FAKULTETA ZA STROJNISTVO Matematika 1 & 2 Pisni izpit 19. junij 1998 Ime in priimek: Letnik: Navodila Pazljivo preberite besedilo naloge preden se lot

Velikost: px
Začni prikazovanje s strani:

Download "FAKULTETA ZA STROJNISTVO Matematika 1 & 2 Pisni izpit 19. junij 1998 Ime in priimek: Letnik: Navodila Pazljivo preberite besedilo naloge preden se lot"

Transkripcija

1 FAKULTETA ZA STROJNISTVO Matematika & Pisni izit 9. junij 998 Ime in riimek: Letnik: Navodila Pazljivo reberite besedilo naloge reden se lotite resevanja. Veljale bodo samo resitve na airju, kjer so naloge. Nalog je 6, vsaka ima dva dela, ki sta vredna o tock, torej skuaj tock. Na razolago imate uri ( min). Naloga a. b. Skuaj Skuaj

2 . () Limite in odvodi: a. () Izracunajte limito log( + x + x ) x lim : x! x Resitev: Vrednost stevca in imenovalca je za x = enaka, zato lahko uorabimo L'Hositalovo ravilo. log( + x + x ) x lim = lim x! x x! = lim x! = lim x! +x +x+x x x x x( + x + x ) x ( + x + x ) = { L'Hosital: tocki. { Preverjanje, da sta stevec in imenovalec : tocki. { Odvajanje: tocki. { Prekladanje: tocki. b. () Izracunajte -ti odvod funkcije f(x) = log(x 3x + ) v tocki x =. Resitev: Funkcijo f(x) najrej reisemo v f(x) = log(x ) + log(x ) in odvajamo vsak clen osebej. Hitro se rericamo, da je za k (log(x )) (k) = ( )k (k )! (x ) k in (log(x )) (k) = ( )k (k )! (x ) k : Vstavimo x = in k = in dobimo f () () = 99! 99! : { Ideja z razceom: tocki. { Odvajanje rvega clena: tocki. { Odvajanje drugega clena: tocki. { Rezultat: 4 tocke.

3 . () Pri obeh sodnjih nalogah uostevajte kot dano, da je e x = dx = : a. () Naj bo (x) = R x e u = du. Izracunajte xe x = (x) dx : Resitev: Najrej moramo oaziti, da je (x) = e x =. Nato integriramo er artes. xe x = (x) dx = e x = (x) + e x = e x = dx = e x dx x = u= = = e u = du { Ugotovitev (x) = e x = : 4 tocke. { Pravilni er artes: 4 tocke. b. () Za oljuben a R izracunajte e x = e (a x) = dx : Namig: x + (a x) = (x a=) + a =. Resitev: Uostevamo namig in racunamo Z = e (a x) = dx = e x e (x a=) = a =4 dx = e (x a=) dx e u = = e a =4 = e a =4 = e a =4 du (x a=) = u = e a =4 { Doolnitev eksonenta do olnega kvadrata: tocki. { Izostavljanje e a =4 : tocki. { Uvedba nove sremenljivke: tocki. { Uostevanje danega dejstva: tocki. 3

4 3. () Valjasta osoda je do visine b naolnjena z vodo. Na visini a < b je odrtina s resekom! in na dnu je odrtina s resekom!. Oznacimo z h(t) visino gladine v trenutku t (glej sliko), ri cemer je h() = b. Funkcija h(t) ustreza diferencialni enacbi q q! gh +! g(h a) = Dh dokler gladina ne doseze rve odrtine in enacbi q! gh = Dh ; ko je gladina od visino a. Pri tem je g zemeljski osesek, dana konstanta in D loscina osnovne loskve valja. b h(t) a a. () Izracunajte cas, ki je otreben, da gladina doseze rvo odrtino. Resitev: Diferencialno enacbo reisemo v obliko h h + h a = ; kjer je =! g=d. Integriramo levo in desno stran in dobimo Iz zacetnih ogojev sledi h 3= 3a (h a)3= 3a = t + c : b 3= 3a (b a)3= 3a = c : Iz tega razberemo, da je cas, ki je otreben, da gladina doseze visino a enak t = 3a (b3= a 3= (b a) 3= ) : { Soznanje, da je enacba z locljivima sremenljivkama: tocki. { Presi v rimerno obliko: tocki. { Izracun integrala: tocki. { Uoraba zacetnega ogoja: tocki. 4

5 b. () Po koliksnem casu bo osoda razna? Resitev: Ocitno bo resitev t + t, kjer je t cas iz a. in t cas, ki je otreben, da iztece vsa voda otem, ko bo enkrat dosegla nivo a. e zacnemo o t znova meriti cas, moramo resiti drugo od zgornjih dveh diferencialnih enacb z zacetnim ogojem h() = a. Preisemo v h h = ; integriramo h = t + c in dolocimo c = a. Ko je h =, mora biti t = a=. eloten cas, dokler ne iztece vsa voda, je t + t. { Soznanje, da je cas t + t: tocki. { Preisovanje diferencialne enacbe v rimerno obliko: tocki. { Integracija: tocki. { Izracun casa t tocki. { Koncni rezultat: tocki. 5

6 4. () Dana naj bosta vektorja a in b, taka da je (a; b) 6=. Poiskati zelimo vektorja x in y, ki ustrezata enacbama a x + y = b b y + x = c ; kjer je c dan vektor. a. () Pokazite, da velja (a; b) x (b; x) a + x = c : Resitev: Iz rve enacbe izrazimo y = b a x in vstavimo v drugo enacbo. Dobimo b (b a x) + x = c : Levo stran retvorimo v kar je ze zelena enacba. b b + (a x) b = (a; b) x (b; x) a ; { Ideja izraziti y iz rve enacbe: 4 tocke. { Uoraba ravila za (a b) c: 4 tocke. b. () Izracunajte x in y. Namig: Uorabite a., tudi ce ne znate dokazati. Resitev: Iz a. razberemo, da otrebujemo le se (b; x). Drugo enacbo omnozimo skalarno z b in uostevamo linearnost skalarnega rodukta in dejstvo, da je by ravokoten na b. Ostane (x; b) = (c; b). Sledi x = c + (c; b) a + (a; b) : Ko enkrat imamo x lahko izrazimo se y iz rve enacbe. Dobimo y = b a c + (a; b) : { Oazanje, da manjka samo (b; x): tocki. { Uoraba druge enacbe za izracun (b; x): 4 tocke. { Izracun x: tocki. { Izracun y tocki. 6

