhave a nonequilibrium distribution function, such as -particles, Neutral Beam Injected (NBI) particles, Ion Cyclotron Resonance Heated (ICRH) particles, etc. Note, that this circumstance may be used for more eective heating if NBI ions are mostly injected tangentially to the magnetic axis, for which, as we will see, the parallel component of its velocity isv k R 1 0, while the perpendicular component goes like v? R 1=2 0. Another motivation for developing the theory of plasma compression in tokamaks is the behavior of energetic particles near the passing-trapped boundary. Even in a weak collisionallity such particles may be scattered from conned passing to unconned trapped and contribute to the prompt loss ux to the rst wall, which may be used as a fast particle diagnostic [4]. In Ref. [4] the signal from prompt loss detectors was measured during the plasma major radius shift experiments when the shifts were done with compr =80msec and the major radius shifted over R 0 ' 10%R 0. However no clear correlations with plasma parameters and uxes were observed. At certain conditions uxes increase (or decrease) in comparison with the same plasma without a shift while in another plasma parameters the uxes change insignicantly. When the uxes increase the unexpected \delayed" losses were also observed during the whole shifted phase of the discharge msec, similar to

3 those in DD experiments. Based on our results, we suggest a mechanism which could be an explanation of the observations. As we will show the plasma compression may increase or decrease loss uxes depending on plasma parameters. Conned passing particles may be forced to move closer to the separatrix boundary where they can be more easily scattered to the loss cone. Such a mechanism may eect particles even without the external shift of plasma column. The Shafranov shift of the magnetic axis due to the nite plasma pressure may increase during the discharge. It is noticeable and may be treated as a major radius shift of the central magnetic surfaces. Thus, Shafranov shifted magnetic axis may introduce additional \delayed" losses of conned particles, reported in [5]. We propose an approach to this problem introducing the perpendicular electric eld from Ohm's law under the assumption of innite conductivity, so that the plasma local velocity can be expressed through the E B drift. We also will make use of the conservation of magnetic momentum and toroidal angular momentum P ' and calculate the change of particle velocity, which drifts in the electric eld. Such an approach diers from one used earlier [6] where only the toroidal component of the electric eld was taken into account. The paper is organized as follows. In Sec.II we present the basic equations. In Sec.III the particle ux through passing-trapped boundary is obtained as a result of the Coulomb pitch angle scattering. In Sec.IV the collisional and collisionless regimes are considered to nd the plasma temperature change at the compression. A summary is given in Sec.V. II. BASIC EQUATIONS A. Integrals of motion A compression is adiabatic if the magnetic eld changes slowly on time scale, compr, compared to the Alfven time, but fast compared to the energy connement time. Under these conditions the drift approximation for the motion of individual charged particle remains valid. Therefore, two adiabatic invariants, magnetic moment and the toroidal momentum P ', are conserved in an axisymmetric tokamak equilibrium: = mv2? 2B = const; 3

4 P ' = e 2mc v k R = const; (1) where e and m are the charge and the mass of a particle, is the poloidal magnetic ux, B is the magnetic eld strength, v k and v? are the parallel and perpendicular to the direction of the magnetic eld components of particle velocity v, respectively. It is assumed that v B ' =B ' ' v k. To dene the particle motion during the compression we need the evolution equation for its velocity, which is not conserved. We will derive such an equation in section II C using the electrical eld E from the E B drift and prescribing the plasma velocity vector during the compression. B. Coordinate system Following Ref. [7] we introduce a curvilinear (r;;') coordinate system which becomes the usual cylindrical (R; Z; ') coordinate system when major radius R 0!1(see Fig.1). Poloidal angle is related to the azimuthal angle of the magnetic surface by the expression = (r;); the small correction (r;) can be chosen in a way that the force lines of the unperturbed magnetic eld are straight lines in the coordinates and ' (see below). The distance to the center of the magnetic surface r = const from the axis of symmetry Z is R ax = R 0 +(r), where R 0 = const and the small quantity is the Shafranov shift, which is determined by the equilibrium condition. The relation between the cylindrical and curvilinear coordinates is R = R 0 +(r)+rcos (); Z = r sin (); = (2) In our case the toroidicity is assumed to be small = a=r 0 1, i.e. the quantities and =a are small parameters of order (where a is a minor radius). According to Eq.(2) an expression for the square of the element of length dl is dl 2 = dr 2 + dz 2 + R 2 d' 2 = X g ik dx i dx k ; where dx i =(dr;d;d'), while g ik is the metric tensor [7]. The magnetic eld in the curvilinear coordinates is B =(0;B ;B ' ), where the toroidal and poloidal components of the magnetic eld are 4

5 B ' = B 0R 0 R ; B = B 0 1 ((r) 2) cos R 2 ; (3) where is a small asymmetry parameter that depends on the distribution of plasma pressure and current density [7]. In the absence of a known plasma pressure gradient one can use the approximate expression for (r) = 3 : (4) 4 The relation between and is determined so that the equation for the lines of force d d' = B2 B 3 = 1 q(r) ; (5) is independent ofand '. B 2 and B 3 are the second and third contrvariant components of the magnetic eld being given by B 2 = B p g22 ; B 3 = B ' p g33 : (6) It then follows from Eqs.(5) and (6) that one must choose =( 2) sin : (7) Using the equations divb = p p gb2 =0 and Eq.(6) the relation between 0 = d=dr and is 0 = ; (8) where g = Detg ik. Taking into account Eqs.(7) and (8), the nonvanishing components of the metric tensor up to 0( 2 ) are 5

6 g 11 =1 2 cos() ( sin 2 ) g 12 = 3 2 r sin (1 + 5 cos ) 4 g 22 = r 2 (1 + 5 cos )2 4 g 33 = R 2 : C. Particle velocity and pitch angle evolution The velocity ofcharged particles during R compression changes as a result of drift in the perpendicular electric eld which weintroduce from the Ohm's law at zero resistivity (see Fig.(1)) E = 1 c v EB; (9) where v E is the plasma hydrodynamic velocity vector during the compression. The plasma displacement and electromagnetic eld vectors in a poloidal cross section of the tokamak are presented in Fig.(1). In cylindrical coordinates vector v E is dened as v E =( _ R; _ Z;0); where _ A = da=dt. In the curvilinear coordinates the expressions for v E is given by where F 0 x v E =(v Er ;v E ;0) = p g 11 _RZ 0 R 0 r Z0 _ZR 0 Z 0 r R0 ; p g 22 _ZR 0 r R 0 r Z 0 _RZ 0 r Z 0 r R0 ; 0! ; (10) In order to nd _R we also need a time derivative orr, which isa consequence of the magnetic eld frozen-in law, Z BdS = Z B ' s g g 33 = const: (11) The equation for the kinetic energy of the particle drifting in the presence of electrical eld E is de dt = ee v dr; 6

7 where v dr = 2k v + v2? =2 BrB ;! c jbj 2 is particle toroidal drift velocity in the plasma low pressure approximation and! c is particle gyro-frequency. Using Eqs.(9), (10) and p = B 0 =E the equation for the variation of the absolute value of the particle velocity can be written in the form dv ver 1 p B 0 + v E B r p B 0 g11 g22 dt = v B pr 0 2R B 2!! ver g 12 p + v E p : (12) g11 g 22 g22 The nal expression in the curvilinear coordinates for the dv=dt up to O( 2 ) accuracy is given by dv dt = _ v R 0 1 R pr 0 2R 1+ 2 cos q 2! sin 2! : (13) Eq.(13) is a local equation. To calculate dv=dt over time larger than b, which isthe \bounce" time for trapped or transit time for passing particles, the Eq.(13) should be averaged over the drift particle orbit: * dv dt + = 1 I dv dl k ; (14) b dt v k b = I dlk v k ; (15) where l k = lb=b. In the approximation of straight force lines in the coordinates and ' (Eq.(5)), Eq.(15) reduce to b = I qr v k d: Under the zero drift orbit radial width assumption the analytical expression of the oscillation period of trapped particles b is b = 8qR 0 v vu u t(1+) 2 2 [K () (1 + )+2E ()] ; 2p where K and E are complete elliptic integrals of the rst and second kind, respectively, and =(1 + )(1 + + p)=(2p). For passing particles 7