7 5. () Matrika A naj bo dana z A A a. () Naj bo b = (; ; ; 4) T. Ali ima enacba Ax = b resitev? Resitev: Podobno kot ri b. dobimo z Gaussovim ostokom enacbo A 6 Sistem enacb nima resitev. { Smiselno izveden Gaussov ostoek: 6 tock. { Skle o neresljivosti: 4 tocke. b. () Pokazite, da za vektorje oblike b = (a; c; a; ) T enacba Ax = b ima resitev. Zaisite vse resitve te enacbe. Resitev: Izvedemo Gaussov ostoek ri cemer rej zamenjamo rvo in tretjo vrstico. 7 4 a 7 4 a a A! a A! a Delimo tretjo vrstico s 4 in jo ristejemo zadnji. Dobimo 7 4 a a A Rang razsirjene matrike je enak rangu matrike, torej sistem enacb ima resitev. Poljubno si izberimo x 4 in izrazimo resitve: x 3 = x a 8 x = c 8 Iz tega razberemo, da so vse resitve a 8 c 8 a 8 A + x 4 4 x = a 8 + x 4 4 : A : { Pravilno izveden Gauss: 4 tocke. { Skle o resljivosti: tocki. { Partikularna resitev: tocki. { Jedro: tocki. 7

8 6. () Dana naj bo matrika Q = + =4 = = =4 = = = = =4 = = + =4 a. () Pokazite, da je matrika Q rotacija v rostoru in izracunajte os in kot zasuka. Resitev: Da matrika Q redstavlja rotacijo v rostoru se zlahko rericamo tako, da reverimo QQ T = I in det(q) =. Vemo, da je os vrtenja lastni vektor, ki riada lastni vrednosti =. Najti moramo torej resitev sistema enacb ( = + =4)x x = + (= =4)x 3 = x = + ( = )x x 3 = = ( = =4)x + x = + ( = + =4)x 3 = Vemo, da je rang zgornjega sistema enak. Izberimo si x 3 = in resimo reostali sistem enacb. ( = + =4)x x = = = + =4 x = + ( = )x = = Pomnozimo drugo enacbo z = + in jo odstejmo rvi. Dobimo x = ali x =. Sledi se x =. Os se normiramo, tako da ima dolzino. Dobimo e = ( =; ; =). Za kot dobimo cos + = + ali cos = =. Torej je kot =4. Dolociti moramo se redznak. Vemo, da je A e 3 sin + ( cos )e e = : Sledi sin = = in je kot =4. { Preverjanje QQ T = I in det(q) = : tocki. { Izracun osi: 4 tocke. { Izracun kota: 4 tocke. b. () Izracunajte se Q 7. Resitev: Matrika Q 7 redstavlja zasuk okrog osi e za kot 7 =4. To je enako kot zasuk za kot =4, ki ga oisuje matrika Q. Torej je Q 7 = Q. { Ideja, da gre za veckratni zasuk: 4 tocke. { Ugotovitev, da gre za zasuk za =4: 4 tocke. { Ugotovitev, da je rezultat Q: tocki. 8

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNISTVO Matematika Pisni izpit. junij 22 Ime in priimek Vpisna st Navodila Pazljivo preberite besedilo naloge, preden se lotite resevanja. Veljale bodo samo resitve na papirju, kjer so

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNISTVO Matematika 2. kolokvij. december 2 Ime in priimek: Vpisna st: Navodila Pazljivo preberite besedilo naloge, preden se lotite resevanja. Veljale bodo samo resitve na papirju, kjer

Prikaži več

FAKULTETA ZA STROJNIŠTVO Matematika 2 Pisni izpit 9. junij 2005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite bese

FAKULTETA ZA STROJNIŠTVO Matematika 2 Pisni izpit 9. junij 2005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite bese FAKULTETA ZA STROJNIŠTVO Matematika Pisni izpit 9. junij 005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Veljale bodo

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 3. februar Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Veljale bodo samo rešitve na papirju, kjer

Prikaži več

Vaje: Matrike 1. Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N 0 1 n ; n N Pokaži, da je množica x 0 y 0 x

Vaje: Matrike 1. Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N 0 1 n ; n N Pokaži, da je množica x 0 y 0 x Vaje: Matrike 1 Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N n 1 1 0 1 ; n N 0 2 Pokaži, da je množica x 0 y 0 x y x + z ; x, y, z R y x z x vektorski podprostor v prostoru matrik

Prikaži več

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6. julij 2018 Navodila Pazljivo preberite be

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6. julij 2018 Navodila Pazljivo preberite be Ime in priimek: Vpisna št: FAKULEA ZA MAEMAIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6 julij 2018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Za pozitiven rezultat

Prikaži več

Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y

Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y 2 ). Rešitev: Diferencialna enačba ima ločljive spremenljivke,

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNIŠTVO Matematika 2. kolokvij 4. januar 212 Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Veljale bodo samo rešitve na papirju, kjer

Prikaži več

FGG13

FGG13 10.8 Metoda zveznega nadaljevanja To je metoda za reševanje nelinearne enačbe f(x) = 0. Če je težko poiskati začetni približek (še posebno pri nelinearnih sistemih), si lahko pomagamo z uvedbo dodatnega

Prikaži več

Matematika II (UNI) Izpit (23. avgust 2011) RE ITVE Naloga 1 (20 to k) Vektorja a = (0, 1, 1) in b = (1, 0, 1) oklepata trikotnik v prostoru. Izra una

Matematika II (UNI) Izpit (23. avgust 2011) RE ITVE Naloga 1 (20 to k) Vektorja a = (0, 1, 1) in b = (1, 0, 1) oklepata trikotnik v prostoru. Izra una Matematika II (UNI) Izpit (. avgust 11) RE ITVE Naloga 1 ( to k) Vektorja a = (, 1, 1) in b = (1,, 1) oklepata trikotnik v prostoru. Izra unajte: kot med vektorjema a in b, pravokotno projekcijo vektorja

Prikaži več

Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t

Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t 0.5 1.5 2.0 t a.) Nari²ite tri grafe: graf (klasi ne)

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-avgust-17.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-avgust-17.dvi Vpisna številka Priimek, ime Smer: K KT WA Izpit pri predmetu MATEMATIKA I Računski del Ugasni in odstrani mobilni telefon. Uporaba knjig in zapiskov ni dovoljena. Dovoljeni pripomočki so: kemični svinčnik,

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNIŠTVO Matematika 4 Pini izpit 2. januar 22 Ime in priimek: Vpina št: Navodila Pazljivo preberite beedilo naloge, preden e lotite reševanja. Veljale bodo amo rešitve na papirju, kjer

Prikaži več

prelom celoten_tisk.indd

prelom celoten_tisk.indd UVOD V PRIROČNI Priročnik je namenjen igralcem, ki igrajo igro Loto /39. V njem lahko najdete sto najrazličnejših sistemov, tako za tiste stare izkušene igralce, kakor tudi za tiste, ki bodo v igri sodelovali

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/testi in izpiti/ /IZPITI/FKKT-februar-14.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/testi in izpiti/ /IZPITI/FKKT-februar-14.dvi Kemijska tehnologija, Kemija Bolonjski univerzitetni program Smer: KT K WolframA: DA NE Računski del izpita pri predmetu MATEMATIKA I 6. 2. 2014 Čas reševanja je 75 minut. Navodila: Pripravi osebni dokument.