8 b = 4qR 0 vp 1 K s p 2p2 (1+) E 1 (1+ )(1++ p) : The expression for dv=dt (Eq.(13)) for trapped particles after orbit averaging can be written in the analytical form * dv dt + R 0 = v 8q _ b While for passing particles * + dv dt vu u t(1+) 2 2 2p = v 4q R _ s b 1++ p 2 5 3p ! 1 q 2 p 1 E K () 1 p q 2! q 2! + 2 3p 2 3p 1 K 1 p + (K () 2E ()) 2 p 1 + K ! q ! 3q !!# : q 2 E 1 p q 2!! ! 31 q ! + p 1 q !!# : 3q 2 The pitch angle evolution equation result from the magnetic moment conservation Eq.(1): * + dp dt = 2p dv p R _ 0 ; (16) v dt III. COLLISIONAL FLUX THROUGH THE PASSING-TRAPPED BOUNDARY We use the equations obtained above, to calculate the change of collisional uxes of conned fusion particles studied in major radius shift experiments [4]. Assume, that pitch angle scattering of energetic ions is a reason for a diusion of these particles across the passing-trapped boundary. form The drift kinetic equation can be presented in the following df dt = C(f)+S; where f = f(v; p; P ' ;t) is the particle distribution function, C represents the Coulomb collisional operator and S = S 0 (v v 0 )=(4v 2 0 ) is fusion particle source at the birth velocity 8

9 v = v 0. Assuming that the collisional eects are weak for energetic particles, an expansion in the small parameter 1=( coll compr ) is appropriate, f = f 0 + f 1 + :::, where f i =f i 1 ' O(1=( coll compr )). The function f 0 can be determined from the orbit average version of the rst order equation hc(f 0 )+S=0i; (17) where h:::i represents orbit average operation. The model solution for the particle distribution function f 0 was found in [8] for collisional operator in the form: C(f 0 )= se v (v3 + v?3 )f 0 +2 R v?3 R 0 se @p f 0; where se is a slowing-down time, v? = v? (T e ;n e ;T i ;n i ) is the critical velocity when the slowing-down rate on electrons is the same as on the plasma ion's and = v k =v =(1 pr 0 =R) 1=2. Then, the particle ux across the passing-trapped boundary due to the pitch angle scattering process is obtained as follows: = 1 Z d 3 vc(f 0 ) : (18) where d 3 v = dpv 2 dv=jj. Taking into account the facts that for particles near the passingtrapped boundary layer the pitch angle scattering dominates over the energy scattering and the distribution function has a monotonically decreasing slope toward the boundary, then Eq.(18) can be written as *Z dp R v?3 ' 2 jj R 0 se p f 0 p + : (19) Integrating Eq.(19) in p, we can roughly estimate the ratio of the particle ux after R compression to the particle ux before compression 0 as 0 ' p 0 p p p 0 b0 g(x) ; (20) b (x) g 0 where x = R 0 (t)=r 0 (0), g(x) = (1 + ) =2 and p is a solution of the equation dp dt = dp dt dp dt j p=p s ; 9

10 where subscript s means that the value is refered to the passing-trapped separatrix boundary and p 0 ; b0 ;g 0 and 0 are the parameters before the compression. Here p 0 is the characteristic width of the scattering layer near the boundary. X dependence of was found from Eq.(11) and is given by (x) = 0 p : x To estimate p 0 in a steady state we use the fact that the small angle deection processes can scatter marginally conned energetic ions as they slow down. Since the velocity of the particle in the boundary layer v is smaller than the birth velocity v 0, Eq.(17)is reduced to f 0 se ' R R 0 2 v?3 f 0 p 0 : se v 3 p 2 0 We also evaluate D R R0 2 E ' p0 and taking into accout that p 0 1, therefore, p 0 can be estimated as p 0 = v?3 v 3 : (21) A. Application to major radius shift experiments in TFTR Our calculations show that the ratio = 0 is a very sensitive function of. Therefore, to get a more reliable estimate of particle ux change during the R compression we haveto take into account the non-zero banana width. The displacement of near separatrix passing particles from the ux surface (r = r r, where r isavalue of r on the separatrix at = ; v k = 0) has been found from the conservation laws Eq.(1) and the assumption that the displacement is small, so that we can use an expansion in the small parameter r=r. The solution of r = r(r ;)was obtained from P ' (r ;)=P ' (r;); (22) keeping terms up to (r=r) 2. The safety factor prole was chosen in the form q(r) = 1 1 q 0 q0 q1 r k ; (23) a 10

11 where q 0 and q 1 are the edge values of q at r=a = 0 and r=a =1. As an example, g.(2) shows the dependence of the ratio = 0 on p 0 at dierent = 0:15; 0:2; 0:25; 0:28 for TFTR (#86136) supershot plasma parameters [4]: R 0 =2:62;q 0 = 1:5;q 1 =5:1;k =1:1;x=0:9, calculated by TRANSP code [9]. Particle energy necessary to dene orbit averaging was E =2:8MeV. dependence of the ratio = 0 is strong and is presented on Fig.(3) at dierent p 0 =0:002; 0:008; 0:017. The smaller p 0 the stronger the eect. After the compression the particles ux becomes weaker compared to 0 up to = cr when the ux exceeds 0. The mechanism responsible for dependence of the particle collisional ux through the passing-trapped boundary can be understood from the point of view of passing nearseparatrix particles. Fig.(4) shows the local (dashed curves) and averaged over the orbit (solid curves) velocity time derivative dv=dt at =0:1 and 0:3. There is a region with < cr when the averaged value hdv=dti is larger than the local value dv=dt, taken at the bounce point of the separatrix particle (poloidal angle = ). As a consequence of the fact that pv 2 R 0 = const, the near separatrix particles have a tendency to decrease their pitch-angle, and deviate from the boundary (see Fig.5). In the case > cr the particle pitch-angle increases, since dv=dt is larger than hdv=dti, therefore passing particles approach the trapped-passing boundary as in Fig.6. The existence of the cr is explained by the competition between the contributions from the toroidal and the poloidal components of the magnetic eld in Eq.(13). The later increases with the minor radius and generates larger electric elds at =. The separatrix boundary in Figs.(5) and (6) is given by p s (x)=1+(x) (x): (24) Major radius shifts in TFTR DT discharges were done at three values of plasma current; 1.0, 1.4 and 1.8 MA [4]. Lost partially thermalized particles (E ' 2.8 MeV) were observed by the lost alpha detector located at the bottom of the vacuum vessel at the poloidal angle In the 1.0 MA discharge alpha loss normalized to the neutron ux slightly decreases after the shift (R 0 =9%R 0 ) in comparison with baseline discharge (without R-compression). Opposite to the 1.0 MA discharge, the alpha loss slightly increases in the 1.8 MA discharge after the shift (R 0 =5%R 0 ). The most pronounced eect occurs in the 1.4 MA discharge at 10% R-compression. The shifted discharge displays alpha loss approximately 60% higher 11

12 than the baseline shot. To nd the bounce point coordinates, i.e. in the experiments and p 0 for particles with E =2:8MeV we used Eqs.(22) and (21) at = =2 and the formula v? =0:1v qt(r). The q prole was approximated by the form Eq.(23) to be close to TRANSP calculated proles, where: q 0 =1:3;q 1 =7:6;a=0:77m; k =0:65 for the 1.0 MA discharge; q 0 =1:5;q 1 =5:1;a=0:73m; k =1:10 for the 1.4 MA discharge; q 0 =1:1;q 1 =4:9;a=0:87m; k =0:95 for the 1.8 MA discharge. Therefore, we have: =0:205; p 0 = :003 for the 1.0 MA discharge; =0:25; p 0 = :002 for the 1.4 MA discharge; =0:27; p 0 = :0018 for the 1.8 MA discharge. Our calculations show that for such q proles and p 0 the critical values of cr are 0.21, and for the 1.0 MA, 1.4 MA and 1.8 MA discharges, respectively. Thus, it is possible to understand the experimental results. In the 1.0 MA discharge detector registers alpha particles with less than cr. It means that the collisional ux must decrease at the R-compression. In the case of 1.4 and 1.8 MA discharges registered -particles have higher than cr, and the ux must increase at the compression. The ratio = 0 strongly dependens on the compression factor x and the value of the pitch angle collisional layer width in steady state, p 0.For such experimental parameters the calculated ratios of collisional uxes = 0 are 0.95 (I =1:0 MA), 3.5 (I =1:4 MA) and 1.1 (I =1:8 MA). Experimental data indicate that the ratio of the total particle ux in these experiments to the particle ux in similar shots without the compression are 0.8 (I =1:0 MA), 1.6 (I = 1:4 MA), 1.2 (I = 1:8 MA). From the comparison of the modeling and the measurements it follows that the collisional part of the total uxes should be: > 5% for the 1.0 MA discharge, ' 17% for the 1.4 MA discharge and ' 18% for the 1.8 MA discharge. More detailed analysis is beyond the scope of this paper. It should include the calculation of the collisional uxes and more accurate orbit averaging with guiding center approximation of particle orbits. 12

13 IV. PLASMA TEMPERATURE DURING THE R-COMPRESSION Here we use our approach to calculate the plasma macroparameters, for benchmarking the theory with MHD and to obtain more accurate results for R-compression in toroidal geometry. A. Collisional regime, compr 1 coll In the case when compr exceeds the inverse collisional frequency 1 coll the drift kinetic equation is reduced to the following form: df(v; p; P ' ;t) dt = C(f); (25) Since the collisional eect is weak during the orbit motion of particles, an expansion in small parameter 1=( coll compr ) is appropriate, f = f 0 +f 1 +:::;f i+1 =f i ' O(1=( coll compr )). Then the zeroth order in 1=( coll compr )) of Eq.(25) is: C(f 0 )=0: (26) f 0 is a Maxwellian function as a consequence of Eq.(26). For plasma with density n(t) and temperature T (t) f 0 is written as f 0 =! 3=2 m n(t) exp E=T (t) : (27) 2T(t) The rst order in 1=( coll compr ) equation resulting from Eq.(25) +_v@f = C(f 1): (28) The equation for the plasma density results from Eq.(28) and the particle conservation law Z C(f 1 )d 3 vd 3 r =0: (29) We transform the integration variables in Eq.(29) from (R; Z; '; v? ;v k )to(p ' ; ;';p;v). Substituting Eq.(28) into Eq.(29) and using Eq.(27) after integrating it we have the expression for plasma density d ln n dt = 3 2 R 2 < _v >b dp R ; (30) vb dp 13

14 with the integral R (:::)dp taken over the particle pitch angle, that is Z (:::)dp =2 Z 1 0 (:::) pass dp + Z 1+ 1 (:::) trap dp: Eqs.(13) and (15) should be used for _v and b, accordingly. Using the fact that the total energy of the system is conserved, i.e. Z C(f 1 )Ed 3 vd 3 r =0; we result in the plasma similar to Eq.(30) equation for the plasma temperature d ln T dt = 2 d ln n 3 dt (31) The dependences of the temperature growth ((x) = dln T=dln x) on the compression factor x at the =0:01; 0:15; 0:25; 0:3 are shown on Fig.(7). During the R compression the eciency of plasma heating decrease in edge direction ( rises), see Fig.(8) where the -dependence is shown at dierent compression factors x = 1;0:9;0:7;0:6. On the other hand, the expression for plasma density can be obtained from the particle conservation law N = Z n p gdrdd' and Eq.(11), which isvalid in MHD. Then we have q dln n ( ) (1 + ) 2 = 2+ 2 dt 160 q(1+) q (1 + ) (11 5): This analytical,mhd result, and the calculated result coincide with the accuracy of used approximation ( 3 ). B. Collisionless regime, compr 1 coll Plasma temperature is determinated by the distribution function f 0 (v 0 ;p 0 ;P '0 ;t 0 ) before and by f(v; p; P ' ;t) after the compression the expression for the plasma temperature is 14

15 R Ef(v; p; P' ;t)d 3 v T =2=3 R f(v; p; P' ;t)d 3 v : (32) In the collisionless regime, when compr 1 coll the kinetic equation is df(v; p; P ;t) dt =0: (33) Taking into account Eq.(1), Eq.(33) gives f(v; p; P ' ;t)=f(v(t);p(t);p ' )=f 0 (v 0 ;p 0 ;P ' ;t 0 ): Thus, Eq.(32) can be rewritten as T =2=3 R Ef0 (v 0 (v(t));p 0 (p(t)))d 3 v R f0 (v 0 (v(t));p 0 (p(t)))d 3 v ; (34) where the distribution function before the compression f 0 = f 0 (v 0 ) is Maxwellian. The dependence v 0 = v 0 (v(t)) is obtained from the solution of the system of equations for v and p ( Eqs(13), (15) and (16)) with the boundary conditions: v(t =0)=v 0 ; p(t=0)=p 0 : In the limit! 0, when only passing particles are taken into account, analytical solution of such a system is q v 0 (v; p) =v (1 p)x 2 + px: For the plasma temperature and for longitudal T k and perpendicular T? components we have T k = T 0 3x 2 ;T? = 2T 0 3x ; T = T 0 3x2(1 + 2x): The same results have been predicted in the quasi-mhd system of guiding center approximation [10] The inuence of the toroidicity (= 0:01; 0:15; 0:25; 0:3) on the plasma temperature growth obtained by the numerical calculation is presented on Figs.(9), (10) and (11) for 15

16 longitudal, perpendicular and total temperature, accordingly. The opposite eects of the plasma heating in dierent directions (longitudal and perpendicular) are observed when the increases. T k grows more than the local (! 0) analytical estimate gives, Fig.(9), but the eciency of the \transverse" heating, T?, decreases Fig.(10). These two eects compensate each other and dependence of total plasma temperature T is weak, Fig.(11). However, eciency of the heating may be higher if the distribution function before the compression was not Maxwellian. In fact, if we assume that the distribution is beam-like with particles mostly moving tangentially to the magnetic eld, then such group of particles may be heated very eectively T = T k = T 0 =(3x 2 ). V. SUMMARY AND CONCLUSIONS A new approach to the problem of major radius compression in a tokamak is presented based on modeling of the plasma motion during the compression by means of the E B drift. The particle velocity and pitch angle evolution equations during the compression are derived. Theory was applied to calculate the collisional uxes through the trapped-passing boundary into the loss cone. The main results are: At < cr, where cr is some critical parameter, which strongly depends on plasma q prole and the temperature, passing particles have a tendency to deviate from the passing-trapped boundary, while the trapped particles approach this boundary. Thus, conned counter passing particle may less eectively scatter into the loss cone after the compression. At > cr passing particles approach the passingtrapped boundary and trapped particles move away from this boundary (Fig.4). It leads to an increase in collisional losses. Presented theory may be also a candidate for the explanation of the so-called \delayed" losses observed in TFTR by S.Zweben. In a collisional regime the adiabatic compression is less eective at higher toroidicity and the plasma temperature increases slower than at = 0. In a collisionless regime plasma temperature evolution is a weak function of the toroidicity. However, the eciency of the heating during the compression may be higher in comparison with the collisional case for beam like distribution when T = T k = T 0 =(3x 2 ). 16

17 [1] V. E. Golant, I. P. Gladkovsky, V. A.Ipatov et al., Nucl. Fusion Suppl. 53, (1969). [2] H. P. Furth and S. Yoshikawa, Phys. of Fluids 13, 2593 (1970). [3] L. A. Artsimovich, Nucl. Fusion 12, 215 (1972). [4] H. W. Herrmann, Ph. D. thesis, Princeton University, [5] S. J. Zweben, D. S. Darrow, E. D. Fredrikson, and H. E. Mynick, Nucl. Fusion 33, 705 (1993). [6] N. N. Gorelenkov, Sov. J. Plasma Phys. 16, 241 (1990). [7] L. E. Zakharov, V. D. Shafranov, in Reviews of Plasma Physics (Consultants Bureau, New York, 1986) Vol.11, p.153. [8] C. S. Chang, S. J. Zweben, J. Schivell, R. V. Budny, S. Scott, Phys. Plasmas, 1, 3857 (1994). [9] R. V. Budny, Nucl. Fusion 34, 1247 (1994) [10] L. I. Rudakov and R. Z. Sagdeev, in: Fizika plazmy i problema UTR., (in Russian), 3, 268 (1958). 17