Prikaži več

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5. februar 2018 Navodila Pazljivo preberite

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5. februar 2018 Navodila Pazljivo preberite Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5 februar 018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Nalog je

Prikaži več

Rešene naloge iz Linearne Algebre

Rešene naloge iz Linearne Algebre UNIVERZA V LJUBLJANI FAKULTETA ZA RAČUNALNIŠTVO IN INFORMATIKO LABORATORIJ ZA MATEMATIČNE METODE V RAČUNALNIŠTVU IN INFORMATIKI Aleksandra Franc REŠENE NALOGE IZ LINEARNE ALGEBRE Študijsko gradivo Ljubljana

Prikaži več

DOMACA NALOGA - LABORATORIJSKE VAJE NALOGA 1 Dani sta kompleksni stevili z in z Kompleksno stevilo je definirano kot : z = a + b, a p

DOMACA NALOGA - LABORATORIJSKE VAJE NALOGA 1 Dani sta kompleksni stevili z in z Kompleksno stevilo je definirano kot : z = a + b, a p DOMACA NALOGA - LABORATORIJSKE VAJE NALOGA 1 Dani sta kompleksni stevili z 1 5 2 3 in z 2 3 8 5. Kompleksno stevilo je definirano kot : z = a + b, a predstavlja realno, b pa imaginarno komponento. z 1

Prikaži več

Vrste

Vrste Matematika 1 17. - 24. november 2009 Funkcija, ki ni algebraična, se imenuje transcendentna funkcija. Podrobneje si bomo ogledali naslednje transcendentne funkcije: eksponentno, logaritemsko, kotne, ciklometrične,

Prikaži več

Osnove matematicne analize 2018/19

Osnove matematicne analize  2018/19 Osnove matematične analize 2018/19 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D f R priredi natanko

Prikaži več

2. izbirni test za MMO 2017 Ljubljana, 17. februar Naj bosta k 1 in k 2 dve krožnici s središčema O 1 in O 2, ki se sekata v dveh točkah, ter

2. izbirni test za MMO 2017 Ljubljana, 17. februar Naj bosta k 1 in k 2 dve krožnici s središčema O 1 in O 2, ki se sekata v dveh točkah, ter 2. izbirni test za MMO 2017 Ljubljana, 17. februar 2017 1. Naj bosta k 1 in k 2 dve krožnici s središčema O 1 in O 2, ki se sekata v dveh točkah, ter naj bo A eno od njunih presečišč. Ena od njunih skupnih

Prikaži več

Slide 1

Slide 1 Vsak vektor na premici skozi izhodišče lahko zapišemo kot kjer je v smerni vektor premice in a poljubno število. r a v Vsak vektor na ravnini skozi izhodišče lahko zapišemo kot kjer sta v, v vektorja na

Prikaži več

ANALITIČNA GEOMETRIJA V RAVNINI

ANALITIČNA GEOMETRIJA V RAVNINI 3. Analitična geometrija v ravnini Osnovna ideja analitične geometrije je v tem, da vaskemu geometrijskemu objektu (točki, premici,...) pridružimo števila oz koordinate, ki ta objekt popolnoma popisujejo.

Prikaži več

Naloge iz kolokvijev Analize 1 (z rešitvami) E-UNI, GING, TK-UNI FERI dr. Iztok Peterin Maribor 2009 V tej datoteki so zbrane naloge iz kolokvijev za

Naloge iz kolokvijev Analize 1 (z rešitvami) E-UNI, GING, TK-UNI FERI dr. Iztok Peterin Maribor 2009 V tej datoteki so zbrane naloge iz kolokvijev za Naloge iz kolokvijev Analize (z rešitvami) E-UNI, GING, TK-UNI FERI dr. Iztok Peterin Maribor 2009 V tej datoteki so zbrane naloge iz kolokvijev za predmet Analiza na smereh E-UNI, GING in TK-UNI na Fakulteti

Prikaži več

ELEKTRIČNI NIHAJNI KROG TEORIJA Električni nihajni krog je električno vezje, ki služi za generacijo visokofrekvenče izmenične napetosti. V osnovi je "

ELEKTRIČNI NIHAJNI KROG TEORIJA Električni nihajni krog je električno vezje, ki služi za generacijo visokofrekvenče izmenične napetosti. V osnovi je ELEKTRIČNI NIHAJNI KROG TEORIJA Električni nihajni krog je električno vezje, ki služi za generacijo visokofrekvenče izmenične napetosti. V osnovi je "električno" nihalo, sestavljeno iz vzporedne vezave

Prikaži več

Poslovilno predavanje

Poslovilno predavanje Poslovilno predavanje Matematične teme z didaktiko Marko Razpet, Pedagoška fakulteta Ljubljana, 20. november 2014 1 / 32 Naše skupne ure Matematične tehnologije 2011/12 Funkcije več spremenljivk 2011/12

Prikaži več

PowerPoint Presentation

PowerPoint Presentation Integral rešujemo nalogo: Dana je funkcija f. Najdimo funkcijo F, katere odvod je enak f. Če je F ()=f() pravimo, da je F() primitivna funkcija za funkcijo f(). Primeri: f ( ) = cos f ( ) = sin f () =

Prikaži več

Popravki nalog: Numerična analiza - podiplomski študij FGG : popravljena naloga : popravljena naloga 14 domače naloge - 2. skupina

Popravki nalog: Numerična analiza - podiplomski študij FGG : popravljena naloga : popravljena naloga 14 domače naloge - 2. skupina Popravki nalog: Numerična analiza - podiplomski študij FGG 9.8.24: popravljena naloga 4 3..25: popravljena naloga 4 domače naloge - 2. skupina V drugem delu morate rešiti toliko nalog, da bo njihova skupna

Prikaži več

Microsoft Word - CelotniPraktikum_2011_verZaTisk.doc

Microsoft Word - CelotniPraktikum_2011_verZaTisk.doc Elektrotehniški praktikum Sila v elektrostatičnem polju Namen vaje Našli bomo podobnost med poljem mirujočih nabojev in poljem mas, ter kakšen vpliv ima relativna vlažnost zraka na hitrost razelektritve

Prikaži več

C:/Users/Matevz/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-januar-februar-15.dvi

C:/Users/Matevz/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-januar-februar-15.dvi Kemijska tehnologija, Kemija Bolonjski univerzitetni program Smer: KT K WolframA: DA NE Čas reševanja je 75 minut. Navodila: Računski del izpita pri predmetu MATEMATIKA I Ugasni in odstrani mobilni telefon.