18 Fig.1 Poloidal cross section (' = const) of the tokamak illustrating the curvilinear (r;;') coordinate system, electric eld E = 1 c v EB, the plasma hydrodynamic velocity vector during the compression v E, the total magnetic eld B, toroidal B ' and poloidal B magnetic eld components. Plasma dimensions are dened by the major R 0 radii (r a) and minor a Fig.2 The dependence of the ratio of the particle ux after R compression to the particle ux before compression 0 on p 0 at =0:15 (solid curve), 0:2 (dashed curve), 0:25 (dashed-dot curve), 0:28 (dot curve) at the compression factor x =0:9. p 0 is the characteristic width of the scattering layer near the boundary in steady state. Fig.3 An dependence of the ratio of the particle ux after R compression to the particle ux before compression 0 at p 0 =0:002 (solid curve), 0:008 (dashed curve) and 0:017 (dashed-dot curve) at the compression factor x =0:9. p 0 is the characteristic width of the scattering layer near the boundary in steady state. Fig.4 Local dv=dt (dashed curve) and averaged over the drift particle orbit hdv=dti (solid curve) values of the pre-separatrix particle velocity time derivative at = 0:1 and 0:3 Fig.5 The pre-separatrix particle pitch-angle behavior near the passing-trapped boundary p s during the R-compression as a function of compression factor x = R 0 (t)=r 0 (0) at =0:1(< cr ) Fig.6 The same as in Fig.(5) but at =0:3(> cr ) Fig.7 The power of the temperature growth ( = d ln T=dln x) at R-compression as a function of the compression factor x = R 0 (t)=r 0 (0) at =0:01 (solid curve), 0:15 (dashed curve), 0:25 (dashed-dot curve), 0:3 (dot curve) Fig.8 An -dependence of the power of the temperature growth ( = d ln T=dln x) at 18

19 dierent compression factors x = 1 (solid curve), 0.9 (dashed curve), 0.7 (dashed-dot curve), 0.6 (dot curve) Fig.9 The longitudal plasma temperature growth as a function of the compression factor x = R 0 (t)=r 0 (0) at =0:01 (solid curve), 0:15 (dashed curve), 0:25 (dashed-dot curve), 0:3 (dot curve) Fig.10 The same as in Fig.9 but for perpendicular plasma temperature growth Fig.11 The same as in Fig.9 but for total plasma temperature growth 19

20 Z E r B θ E V E R 0 θ B θ B B ϕ B E R E FIG

21 FIG

22 FIG

23 ε = 0.3 ε = 0.1 FIG

24 trapped p s passing FIG

25 trapped p s passing FIG

26 FIG

27 FIG

28 FIG

29 FIG

30 FIG

Preštudirati je potrebno: Floyd, Principles of Electric Circuits Pri posameznih poglavjih so označene naloge, ki bi jih bilo smiselno rešiti. Bolj pom

Preštudirati je potrebno: Floyd, Principles of Electric Circuits Pri posameznih poglavjih so označene naloge, ki bi jih bilo smiselno rešiti. Bolj pom Preštudirati je potrebno: Floyd, Principles of Electric Circuits Pri posameznih poglavjih so označene naloge, ki bi jih bilo smiselno rešiti. Bolj pomembne, oziroma osnovne naloge so poudarjene v rumenem.

Prikaži več

Predmet: Course title: UČNI NAČRT PREDMETA/COURSE SYLLABUS Matematična fizika II Mathematical Physics II Študijski programi in stopnja Študijska smer

Predmet: Course title: UČNI NAČRT PREDMETA/COURSE SYLLABUS Matematična fizika II Mathematical Physics II Študijski programi in stopnja Študijska smer Predmet: Course title: UČNI NAČRT PREDMETA/COURSE SYLLABUS Matematična fizika II Mathematical Physics II Študijski programi in stopnja Študijska smer Letnik Semestri Fizika, prva stopnja, univerzitetni

Prikaži več

UDK 539.3/.4:519.61/.64 Napetosti v vzdolžno prerezanem rotirajočem votlem valju Stresses in Hollow Rotating Cylinder with Longitudinal Split MILAN BA

UDK 539.3/.4:519.61/.64 Napetosti v vzdolžno prerezanem rotirajočem votlem valju Stresses in Hollow Rotating Cylinder with Longitudinal Split MILAN BA UDK 539.3/.4:519.61/.64 Napetosti v vzdolžno prerezanem rotirajočem votlem valju Stresses in Hollow Rotating Cylinder with Longitudinal Split MILAN BATISTA - FRANC KOSEL Raziskava vpliva radialnega vzdolžnega

Prikaži več

UČNI NAČRT PREDMETA / COURSE SYLLABUS Predmet: Matematična fizika II Course title: Mathematical Physics II Študijski program in stopnja Study programm

UČNI NAČRT PREDMETA / COURSE SYLLABUS Predmet: Matematična fizika II Course title: Mathematical Physics II Študijski program in stopnja Study programm UČNI NAČRT PREDMETA / COURSE SYLLABUS Predmet: Matematična fizika II Course title: Mathematical Physics II Študijski program in stopnja Study programme and level Univerzitetni študijski program 1.stopnje

Prikaži več

Društvo za elektronske športe - spid.si Vaneča 69a 9201 Puconci Pravila tekmovanja na EPICENTER LAN 12 Hearthstone Na dogodku izvaja: Blaž Oršoš Datum

Društvo za elektronske športe - spid.si Vaneča 69a 9201 Puconci Pravila tekmovanja na EPICENTER LAN 12 Hearthstone Na dogodku izvaja: Blaž Oršoš Datum Pravila tekmovanja na EPICENTER LAN 12 Hearthstone Na dogodku izvaja: Blaž Oršoš Datum: 5. januar 2016 Društvo za elektronske športe [1/5] spid.si Slovenska pravila 1 OSNOVNE INFORMACIJE 1.1 Format tekmovanja

Prikaži več

Microsoft Word - ARRS-MS-BR-07-A-2009.doc

Microsoft Word - ARRS-MS-BR-07-A-2009.doc RAZPIS: Javni razpis za sofinanciranje znanstvenoraziskovalnega sodelovanja med Republiko Slovenijo in Federativno Republiko Brazilijo v letih 2010 2012 (Uradni list RS št. 53/2009) Splošna opomba: Vnosna

Prikaži več

ARRS-BI-FR-PROTEUS-JR-Prijava/2011 Stran 1 od 7 Oznaka prijave: Javni razpis za sofinanciranje znanstvenoraziskovalnega sodelovanja med Republiko Slov

ARRS-BI-FR-PROTEUS-JR-Prijava/2011 Stran 1 od 7 Oznaka prijave: Javni razpis za sofinanciranje znanstvenoraziskovalnega sodelovanja med Republiko Slov Stran 1 od 7 Oznaka prijave: Javni razpis za sofinanciranje znanstvenoraziskovalnega sodelovanja med Republiko Slovenijo in Francosko republiko Program PROTEUS v letih 2012-2013 (Uradni list RS, št. 10/2011,

Prikaži več

PRESENT SIMPLE TENSE The sun gives us light. The sun does not give us light. Does It give us light? Raba: Za splošno znane resnice. I watch TV sometim

PRESENT SIMPLE TENSE The sun gives us light. The sun does not give us light. Does It give us light? Raba: Za splošno znane resnice. I watch TV sometim PRESENT SIMPLE TENSE The sun gives us light. The sun does not give us light. Does It give us light? Za splošno znane resnice. I watch TV sometimes. I do not watch TV somtimes. Do I watch TV sometimes?