Prikaži več

26. MEDNARODNO POSVETOVANJE»KOMUNALNA ENERGETIKA 2017«J. Pihler Model hitre regulabilne naprave za distribucijska omrežja JERNEJA BOGOVIČ & RAFAEL MIH

26. MEDNARODNO POSVETOVANJE»KOMUNALNA ENERGETIKA 2017«J. Pihler Model hitre regulabilne naprave za distribucijska omrežja JERNEJA BOGOVIČ & RAFAEL MIH 26. MEDNARODNO POSVETOVANJE»KOMUNALNA ENERGETIKA 2017«J. Pihler Model hitre regulabilne narave za distribucijska omrežja JERNEJA BOGOVIČ & RAFAEL MIHALIČ 31 Povzetek Ena izmed možnih rešitev za izboljšanje

Prikaži več

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 2017

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 2017 UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 217 ii Kazalo Diferencialni račun vektorskih funkcij 1 1.1 Skalarne funkcije...........................

Prikaži več

Microsoft PowerPoint _12_15-11_predavanje(1_00)-IR-pdf

Microsoft PowerPoint _12_15-11_predavanje(1_00)-IR-pdf uporaba for zanke i iz korak > 0 oblika zanke: for i iz : korak : ik NE i ik DA stavek1 stavek2 stavekn stavek1 stavek2 stavekn end i i + korak I&: P-XI/1/17 uporaba for zanke i iz korak < 0 oblika zanke:

Prikaži več

Poglavje 3 Reševanje nelinearnih enačb Na iskanje rešitve enačbe oblike f(x) = 0 (3.1) zelo pogosto naletimo pri reševanju tehničnih problemov. Pri te

Poglavje 3 Reševanje nelinearnih enačb Na iskanje rešitve enačbe oblike f(x) = 0 (3.1) zelo pogosto naletimo pri reševanju tehničnih problemov. Pri te Poglavje 3 Reševanje nelinearnih enačb Na iskanje rešitve enačbe oblike f(x) = 0 (3.1) zelo pogosto naletimo pri reševanju tehničnih problemov. Pri tem je lahko nelinearna funkcija f podana eksplicitno,

Prikaži več

P181C10111

P181C10111 Š i f r a k a n d i d a t a : Državni izpitni center *P181C10111* SPOMLADANSKI IZPITNI ROK MATEMATIKA Izpitna pola Sobota, 9. junij 018 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno

Prikaži več

Energijski prihranki zamenjave starih kotlov z novimi tehnologijami

Energijski prihranki zamenjave starih kotlov z novimi tehnologijami Prednosti kondenzacijske tehnike Vincenc Butala, Uroš Stritih Univerza v Ljubljani, Fakulteta za strojništvo, Aškerčeva 6, Ljubljana, Slovenija Povzetek Večjo učinkovitost kurilnih narav oziroma ogrevalnih

Prikaži več

PRIPRAVA NA 1. Š. N.: KVADRATNA FUNKCIJA IN KVADRATNA ENAČBA 1. Izračunaj presečišča parabole y=5 x x 8 s koordinatnima osema. R: 2 0, 8, 4,0,,0

PRIPRAVA NA 1. Š. N.: KVADRATNA FUNKCIJA IN KVADRATNA ENAČBA 1. Izračunaj presečišča parabole y=5 x x 8 s koordinatnima osema. R: 2 0, 8, 4,0,,0 PRIPRAVA NA 1. Š. N.: KVADRATNA FUNKCIJA IN KVADRATNA ENAČBA 1. Izračunaj presečišča parabole y=5 x +18 x 8 s koordinatnima osema. R: 0, 8, 4,0,,0 5. Zapiši enačbo kvadratne funkcije f (x )=3 x +1 x+8

Prikaži več

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Katja Ciglar Analiza občutljivosti v Excel-u Seminarska naloga pri predmetu Optimizacija v fina

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Katja Ciglar Analiza občutljivosti v Excel-u Seminarska naloga pri predmetu Optimizacija v fina UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Katja Ciglar Analiza občutljivosti v Excel-u Seminarska naloga pri predmetu Optimizacija v financah Ljubljana, 2010 1. Klasični pristop k analizi

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-junij-17.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-junij-17.dvi Vpisna številka Priimek, ime Smer: K KT WA Izpit pri predmetu MATEMATIKA I Računski del Ugasni in odstrani mobilni telefon. Uporaba knjig in zapiskov ni dovoljena. Dovoljeni pripomočki so: kemični svinčnik,

Prikaži več

Študij AHITEKTURE IN URBANIZMA, šol. l. 2016/17 Vaje iz MATEMATIKE 9. Integral Določeni integral: Določeni integral: Naj bo f : [a, b] R funkcija. Int

Študij AHITEKTURE IN URBANIZMA, šol. l. 2016/17 Vaje iz MATEMATIKE 9. Integral Določeni integral: Določeni integral: Naj bo f : [a, b] R funkcija. Int Študij AHITEKTURE IN URBANIZMA, šol. l. 6/7 Vje iz MATEMATIKE 9. Integrl Določeni integrl: Določeni integrl: Nj bo f : [, b] R funkcij. Intervl [, b] rzdelimo n n podintervlov z delilnimi točkmi: = x

Prikaži več

REŠEVANJE DIFERENCIALNIH ENAČB Z MEHANSKIMI RAČUNSKIMI STROJI Pino Koc Seminar za učitelje matematike FMF, Ljubljana, 25. september 2015 Vir: [1] 1

REŠEVANJE DIFERENCIALNIH ENAČB Z MEHANSKIMI RAČUNSKIMI STROJI Pino Koc Seminar za učitelje matematike FMF, Ljubljana, 25. september 2015 Vir: [1] 1 REŠEVANJE DIFERENCIALNIH ENAČB Z MEHANSKIMI RAČUNSKIMI STROJI Pino Koc Seminar za učitelje matematike FMF, Ljubljana, 25. september 2015 Vir: [1] 1 Nekateri pripomočki in naprave za računanje: 1a) Digitalni

Prikaži več

LaTeX slides

LaTeX slides Linearni in nelinearni modeli Milena Kovač 22. december 2006 Biometrija 2006/2007 1 Linearni, pogojno linearni in nelinearni modeli Kriteriji za razdelitev: prvi parcialni odvodi po parametrih Linearni

Prikaži več

(Microsoft PowerPoint - vorsic ET 9.2 OES matri\350ne metode 2011.ppt [Compatibility Mode])

(Microsoft PowerPoint - vorsic ET 9.2 OES matri\350ne metode 2011.ppt [Compatibility Mode]) 8.2 OBRATOVANJE ELEKTROENERGETSKEGA SISTEMA o Matrične metode v razreševanju el. omrežij Matrične enačbe električnih vezij Numerične metode za reševanje linearnih in nelinearnih enačb Sistem algebraičnih

Prikaži več

11. Navadne diferencialne enačbe Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogo

11. Navadne diferencialne enačbe Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogo 11. Navadne diferencialne enačbe 11.1. Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogoju y(x 0 ) = y 0, kjer je f dana dovolj gladka funkcija

Prikaži več

Univerza v Novi Gorici Fakulteta za aplikativno naravoslovje Fizika (I. stopnja) Mehanika 2014/2015 VAJE Gravitacija - ohranitveni zakoni

Univerza v Novi Gorici Fakulteta za aplikativno naravoslovje Fizika (I. stopnja) Mehanika 2014/2015 VAJE Gravitacija - ohranitveni zakoni Univerza v Novi Gorici Fakulteta za aplikativno naravoslovje Fizika (I. stopnja) Mehanika 2014/2015 VAJE 12. 11. 2014 Gravitacija - ohranitveni zakoni 1. Telo z maso M je sestavljeno iz dveh delov z masama

Prikaži več

P182C10111

P182C10111 Š i f r a k a n d i d a t a : Državni izpitni center *P18C10111* JESENSKI IZPITNI ROK MATEMATIKA Izpitna pola Ponedeljek, 7. avgust 018 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno

Prikaži več

DN5(Kor).dvi

DN5(Kor).dvi Koreni Število x, ki reši enačbo x n = a, imenujemo n-ti koren števila a in to označimo z n a. Pri tem je n naravno število, a pa poljubno realno število. x = n a x n = a. ( n a ) n = a. ( n a ) m = n

Prikaži več

Brownova kovariancna razdalja

Brownova kovariancna razdalja Brownova kovariančna razdalja Nace Čebulj Fakulteta za matematiko in fiziko 8. januar 2015 Nova mera odvisnosti Motivacija in definicija S primerno izbiro funkcije uteži w(t, s) lahko definiramo mero odvisnosti

Prikaži več

Domače vaje iz LINEARNE ALGEBRE Marjeta Kramar Fijavž Fakulteta za gradbeništvo in geodezijo Univerze v Ljubljani 2007/08 Kazalo 1 Vektorji 2 2 Analit

Domače vaje iz LINEARNE ALGEBRE Marjeta Kramar Fijavž Fakulteta za gradbeništvo in geodezijo Univerze v Ljubljani 2007/08 Kazalo 1 Vektorji 2 2 Analit Domače vaje iz LINEARNE ALGEBRE Marjeta Kramar Fijavž Fakulteta za gradbeništvo in geodezijo Univerze v Ljubljani 007/08 Kazalo Vektorji Analitična geometrija 7 Linearni prostori 0 4 Evklidski prostori

Prikaži več

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 31. avgust 2018 Navodila Pazljivo preberite

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 31. avgust 2018 Navodila Pazljivo preberite Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 31 avgust 018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Za pozitiven

Prikaži več

Microsoft Word - UP_Lekcija04_2014.docx

Microsoft Word - UP_Lekcija04_2014.docx 4. Zanka while Zanke pri programiranju uporabljamo, kadar moramo stavek ali skupino stavkov izvršiti večkrat zaporedoma. Namesto, da iste (ali podobne) stavke pišemo n-krat, jih napišemo samo enkrat in

Prikaži več

Univerza v Mariboru Fakulteta za naravoslovje in matematiko Oddelek za matematiko in računalništvo Enopredmetna matematika IZPIT IZ VERJETNOSTI IN STA

Univerza v Mariboru Fakulteta za naravoslovje in matematiko Oddelek za matematiko in računalništvo Enopredmetna matematika IZPIT IZ VERJETNOSTI IN STA Enopredmetna matematika IN STATISTIKE Maribor, 31. 01. 2012 1. Na voljo imamo kovanca tipa K 1 in K 2, katerih verjetnost, da pade grb, je p 1 in p 2. (a) Istočasno vržemo oba kovanca. Verjetnost, da je

Prikaži več

'Kombinatoricna optimizacija / Lokalna optimizacija'

'Kombinatoricna optimizacija / Lokalna optimizacija' Kombinatorična optimizacija 3. Lokalna optimizacija Vladimir Batagelj FMF, matematika na vrhu različica: 15. november 2006 / 23 : 17 V. Batagelj: Kombinatorična optimizacija / 3. Lokalna optimizacija 1

Prikaži več

FGG02

FGG02 6.6 Simetrični problem lastnih vrednosti Če je A = A T, potem so lastne vrednosti realne, matrika pa se da diagonalizirati. Schurova forma za simetrično matriko je diagonalna matrika. Lastne vrednosti

Prikaži več

UM FKKT, Bolonjski visoko²olski program Kemijska tehnologija Vpisna ²tevilka Priimek, ime 3. test pri predmetu MATEMATIKA II Ra unski del

UM FKKT, Bolonjski visoko²olski program Kemijska tehnologija Vpisna ²tevilka Priimek, ime 3. test pri predmetu MATEMATIKA II Ra unski del UM FKKT, Bolonjski visoko²olski program Kemijska tehnologija Vpisna ²tevilka Priimek, ime 3. test pri predmetu MATEMATIKA II Ra unski del 13. 6. 2016 Navodila: Pripravi osebni dokument. Ugasni in odstrani

Prikaži več

Funkcije in grafi

Funkcije in grafi 14 Funkcije in grafi Funkcije Zapisi funkcij Sorazmernost Obratna sorazmernost Potenčne funkcije Polinomske funkcije Druge funkcije Prileganje podatkom 14.1 Funkcije Spremenljivke Odvisnost spremenljivk

Prikaži več

POPOLNI KVADER

POPOLNI KVADER List za mlade matematike, fizike, astronome in računalnikarje ISSN 031-662 Letnik 18 (1990/1991) Številka 3 Strani 134 139 Edvard Kramar: POPOLNI KVADER Ključne besede: matematika, geometrija, kvader,

Prikaži več

M

M Š i f r a k a n d i d a t a : Državni izpitni center *M16140111* Osnovna raven MATEMATIKA Izpitna pola 1 SPOMLADANSKI IZPITNI ROK Sobota, 4. junij 016 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat

Prikaži več

MATEMATIKA – IZPITNA POLA 1 – OSNOVNA IN VIŠJA RAVEN

MATEMATIKA – IZPITNA POLA 1 – OSNOVNA IN VIŠJA RAVEN Državi izpiti ceter *M840* Osova i višja rave MATEMATIKA JESENSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Poedeljek, 7. avgust 08 SPLOŠNA MATURA Državi izpiti ceter Vse pravice pridržae. M8-40-- IZPITNA POLA