Prikaži več

Resonance v Osončju Resonanca 1:2 Druge orbitalne resonance: 2:3 Pluto Neptune 2:4 Tethys Mimas (Saturnovi luni) 1:2 Dione Enceladus (Saturnovi luni)

Resonance v Osončju Resonanca 1:2 Druge orbitalne resonance: 2:3 Pluto Neptune 2:4 Tethys Mimas (Saturnovi luni) 1:2 Dione Enceladus (Saturnovi luni) Resonance v Osončju Resonanca 1:2 Druge orbitalne resonance: 2:3 Pluto Neptune 2:4 Tethys Mimas (Saturnovi luni) 1:2 Dione Enceladus (Saturnovi luni) 3:4 Hyperion Titan (Saturnovi luni) 1:2:4 Ganymede

Prikaži več

Športno društvo Jesenice, Ledarska 4, 4270 Jesenice, Tel.: (04) , Fax: (04) , Drsalni klub Jesenice in Zv

Športno društvo Jesenice, Ledarska 4, 4270 Jesenice, Tel.: (04) , Fax: (04) ,   Drsalni klub Jesenice in Zv Drsalni klub Jesenice in Zveza drsalnih športov Slovenije RAZPISUJETA TEKMOVANJE V UMETNOSTNEM DRSANJU Biellman Cup 1. Organizator: Drsalni klub Jesenice, Ledarska ulica 4, 4270 JESENICE www.dkjesenice.si

Prikaži več

Microsoft Word - ARRS-MS-CEA-03-A-2009.doc

Microsoft Word - ARRS-MS-CEA-03-A-2009.doc RAZPIS: Javni razpis za sofinanciranje znanstvenoraziskovalnega sodelovanja med Republiko Slovenijo in Komisariatom za atomsko energijo (CEA) Francoske republike v letih 2009-2011 Splošna opomba: Vnosna

Prikaži več

PREDLOG ZA AKREDITACIJO

PREDLOG ZA AKREDITACIJO UČNI NAČRT PREDMETA / COURSE SYLLABUS Predmet: Fizika jedra in osnovnih delcev Course title: Nuclear and Particle Physics Študijski program in stopnja Study programme and level Univerzitetni študijski

Prikaži več

UDK :539.41: Vzporedna analiza toplotnih napetosti v vrtečih sc diskih z enakomerno trdnostjo Simultaneous Analysis of Thermal Stres

UDK :539.41: Vzporedna analiza toplotnih napetosti v vrtečih sc diskih z enakomerno trdnostjo Simultaneous Analysis of Thermal Stres UDK 539.377:539.41:624.073.112 Vzporedna analiza toplotnih napetosti v vrtečih sc diskih z enakomerno trdnostjo Simultaneous Analysis of Thermal Stresses in Rotating Disks of Uniform Strength ANDRÒ ALUJEVIČ

Prikaži več

Matematika II (UNI) Izpit (23. avgust 2011) RE ITVE Naloga 1 (20 to k) Vektorja a = (0, 1, 1) in b = (1, 0, 1) oklepata trikotnik v prostoru. Izra una

Matematika II (UNI) Izpit (23. avgust 2011) RE ITVE Naloga 1 (20 to k) Vektorja a = (0, 1, 1) in b = (1, 0, 1) oklepata trikotnik v prostoru. Izra una Matematika II (UNI) Izpit (. avgust 11) RE ITVE Naloga 1 ( to k) Vektorja a = (, 1, 1) in b = (1,, 1) oklepata trikotnik v prostoru. Izra unajte: kot med vektorjema a in b, pravokotno projekcijo vektorja

Prikaži več

Elektro predloga za Powerpoint

Elektro predloga za Powerpoint AKTIVNOSTI NA PODROČJU E-MOBILNOSTI Ljubljana, 15. februar 2017 Uršula Krisper Obstoječe stanje Oskrba 120 polnilnic Lastniki in upravljalci Brezplačno polnjenje Identifikacija z RFID ali GSM ali Urbana

Prikaži več

Microsoft Word - ARRS-MS-FI-06-A-2010.doc

Microsoft Word - ARRS-MS-FI-06-A-2010.doc RAZPIS: Javni razpis za sofinanciranje znanstvenoraziskovalnega sodelovanja med Republiko Slovenijo in Republiko Finsko v letih 2011-2012 (Uradni list RS, št. 49/2010) Splošne opombe: Obrazec izpolnjujte

Prikaži več

UDK : : Termohidravlične razmere laminarnega toka tekočine y ozkih kanalih Thermo-Hydraulic Conditions of Laminar Fluid Flow in

UDK : : Termohidravlične razmere laminarnega toka tekočine y ozkih kanalih Thermo-Hydraulic Conditions of Laminar Fluid Flow in UDK 621.436:621.43.013:66.045 Termohidravlične razmere laminarnega toka tekočine y ozkih kanalih Thermo-Hydraulic Conditions of Laminar Fluid Flow in Narrow Channels MARJAN DELIČ - LEOPOLD ŠKERGET - IVAN

Prikaži več

Microsoft Word - SevnoIII.doc

Microsoft Word - SevnoIII.doc Naše okolje, april 8 METEOROLOŠKA POSTAJA SEVNO Meteorological station Sevno Mateja Nadbath V Sevnem je klimatološka meteorološka postaja Agencije RS za okolje. Sevno leži na prisojnem pobočju Sevniškega

Prikaži več

Microsoft Word - M docx

Microsoft Word - M docx Š i f r a k a n d i d a t a : Državni izpitni center *M12224223* Višja raven JESENSKI IZPITNI ROK Izpitna pola 3 Pisno sporočanje A) Pisni sestavek (v eni od stalnih sporočanjskih oblik) (150 180 besed)

Prikaži več

P183A22112

P183A22112 Š i f r a k a n d i d a t a : Državni izpitni center *P183A22112* ZIMSKI IZPITNI ROK ANGLEŠČINA Izpitna pola 2 Pisno sporočanje A) Krajši pisni sestavek (60 70 besed) B) Daljši pisni sestavek (150 160

Prikaži več

untitled

untitled 1 Plinske cenovne arbitraže in priložnosti za arbitražo v energetskem sektorju STALNA ARBITRAŽA PRI GOSPODARSKI ZBORNICI SLOVENIJE KONFERENCA SLOVENSKE ARBITRAŽE Ljubljana, 4. november 2013 Matjaž Ulčar,

Prikaži več

PAST CONTINUOUS Past continuous uporabljamo, ko želimo opisati dogodke, ki so se dogajali v preteklosti. Dogodki so se zaključili v preteklosti in nič

PAST CONTINUOUS Past continuous uporabljamo, ko želimo opisati dogodke, ki so se dogajali v preteklosti. Dogodki so se zaključili v preteklosti in nič PAST CONTNUOUS Past continuous uporabljamo, ko želimo opisati dogodke, ki so se dogajali v preteklosti. Dogodki so se zaključili v preteklosti in nič več ne trajajo. Dogodki so v preteklosti trajali dalj

Prikaži več

UČNI NAČRT PREDMETA / COURSE SYLLABUS (leto / year 2017/18) Predmet: Analiza 3 Course title: Analysis 3 Študijski program in stopnja Study programme a

UČNI NAČRT PREDMETA / COURSE SYLLABUS (leto / year 2017/18) Predmet: Analiza 3 Course title: Analysis 3 Študijski program in stopnja Study programme a UČNI NAČRT PREDMETA / COURSE SYLLABUS (leto / year 2017/18) Predmet: Analiza 3 Course title: Analysis 3 Študijski program in stopnja Study programme and level Univerzitetni študijski program Finančna matematika

Prikaži več

UNIVERZA V NOVI GORICI FAKULTETA ZA NARAVOSLOVJE MERITVE IN MODELIRANJE GIBANJA ZRAƒNIH MAS V TROPOSFERI DIPLOMSKO DELO Miha šivec Mentor: prof. dr. S

UNIVERZA V NOVI GORICI FAKULTETA ZA NARAVOSLOVJE MERITVE IN MODELIRANJE GIBANJA ZRAƒNIH MAS V TROPOSFERI DIPLOMSKO DELO Miha šivec Mentor: prof. dr. S UNIVERZA V NOVI GORICI FAKULTETA ZA NARAVOSLOVJE MERITVE IN MODELIRANJE GIBANJA ZRAƒNIH MAS V TROPOSFERI DIPLOMSKO DELO Miha šivec Mentor: prof. dr. Samo Stani Nova Gorica, 2016 UNIVERSITY OF NOVA GORICA

Prikaži več

REŠEVANJE DIFERENCIALNIH ENAČB Z MEHANSKIMI RAČUNSKIMI STROJI Pino Koc Seminar za učitelje matematike FMF, Ljubljana, 25. september 2015 Vir: [1] 1

REŠEVANJE DIFERENCIALNIH ENAČB Z MEHANSKIMI RAČUNSKIMI STROJI Pino Koc Seminar za učitelje matematike FMF, Ljubljana, 25. september 2015 Vir: [1] 1 REŠEVANJE DIFERENCIALNIH ENAČB Z MEHANSKIMI RAČUNSKIMI STROJI Pino Koc Seminar za učitelje matematike FMF, Ljubljana, 25. september 2015 Vir: [1] 1 Nekateri pripomočki in naprave za računanje: 1a) Digitalni

Prikaži več

Workhealth II

Workhealth II SEMINAR Development of a European Work-Related Health Report and Establishment of Mechanisms for Dissemination and Co- Operation in the New Member States and Candidate Countries - WORKHEALTH II The European