Prikaži več

Prevodnik_v_polju_14_

Prevodnik_v_polju_14_ 14. Prevodnik v električnem polju Vsebina poglavja: prevodnik v zunanjem električnem polju, površina prevodnika je ekvipotencialna ploskev, elektrostatična indukcija (influenca), polje znotraj votline

Prikaži več

NEKAJ VPRAŠANJ IZ MATEMATIKE 2 1. Katero točko evklidskega prostora R n imenujemo notranjo (zunanjo, robno) točko množice M R n? 2. Za poljubno množic

NEKAJ VPRAŠANJ IZ MATEMATIKE 2 1. Katero točko evklidskega prostora R n imenujemo notranjo (zunanjo, robno) točko množice M R n? 2. Za poljubno množic NEKAJ VPRAŠANJ IZ MATEMATIKE 2 1. Katero točko evklidskega prostora R n imenujemo notranjo (zunanjo, robno) točko množice M R n? 2. Za poljubno množico M R n evklidskega prostora R n definirajte množice

Prikaži več

Mladi za napredek Maribora srečanje DOLŽINA»SPIRALE«Matematika Raziskovalna naloga Februar 2015

Mladi za napredek Maribora srečanje DOLŽINA»SPIRALE«Matematika Raziskovalna naloga Februar 2015 Mladi za napredek Maribora 015 3. srečanje DOLŽINA»SPIRALE«Matematika Raziskovalna naloga Februar 015 Kazalo 1. Povzetek...3. Uvod...4 3. Spirala 1...5 4. Spirala...6 5. Spirala 3...8 6. Pitagorejsko drevo...10

Prikaži več

Matematika 2

Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 23. april 2014 Soda in liha Fourierjeva vrsta Opomba Pri razvoju sode periodične funkcije f v Fourierjevo vrsto v razvoju nastopajo

Prikaži več

Matematika II (UN) 1. kolokvij (13. april 2012) RE ITVE Naloga 1 (25 to k) Dana je linearna preslikava s predpisom τ( x) = A x A 1 x, kjer je A

Matematika II (UN) 1. kolokvij (13. april 2012) RE ITVE Naloga 1 (25 to k) Dana je linearna preslikava s predpisom τ( x) = A x A 1 x, kjer je A Matematika II (UN) 1 kolokvij (13 april 01) RE ITVE Naloga 1 (5 to k) Dana je linearna preslikava s predpisom τ( x) = A x A 1 x, kjer je 0 1 1 A = 1, 1 A 1 pa je inverzna matrika matrike A a) Poi² ite

Prikaži več

Uvod v diferencialne enačbe, kompleksno in Fourierovo analizo Bojan Magajna Fakulteta za matematiko in fiziko, Univerza v Ljubljani

Uvod v diferencialne enačbe, kompleksno in Fourierovo analizo Bojan Magajna Fakulteta za matematiko in fiziko, Univerza v Ljubljani Uvod v diferencialne enačbe, kompleksno in Fourierovo analizo Bojan Magajna Fakulteta za matematiko in fiziko, Univerza v Ljubljani UVOD V DIFERENCIALNE ENAČBE, KOMPLEKSNO IN FOURIEROVO ANALIZO Povzetek

Prikaži več

Urejevalna razdalja Avtorji: Nino Cajnkar, Gregor Kikelj Mentorica: Anja Petković 1 Motivacija Tajnica v posadki MARS - a je pridna delavka, ampak se

Urejevalna razdalja Avtorji: Nino Cajnkar, Gregor Kikelj Mentorica: Anja Petković 1 Motivacija Tajnica v posadki MARS - a je pridna delavka, ampak se Urejevalna razdalja Avtorji: Nino Cajnkar, Gregor Kikelj Mentorica: Anja Petković 1 Motivacija Tajnica v posadki MARS - a je pridna delavka, ampak se velikokrat zmoti. Na srečo piše v programu Microsoft

Prikaži več

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO ODDELEK ZA FIZIKO Peter Smerkol SEMINARSKA NALOGA Brownovo Gibanje MENTOR: dr. Tomaž Podobnik L

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO ODDELEK ZA FIZIKO Peter Smerkol SEMINARSKA NALOGA Brownovo Gibanje MENTOR: dr. Tomaž Podobnik L UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO ODDELEK ZA FIZIKO Peter Smerkol SEMINARSKA NALOGA Brownovo Gibanje MENTOR: dr. Tomaž Podobnik Ljubljana, Marec 2007 Povzetek Najpreprostejši model

Prikaži več

EKVITABILNE PARTICIJE IN TOEPLITZOVE MATRIKE Aleksandar Jurišić Politehnika Nova Gorica in IMFM Vipavska 13, p.p. 301, Nova Gorica Slovenija Štefko Mi

EKVITABILNE PARTICIJE IN TOEPLITZOVE MATRIKE Aleksandar Jurišić Politehnika Nova Gorica in IMFM Vipavska 13, p.p. 301, Nova Gorica Slovenija Štefko Mi EKVITABILNE PARTICIJE IN TOEPLITZOVE MATRIKE Aleksandar Jurišić Politehnika Nova Gorica in IMFM Vipavska 13, p.p. 301, Nova Gorica Slovenija Štefko Miklavič 30. okt. 2003 Math. Subj. Class. (2000): 05E{20,

Prikaži več

Bojan Kuzma ZBIRKA IZPITNIH VPRAŠANJ PRI PREDMETIH ANALIZA I IN ANALIZA II (Zbirka Izbrana poglavja iz matematike, št. 1) Urednica zbirke: Petruša Mih

Bojan Kuzma ZBIRKA IZPITNIH VPRAŠANJ PRI PREDMETIH ANALIZA I IN ANALIZA II (Zbirka Izbrana poglavja iz matematike, št. 1) Urednica zbirke: Petruša Mih Bojan Kuzma ZBIRKA IZPITNIH VPRAŠANJ PRI PREDMETIH ANALIZA I IN ANALIZA II (Zbirka Izbrana poglavja iz matematike, št. 1) Urednica zbirke: Petruša Miholič Izdala in založila: Knjižnica za tehniko, medicino

Prikaži več

RAM stroj Nataša Naglič 4. junij RAM RAM - random access machine Bralno pisalni, eno akumulatorski računalnik. Sestavljajo ga bralni in pisalni

RAM stroj Nataša Naglič 4. junij RAM RAM - random access machine Bralno pisalni, eno akumulatorski računalnik. Sestavljajo ga bralni in pisalni RAM stroj Nataša Naglič 4. junij 2009 1 RAM RAM - random access machine Bralno pisalni, eno akumulatorski računalnik. Sestavljajo ga bralni in pisalni trak, pomnilnik ter program. Bralni trak- zaporedje

Prikaži več

Microsoft Word - Astronomija-Projekt19fin

Microsoft Word - Astronomija-Projekt19fin Univerza v Ljubljani Fakulteta za matematiko in fiziko Jure Hribar, Rok Capuder Radialna odvisnost površinske svetlosti za eliptične galaksije Projektna naloga pri predmetu astronomija Ljubljana, april

Prikaži več

5 SIMPLICIALNI KOMPLEKSI Definicija 5.1 Vektorji r 0,..., r k v R n so afino neodvisni, če so vektorji r 1 r 0, r 2 r 0,..., r k r 0 linearno neodvisn

5 SIMPLICIALNI KOMPLEKSI Definicija 5.1 Vektorji r 0,..., r k v R n so afino neodvisni, če so vektorji r 1 r 0, r 2 r 0,..., r k r 0 linearno neodvisn 5 SIMPLICIALNI KOMPLEKSI Definicija 5.1 Vektorji r 0,..., r k v R n so afino neodvisni, če so vektorji r 1 r 0, r 2 r 0,..., r k r 0 linearno neodvisni. Če so krajevni vektorji do točk a 0,..., a k v R

Prikaži več

Microsoft Word - 1.vaja Prednapeta votla plošča_17_18a

Microsoft Word - 1.vaja Prednapeta votla plošča_17_18a 1. vaja: REDNET VOTL LOŠČ 65 dokaz varnosti na mejna stanja Slika 1: rini adhezijskega rednaenjanja VSEBN: Slika : rini naknadnega rednaenjanja RRV OSNOVNH ODTKOV ROBLEM... 1. ZSNOV.... OBTEŽB LOŠČE...

Prikaži več

Matematika 2 - ustna vprašanja 1) Determinanta, poddeterminanta (1,3)...3 2) Lastnosti determinante (5)...3 3) Cramerjevo pravilo (9)...3 4) Računanje

Matematika 2 - ustna vprašanja 1) Determinanta, poddeterminanta (1,3)...3 2) Lastnosti determinante (5)...3 3) Cramerjevo pravilo (9)...3 4) Računanje Matematika 2 - ustna vprašanja 1) Determinanta, poddeterminanta (1,3)...3 2) Lastnosti determinante (5)...3 3) Cramerjevo pravilo (9)...3 4) Računanje z vektorji, kot med vektorij (11)...3 5) Skalarni

Prikaži več

3. Metode, ki temeljijo na minimalnem ostanku Denimo, da smo z Arnoldijevim algoritmom zgenerirali ON bazo podprostora Krilova K k (A, r 0 ) in velja

3. Metode, ki temeljijo na minimalnem ostanku Denimo, da smo z Arnoldijevim algoritmom zgenerirali ON bazo podprostora Krilova K k (A, r 0 ) in velja 3. Metode, ki temeljijo na minimalnem ostanku Denimo, da smo z Arnoldijevim algoritmom zgenerirali ON bazo podprostora Krilova K k (A, r 0 ) in velja AV k = V k H k + h k+1,k v k+1 e T k = V kh k+1,k.

Prikaži več

TLAK PLOŠČINA 1. Zapiši oznako in enoto za ploščino. 2. Zapiši pretvornik pri ploščini in po velikosti zapiši enote od mm 2 do km Nariši skico z

TLAK PLOŠČINA 1. Zapiši oznako in enoto za ploščino. 2. Zapiši pretvornik pri ploščini in po velikosti zapiši enote od mm 2 do km Nariši skico z TLAK PLOŠČINA 1. Zapiši oznako in enoto za ploščino. 2. Zapiši pretvornik pri ploščini in po velikosti zapiši enote od mm 2 do km 2. 3. Nariši skico za kvadrat in zapiši, kako bi izračunal ploščino kvadrata.

Prikaži več

Strokovni izobraževalni center Ljubljana, Srednja poklicna in strokovna šola Bežigrad PRIPRAVE NA PISNI DEL IZPITA IZ MATEMATIKE 2. letnik nižjega pok

Strokovni izobraževalni center Ljubljana, Srednja poklicna in strokovna šola Bežigrad PRIPRAVE NA PISNI DEL IZPITA IZ MATEMATIKE 2. letnik nižjega pok Strokovni izobraževalni center Ljubljana, Srednja poklicna in strokovna šola Bežigrad PRIPRAVE NA PISNI DEL IZPITA IZ MATEMATIKE 2. letnik nižjega poklicnega izobraževanja NAVODILA: Izpit iz matematike

Prikaži več

Osnove statistike v fizični geografiji 2

Osnove statistike v fizični geografiji 2 Osnove statistike v geografiji - Metodologija geografskega raziskovanja - dr. Gregor Kovačič, doc. Bivariantna analiza Lastnosti so med sabo odvisne (vzročnoposledično povezane), kadar ena lastnost (spremenljivka

Prikaži več

CpE & ME 519

CpE & ME 519 2D Transformacije Zakaj potrebujemo transformacije? Animacija Več instanc istega predmeta, variacije istega objekta na sceni Tvorba kompliciranih predmetov iz bolj preprostih Transformacije gledanja Kaj

Prikaži več

VEKTORSKE FUNKCIJE Vektorske funkcije so funkcije, katerih rezultat preslikave je vektor v prostoru. Preslikave so: preslikava rezultat 3 f(t) = ( x(t

VEKTORSKE FUNKCIJE Vektorske funkcije so funkcije, katerih rezultat preslikave je vektor v prostoru. Preslikave so: preslikava rezultat 3 f(t) = ( x(t VETORSE FUNCIJE Vektorske funkcije so funkcije, katerih rezultat preslikave je vektor v prostoru. reslikave so: preslikava rezultat 3 f(t) = ( x(t),y(t),z(t) ) 3 f(u,v) = ( x(u,v),y(u,v),z(u,v) ). 3 3

Prikaži več

predstavitev fakultete za matematiko 2017 A

predstavitev fakultete za matematiko 2017 A ZAKAJ ŠTUDIJ MATEMATIKE? Ker vam je všeč in vam gre dobro od rok! lepa, eksaktna veda, ki ne zastara matematičnoanalitično sklepanje je uporabno povsod matematiki so zaposljivi ZAKAJ V LJUBLJANI? najdaljša

Prikaži več

Integrali odvisni od parametra Naj bo f : D = [a; b] [c; d]! R integrabilna na [a; b]. Deniramo funkcijo F : [c; d]! R z Z b F (y) = f (x; y) dx in im

Integrali odvisni od parametra Naj bo f : D = [a; b] [c; d]! R integrabilna na [a; b]. Deniramo funkcijo F : [c; d]! R z Z b F (y) = f (x; y) dx in im Integrli odvisni od prmetr Nj o f : D = [; ] [c; d]! R integriln n [; ]. Denirmo funkcijo F : [c; d]! R z F () = f (; ) d in imenujemo F integrl odvisen od prmetr. Izreki: Ce je f zvezn n D, je F zvezn