Prikaži več

ARS1

ARS1 Nepredznačena in predznačena cela števila Dvojiški zapis Nepredznačeno Predznačeno 0000 0 0 0001 1 1 0010 2 2 0011 3 3 Pri odštevanju je stanje C obratno (posebnost ARM)! - če ne prekoračimo 0 => C=1 -

Prikaži več

Microsoft Word - Met_postaja_Jelendol1.doc

Microsoft Word - Met_postaja_Jelendol1.doc Naše okolje, junij 212 METEOROLOŠKA POSTAJA JELENDOL Meteorological station Jelendol Mateja Nadbath V Jelendolu je padavinska meteorološka postaja; Agencija RS za okolje ima v občini Tržič še padavinsko

Prikaži več

Strojni{ki vestnik 47(2001)7, Journal of Mechanical Engineering 47(2001)7, ISSN ISSN UDK :006.06: UDC 69

Strojni{ki vestnik 47(2001)7, Journal of Mechanical Engineering 47(2001)7, ISSN ISSN UDK :006.06: UDC 69 Strojni{ki vestnik 47(21)7,325-335 Journal of Mechanical Engineering 47(21)7,325-335 ISSN 39-248 ISSN 39-248 UDK 699.86:6.6:536.21 UDC 699.86:6.6:536.21 Strokovni ~lanek (1.4) B. ^erne - S. Medved: Toplotne

Prikaži več

Predmet: Course title: UČNI NAČRT PREDMETA / COURSE SYLLABUS (leto / year 2017/18) Analiza 2b Analysis 2b Študijski program in stopnja Study programme

Predmet: Course title: UČNI NAČRT PREDMETA / COURSE SYLLABUS (leto / year 2017/18) Analiza 2b Analysis 2b Študijski program in stopnja Study programme Predmet: Course title: UČNI NAČRT PREDMETA / COURSE SYLLABUS (leto / year 2017/18) Analiza 2b Analysis 2b Študijski program in stopnja Study programme and level Univerzitetni študijski program Matematika

Prikaži več

Strojni{ki vestnik 50(2004)7/8, Journal of Mechanical Engineering 50(2004)7/8, ISSN ISSN UDK :534-8 UDC 681.1

Strojni{ki vestnik 50(2004)7/8, Journal of Mechanical Engineering 50(2004)7/8, ISSN ISSN UDK :534-8 UDC 681.1 Strojni{ki vestnik 50(2004)7/8,376-385 Journal of Mechanical Engineering 50(2004)7/8,376-385 ISSN 0039-2480 ISSN 0039-2480 UDK 681.125:534-8 UDC 681.125:534-8 Bolte`ar 004.94 M.: Ugotavljanje ob~utljivosti

Prikaži več

ZAHTEVA ZA VZDRŽEVANJE LEI (sklad) REQUEST FOR A MAINTENANCE OF LEI (fund) 1. PODATKI O SKLADU / FUND DATA: LEI: Ime / Legal Name: Druga imena sklada

ZAHTEVA ZA VZDRŽEVANJE LEI (sklad) REQUEST FOR A MAINTENANCE OF LEI (fund) 1. PODATKI O SKLADU / FUND DATA: LEI: Ime / Legal Name: Druga imena sklada ZAHTEVA ZA VZDRŽEVANJE LEI (sklad) REQUEST FOR A MAINTENANCE OF LEI (fund) 1. PODATKI O SKLADU / FUND DATA: LEI: Ime / Legal Name: Druga imena sklada / Other Fund Names: Matična številka / Business Register

Prikaži več

UČNI NAČRT PREDMETA / COURSE SYLLABUS Predmet: Analiza 4 Course title: Analysis 4 Študijski program in stopnja Study programme and level Univerzitetni

UČNI NAČRT PREDMETA / COURSE SYLLABUS Predmet: Analiza 4 Course title: Analysis 4 Študijski program in stopnja Study programme and level Univerzitetni UČNI NAČRT PREDMETA / COURSE SYLLABUS Predmet: Analiza 4 Course title: Analysis 4 Študijski program in stopnja Study programme and level Univerzitetni študijski program Matematika First cycle academic

Prikaži več

Slovenska predloga za KE

Slovenska predloga za KE 23. posvetovanje "KOMUNALNA ENERGETIKA / POWER ENGINEERING", Maribor, 2014 1 ANALIZA VPLIVA PRETOKA ENERGIJE PREKO RAZLIČNIH NIZKONAPETOSTNIH VODOV NA NAPETOSTNI PROFIL OMREŽJA Ernest BELIČ, Klemen DEŽELAK,

Prikaži več

Strojniški vestnik (44) št. 3-4, str , 1998 Journal of Mechanical Engineering (44) No. 3-4, pp , 1998 Tiskano v Sloveniji. Vse pravice pri

Strojniški vestnik (44) št. 3-4, str , 1998 Journal of Mechanical Engineering (44) No. 3-4, pp , 1998 Tiskano v Sloveniji. Vse pravice pri Strojniški vestnik (44) št. 3-4, str. 84-96, 1998 Journal of Mechanical Engineering (44) No. 3-4, pp. 84-96, 1998 Tiskano v Sloveniji. Vse pravice pridržane. Printed in Slovenia. All rights reserved. UDK

Prikaži več

Slide 1

Slide 1 Zagotavljanje kakovosti v Programu Svit na področju patohistologije Snježana Frković Grazio Patologija v presejanju za raka DČD dejavnost patologije igra v presejanju pomembno vlogo, saj je obravnava udeležencev

Prikaži več

Predmet: Course title: UČNI NAČRT PREDMETA / COURSE SYLLABUS (leto / year 2016/17) Dinamično modeliranje Dynamical modelling Študijski program in stop

Predmet: Course title: UČNI NAČRT PREDMETA / COURSE SYLLABUS (leto / year 2016/17) Dinamično modeliranje Dynamical modelling Študijski program in stop Predmet: Course title: UČNI NAČRT PREDMETA / COURSE SYLLABUS (leto / year 2016/17) Dinamično modeliranje Dynamical modelling Študijski program in stopnja Study programme and level Visokošolski strokovni

Prikaži več

Diapozitiv 1

Diapozitiv 1 ERASMUS+ MOBILNOSTI Štud. leto 2019/2020 http://www.erasmusplus.si/ Erasmus koda: SI LJUBLJA01 27 DRŽAV ERASMUS+ PRAKTIČNO USPOSABLJANJE MOBILNOST IZVEDENA V OBDOBJU OD 1. JUNIJA 2019 DO 30. SEPTEMBRA

Prikaži več

Strojni{ki vestnik 46(2000)8, Journal of Mechanical Engineering 46(2000)8, ISSN ISSN UDK 536.3:536.2: UDC 536.

Strojni{ki vestnik 46(2000)8, Journal of Mechanical Engineering 46(2000)8, ISSN ISSN UDK 536.3:536.2: UDC 536. Strojni{ki vestnik 6(00)8,9-502 Journal of Mechanical Engineering 6(00)8,9-502 ISSN 0039-280 ISSN 0039-280 UDK 536.3:536.2:697.97 UDC 536.3:536.2:697.97 M. Pregledni Prek - znanstveni P. Novak: Analiti~na

Prikaži več

3dsMax-Particle-Paint

3dsMax-Particle-Paint PARTICLE PAINT Gola pokrajina je v najbolj ekstremnih okoljih arktike ali puščave. Pa še v tem delu je pokrajina posejana s kamenjem. Povsod drugod pa naletimo na gosto posejanost rastlinja, od trave,

Prikaži več

STROJNIŠKI VESTNIK MECHANICAL ENGINEERING JOURNAL ISSN STJVAX LETNIK 38 VOLUME 38 LJUBLJANA. JANUAR-MAREC JANUARY MARCH ŠTEVILKA 1-3 N

STROJNIŠKI VESTNIK MECHANICAL ENGINEERING JOURNAL ISSN STJVAX LETNIK 38 VOLUME 38 LJUBLJANA. JANUAR-MAREC JANUARY MARCH ŠTEVILKA 1-3 N STROJNIŠKI VESTNIK MECHANICAL ENGINEERING JOURNAL ISSN 0 0 3 9-2 4 8 0 STJVAX LETNIK 38 VOLUME 38 LJUBLJANA. JANUAR-MAREC JANUARY MARCH ŠTEVILKA 1-3 NUMBER 1-3 UDK 66.063.6 Porazdelitvene funkcije za velikost

Prikaži več

Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y

Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y 2 ). Rešitev: Diferencialna enačba ima ločljive spremenljivke,

Prikaži več

MiT_1_2007.vp

MiT_1_2007.vp UDK 539.55:620.17:669.14 ISSN 1580-2949 Original scientific article/izvirni znanstveni ~lanek MTAEC9, 41(1)35(2007) AN INTEGRITY ANALYSIS OF WASHING-MACHINE HOLDERS ANALIZA CELOVITOSTI NOSILCA KADI V PRALNEM

Prikaži več

UDK : : Raziskave možnosti uporabe neparametrične regresije v iokatorjih izvorov akustične emisije Application of Non-parametric Reg

UDK : : Raziskave možnosti uporabe neparametrične regresije v iokatorjih izvorov akustične emisije Application of Non-parametric Reg UDK 681.88:681.586:519.68 Raziskave možnosti uporabe neparametrične regresije v iokatorjih izvorov akustične emisije Application of Non-parametric Regresion in Locators of Acoustic Emission Sources BORIS

Prikaži več

SKUPNE EU PRIJAVE PROJEKTOV RAZISKOVALNE SFERE IN GOSPODARSTVA Maribor, Inovacije v MSP Innovation in SMEs dr. Igor Milek, SME NKO SPIRIT S

SKUPNE EU PRIJAVE PROJEKTOV RAZISKOVALNE SFERE IN GOSPODARSTVA Maribor, Inovacije v MSP Innovation in SMEs dr. Igor Milek, SME NKO SPIRIT S SKUPNE EU PRIJAVE PROJEKTOV RAZISKOVALNE SFERE IN GOSPODARSTVA Maribor, 10.10.2016 Inovacije v MSP Innovation in SMEs dr. Igor Milek, SME NKO SPIRIT Slovenija, javna agencija Pregled predstavitve Koncept

Prikaži več

Strojniški vestnik - Journal of Mechanical Engineering 53(2007)1, UDK - UDC 62-23: Strokovni članek - Speciality paper (1.04) Teoretična

Strojniški vestnik - Journal of Mechanical Engineering 53(2007)1, UDK - UDC 62-23: Strokovni članek - Speciality paper (1.04) Teoretična Strojniški vestnik - Journal of Mechanical Engineering 53(2007)1, 26-47 UDK - UDC 62-23:681.892 Strokovni članek - Speciality paper (1.04) Teoretična in eksperimentalna analiza dinamike mehanizmov Rolamite

Prikaži več

Microsoft Word - P101-A doc

Microsoft Word - P101-A doc Š i f r a k a n d i d a t a : Državni izpitni center *P101A22112* SPOMLADANSKI IZPITNI ROK ANGLEŠČINA Izpitna pola 2 Pisno sporočanje A) Krajši pisni sestavek B) Vodeni spis Sobota, 29. maj 2010 / 60 minut

Prikaži več

Microsoft Word - A-3-Dezelak-SLO.doc

Microsoft Word - A-3-Dezelak-SLO.doc 20. posvetovanje "KOMUNALNA ENERGETIKA / POWER ENGINEERING", Maribor, 2011 1 ANALIZA OBRATOVANJA HIDROELEKTRARNE S ŠKOLJČNIM DIAGRAMOM Klemen DEŽELAK POVZETEK V prispevku je predstavljena možnost izvedbe

Prikaži več

Diapozitiv 1

Diapozitiv 1 ERASMUS+ MOBILNOSTI Štud. leto 2018/2019 http://www.erasmusplus.si/ Erasmus koda: SI LJUBLJA01 26 DRŽAV EU + LIBANON http://www.ectsma.eu/ectsma.html MEDICINSKA FAKULTETA je od leta 2008 polnopravna članica

Prikaži več

Osnovna šola dr. Jožeta Pučnika Osnovna Črešnjevec 47, 2130 Slovenska Bistrica Tel:(02) ; Fax: (02) www.

Osnovna šola dr. Jožeta Pučnika Osnovna Črešnjevec 47, 2130 Slovenska Bistrica Tel:(02) ; Fax: (02) www. Osnovna šola dr. Jožeta Pučnika Osnovna Črešnjevec 47, 2130 Slovenska Bistrica Tel:(02) 8055150; Fax: (02)8055158 o-cresnjevec.mb@guest.arnes.si; www.cresnjevec.si POROČILO NACIONALNEGA UNESCO PROJEKTA

Prikaži več

Microsoft Word - Delovni list.doc

Microsoft Word - Delovni list.doc SVETOVNE RELIGIJE Spoznal boš: krščanstvo - nastanek, širjenje, duhovna in socialna sporočila, vpliv na kulturo islam: nastanek, širjenje, duhovna in socialna sporočila, vpliv na kulturo stik med religijama

Prikaži več

Slide 1

Slide 1 INTERAKTIVNA MULTIMEDIJA P9 doc. dr. Matej Zajc QWERTY 1870 Christopher Latham Sholes Uporaba: tipkarski stroj: Remington Pozicija črk upočasni uporabnika Pogosto uporabljane črke so narazen The popular

Prikaži več

Strojni{ki vestnik 46(2000)10, Journal of Mechanical Engineering 46(2000)10, ISSN ISSN UDK : UDC 6

Strojni{ki vestnik 46(2000)10, Journal of Mechanical Engineering 46(2000)10, ISSN ISSN UDK : UDC 6 Strojni{ki vestnik 46(2)1,66-67 Journal of Mechanical Engineering 46(2)1,66-67 ISSN 39-248 ISSN 39-248 UDK 621.5.48:621.5.11 UDC 621.5.48:621.5.11 A. Izvirni Poredo{ znanstveni - D. @iher: ~lanek Vpliv

Prikaži več

Strojni{ki vestnik 46(2000)9, Journal of Mechanical Engineering 46(2000)9, ISSN ISSN UDK : UDC

Strojni{ki vestnik 46(2000)9, Journal of Mechanical Engineering 46(2000)9, ISSN ISSN UDK : UDC Strojni{ki vestnik 46(2000)9,595-606 Journal of Mechanical Engineering 46(2000)9,595-606 ISSN 0039-2480 ISSN 0039-2480 UDK 621.646.5:004.94 UDC 621.646.5:004.94 Izvirni znanstveni ~lanek N. Jeli} (1.01)

Prikaži več

VISOKA ZDRAVSTVENA ŠOLA V CELJU DIPLOMSKO DELO VLOGA MEDICINSKE SESTRE PRI OBRAVNAVI OTROKA Z EPILEPSIJO HEALTH EDUCATION OF A NURSE WHEN TREATING A C

VISOKA ZDRAVSTVENA ŠOLA V CELJU DIPLOMSKO DELO VLOGA MEDICINSKE SESTRE PRI OBRAVNAVI OTROKA Z EPILEPSIJO HEALTH EDUCATION OF A NURSE WHEN TREATING A C VISOKA ZDRAVSTVENA ŠOLA V CELJU DIPLOMSKO DELO VLOGA MEDICINSKE SESTRE PRI OBRAVNAVI OTROKA Z EPILEPSIJO HEALTH EDUCATION OF A NURSE WHEN TREATING A CHILD WITH EPILEPSY Študentka: SUZANA ZABUKOVNIK Mentorica:

Prikaži več

Strojniški vestnik (43) št. 7-8, str , 1997 Journal o f Mechanical Engineering (43) No. 7-8, pp , 1997 Tiskano v Sloveniji. Vse pravic

Strojniški vestnik (43) št. 7-8, str , 1997 Journal o f Mechanical Engineering (43) No. 7-8, pp , 1997 Tiskano v Sloveniji. Vse pravic Strojniški vestnik (43) št. 7-8, str. 281-288, 1997 Journal o f Mechanical Engineering (43) No. 7-8, pp. 281-288, 1997 Tiskano v Sloveniji. Vse pravice pridržane. Printed in Slovenia. All rights reserved.

Prikaži več

Strojniški vestnik (43) št. 3-4, str , 1997 Tiskano v Sloveniji. Vse pravice pridržane. UDK : Journal o f Mechanical Engineeri

Strojniški vestnik (43) št. 3-4, str , 1997 Tiskano v Sloveniji. Vse pravice pridržane. UDK : Journal o f Mechanical Engineeri Strojniški vestnik (43) št. 3-4, str. 7-28, 997 Tiskano v Sloveniji. Vse pravice pridržane. UDK 68.5.05:62.94 Journal o f Mechanical Engineering (43) No. 3-4, pp. 7-28, 997 Printed in Slovenia. All rights

Prikaži več

POPOLNI KVADER

POPOLNI KVADER List za mlade matematike, fizike, astronome in računalnikarje ISSN 031-662 Letnik 18 (1990/1991) Številka 3 Strani 134 139 Edvard Kramar: POPOLNI KVADER Ključne besede: matematika, geometrija, kvader,

Prikaži več

Strojni{ki vestnik 48(2002)6, Journal of Mechanical Engineering 48(2002)6, ISSN ISSN UDK :534.1:519.61/.64:

Strojni{ki vestnik 48(2002)6, Journal of Mechanical Engineering 48(2002)6, ISSN ISSN UDK :534.1:519.61/.64: Strojni{ki vestnik 48(2002)6,302-317 Journal of Mechanical Engineering 48(2002)6,302-317 ISSN 0039-2480 ISSN 0039-2480 UDK 681.5.015:534.1:519.61/.64:519.65 UDC 681.5.015:534.1:519.61/.64:519.65 Jak{i}

Prikaži več

Strojni{ki vestnik 48(2002)2,58-72 Journal of Mechanical Engineering 48(2002)2,58-72 ISSN ISSN UDK 532.5:519.61/.64 UDC 532.5:519.

Strojni{ki vestnik 48(2002)2,58-72 Journal of Mechanical Engineering 48(2002)2,58-72 ISSN ISSN UDK 532.5:519.61/.64 UDC 532.5:519. Strojni{ki vestnik 48(2002)2,58-72 Journal of Mechanical Engineering 48(2002)2,58-72 ISSN 0039-2480 ISSN 0039-2480 UDK 532.5:519.61/.64 UDC 532.5:519.61/.64 Po`arnik Izvirni znanstveni M. - [kerget ~lanek

Prikaži več

Microsoft Word - CNS-SW3 Quick Guide_SI

Microsoft Word - CNS-SW3 Quick Guide_SI 1.0 Gumbi in funkcije Canyon SkiMaster Artikel: CNS-SW3 Gumb za spreminjanje načinov [M] Za izbiro med načini Current Time, Daily Alarm, Chronograph, Timer in Dual Time. Za izbiro med načini Ski, Ski Recall,

Prikaži več

2_Novosti na področju zakonodaje

2_Novosti na področju zakonodaje Agencija za civilno letalstvo Slovenija Civil Aviation Agency Slovenia Novosti s področja regulative Matej Dolinar 2. konferenca na temo začetne in stalne plovnosti 11. Maj 2018 Vsebina Viri Spremembe

Prikaži več

Sprememba obsega pogodbe o vzpostavitvi in vzdrževanju akreditacije

Sprememba obsega pogodbe o vzpostavitvi in vzdrževanju akreditacije SEZNAM METOD PO KATERIH SE IZVAJAJO AKREDITIRANI POSTOPKI PRESKUSNEGA LABORATORIJA TEMAT D.O.O. (LP-097), REV. 01 LIST OF METHODS ACCORDING TO WHICH THE ACCREDITED PROCEDURES ARE BEING PERFORMED IN THE

Prikaži več

FGG13

FGG13 10.8 Metoda zveznega nadaljevanja To je metoda za reševanje nelinearne enačbe f(x) = 0. Če je težko poiskati začetni približek (še posebno pri nelinearnih sistemih), si lahko pomagamo z uvedbo dodatnega

Prikaži več

PRILOGA 1: SODELOVANJE NA JAVNEM NAROČILU - ENOSTAVNI POSTOPEK ANNEX 1: PARTICIPATION IN THE TENDER SIMPLIFIED PROCEDURE 1. OPIS PREDMETA JAVNEGA NARO

PRILOGA 1: SODELOVANJE NA JAVNEM NAROČILU - ENOSTAVNI POSTOPEK ANNEX 1: PARTICIPATION IN THE TENDER SIMPLIFIED PROCEDURE 1. OPIS PREDMETA JAVNEGA NARO PRILOGA 1: SODELOVANJE NA JAVNEM NAROČILU - ENOSTAVNI POSTOPEK ANNEX 1: PARTICIPATION IN THE TENDER SIMPLIFIED PROCEDURE 1. OPIS PREDMETA JAVNEGA NAROČILA/ SUBJEST OF TENDER: Predmet razpisa je svetovanje

Prikaži več

Strojni{ki vestnik 46(2000)8, Journal of Mechanical Engineering 46(2000)8, ISSN ISSN UDK :536.2:

Strojni{ki vestnik 46(2000)8, Journal of Mechanical Engineering 46(2000)8, ISSN ISSN UDK :536.2: Strojni{ki vestnik 46(2000)8,564-572 Journal of Mechanical Engineering 46(2000)8,564-572 ISSN 0039-2480 ISSN 0039-2480 UDK 621.313.12:536.2:621.574.013 UDC 621.313.12:536.2:621.574.013 J. Strokovni Remec

Prikaži več

Strojniški vestnik (43) št. 9-10, str , 1997 Journal o f Mechanical Engineering (43) No. 9-10, pp , 1997 Tiskano v Sloveniji. Vse prav

Strojniški vestnik (43) št. 9-10, str , 1997 Journal o f Mechanical Engineering (43) No. 9-10, pp , 1997 Tiskano v Sloveniji. Vse prav Strojniški vestnik (43) št. 9-10, str. 405-414, 1997 Journal o f Mechanical Engineering (43) No. 9-10, pp. 405-414, 1997 Tiskano v Sloveniji. Vse pravice pridržane. Printed in Slovenia. All rights reserved.

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNIŠTVO Matematika 4 Pini izpit 2. januar 22 Ime in priimek: Vpina št: Navodila Pazljivo preberite beedilo naloge, preden e lotite reševanja. Veljale bodo amo rešitve na papirju, kjer

Prikaži več

Srednja poklicna in strokovna šola Bežigrad - Ljubljana Ptujska ulica 6, 1000 Ljubljana STATISTIKA REGISTRIRANIH VOZIL V REPUBLIKI SLOVENIJI PROJEKTNA

Srednja poklicna in strokovna šola Bežigrad - Ljubljana Ptujska ulica 6, 1000 Ljubljana STATISTIKA REGISTRIRANIH VOZIL V REPUBLIKI SLOVENIJI PROJEKTNA Srednja poklicna in strokovna šola Bežigrad - Ljubljana Ptujska ulica 6, 1000 Ljubljana STATISTIKA REGISTRIRANIH VOZIL V REPUBLIKI SLOVENIJI PROJEKTNA NALOGA Mentor: Andrej Prašnikar (tehnično komuniciranje)

Prikaži več

Strojni{ki vestnik 47(2001)3, Journal of Mechanical Engineering 47(2001)3, ISSN ISSN UDK :531.4/ UDC 62

Strojni{ki vestnik 47(2001)3, Journal of Mechanical Engineering 47(2001)3, ISSN ISSN UDK :531.4/ UDC 62 Strojni{ki vestnik 47(2001)3,129-139 Journal of Mechanical Engineering 47(2001)3,129-139 ISSN 0039-2480 ISSN 0039-2480 UDK 620.171:531.4/539.62 UDC 620.171:531.4/539.62 Pregledni M. znanstveni Kalin -

Prikaži več

DOLŽNIK: MARJAN KOLAR - osebni steč aj Opr. št. St 3673/ 2014 OSNOVNI SEZNAM PREIZKUŠENIH TERJATEV prij ava terjatve zap. št. št. prij. matič na števi

DOLŽNIK: MARJAN KOLAR - osebni steč aj Opr. št. St 3673/ 2014 OSNOVNI SEZNAM PREIZKUŠENIH TERJATEV prij ava terjatve zap. št. št. prij. matič na števi DOLŽNIK: MARJAN KOLAR - osebni steč aj Opr. St 3673/ 2014 OSNOVNI SEZNAM PREIZKUŠENIH TERJATEV prij ava terjatve zap. prij. matič na številka firma / ime upnika glavnica obresti stroški skupaj prij ava

Prikaži več