Prikaži več

Uvodno predavanje

Uvodno predavanje RAČUNALNIŠKA ORODJA Simulacije elektronskih vezij M. Jankovec 2.TRAN analiza (Analiza v časovnem prostoru) Iskanje odziva nelinearnega dinamičnega vezja v časovnem prostoru Prehodni pojavi Stacionarno

Prikaži več

VAJE

VAJE UČNI LIST Kotne funkcije v pravokotnem trikotniku 1) Spremeni zapis kota iz decimalnega v stopinje in minute ali obratno: a),2 d) 19,1 8,9 e) 28 c) 2 f) 8 2) Spremeni zapis kota iz decimalnega v stopinje

Prikaži več

Klasična teorija polja L. D. Landau in E. M. Lifšic Inštitut za fizikalne naloge, Akademija za znanost ZSSR, Moskva Prevod: Rok Žitko, IJS 29. decembe

Klasična teorija polja L. D. Landau in E. M. Lifšic Inštitut za fizikalne naloge, Akademija za znanost ZSSR, Moskva Prevod: Rok Žitko, IJS 29. decembe Klasična teorija polja L. D. Landau in E. M. Lifšic Inštitut za fizikalne naloge, Akademija za znanost ZSSR, Moskva Prevod: Rok Žitko, IJS 29. december 2003 Kazalo 1 Načelo relativnosti 6 1 Hitrost širjenja

Prikaži več

Matematika Uporaba integrala (1) Izračunaj ploščine likov pod grafi danih funkcij: (a) f(x) = x 2 na [0, 2], (b) f(x) = e x na [0, 1], (c) f(x) = x si

Matematika Uporaba integrala (1) Izračunaj ploščine likov pod grafi danih funkcij: (a) f(x) = x 2 na [0, 2], (b) f(x) = e x na [0, 1], (c) f(x) = x si Mtemtik Uporb integrl () Izrčunj ploščine likov pod grfi dnih funkcij: () f() n [ ] (b) f() e n [ ] (c) f() sin n [ π]. Rešitev: Nj bo f zvezn pozitivn funkcij n intervlu [ b]. Ploščin lik ki leži pod

Prikaži več

Numeri na analiza - podiplomski ²tudij FGG doma e naloge - 1. skupina V prvem delu morate re²iti toliko nalog, da bo njihova skupna vsota vsaj 10 to k

Numeri na analiza - podiplomski ²tudij FGG doma e naloge - 1. skupina V prvem delu morate re²iti toliko nalog, da bo njihova skupna vsota vsaj 10 to k Numeri na analiza - podiplomski ²tudij FGG doma e naloge -. skupina V prvem delu morate re²iti toliko nalog, da bo njihova skupna vsota vsaj 0 to k in da bo vsaj ena izmed njih vredna vsaj 4 to ke. Za

Prikaži več

Microsoft Word - Seštevamo stotice.doc

Microsoft Word - Seštevamo stotice.doc UČNA PRIPRAVA: MATEMATIKA UČNI SKLOP: Računske operacije UČNA TEMA: Seštevamo in odštevamo stotice Seštevamo stotice UČNE METODE: razlaga, prikazovanje, demonstracija, grafično in pisno delo UČNE OBLIKE:

Prikaži več

Identifikacija Mednarodna raziskava trendov znanja matematike in naravoslovja Vprašalnik za učitelje Matematika International Association for the Eval

Identifikacija Mednarodna raziskava trendov znanja matematike in naravoslovja Vprašalnik za učitelje Matematika International Association for the Eval Identifikacija Mednarodna raziskava trendov znanja matematike in naravoslovja Vprašalnik za učitelje Matematika International Association for the Evaluation of Educational Achievement Copyright IEA, 2008

Prikaži več

Zgledi:

Zgledi: a) za funkcijo f(x)= 1/3x 1 izračunaj ničlo, zapiši začetno vrednost in nariši graf (x=3, začetna vrednost: f(0)= 1, graf seka abscisno os v točki (3,0), ordinatno os pa v točki (0, 1)) b) nariši graf

Prikaži več

Microsoft PowerPoint - Mocnik.pptx

Microsoft PowerPoint - Mocnik.pptx MATEMATIČNA PISMENOST IN MATEMATIČNI PROBLEMI Metoda Močnik in Alenka Podbrežnik KAJ NAS JE ZANIMALO? ugotoviti, v kolikšni meri so učenci uspešni pri samostojnem, nevodenemreševanju matematičnih besedilnih,

Prikaži več

FGG14

FGG14 Iterativne metode podprostorov Iterativne metode podprostorov uporabljamo za numerično reševanje linearnih sistemov ali računanje lastnih vrednosti problemov z velikimi razpršenimi matrikami, ki so prevelike,

Prikaži več

Velika logična pošast Eulerjeva metoda reševanja diofantskih enačb Dana je diofantska enačba ax+by=c. Enačbo rešujemo samo v primeru, če sta a in b me

Velika logična pošast Eulerjeva metoda reševanja diofantskih enačb Dana je diofantska enačba ax+by=c. Enačbo rešujemo samo v primeru, če sta a in b me Velika logična pošast Eulerjeva metoda reševanja diofantskih enačb Dana je diofantska enačba ax+by=c. Enačbo rešujemo samo v primeru, če sta a in b medseboj tuji naravni števili.. 0x+y=4 2 Eulerjeva metoda

Prikaži več

Univerza na Primorskem FAMNIT, MFI Vrednotenje zavarovalnih produktov Seminarska naloga Naloge so sestavni del preverjanja znanja pri predmetu Vrednot

Univerza na Primorskem FAMNIT, MFI Vrednotenje zavarovalnih produktov Seminarska naloga Naloge so sestavni del preverjanja znanja pri predmetu Vrednot Univerza na Primorskem FAMNIT, MFI Vrednotenje zavarovalnih produktov Seminarska naloga Naloge so sestavni del preverjanja znanja pri predmetu Vrednotenje zavarovalnih produktov. Vsaka naloga je vredna

Prikaži več

Peltonova turbina ima srednji premer 120 cm, vrti pa se s 750 vrtljaji na minuto

Peltonova turbina ima srednji premer 120 cm, vrti pa se s 750 vrtljaji na minuto 1. Koresor v linske ostrojenju sesa iz okolice zrak s tlako 1 bar in teeraturo -5 C. Za koresorje izerio tlak 14 bar in teeraturo 350 C, za turbino a je teeratura 465 C. V zgorevalni koori dovajao zraku

Prikaži več

SESTAVA VSEBINE MATEMATIKE V 6

SESTAVA VSEBINE MATEMATIKE V 6 SESTAVA VSEBINE MATEMATIKE V 6. RAZREDU DEVETLETKE 1. KONFERENCA Št. ure Učne enote CILJI UVOD (1 ura) 1 Uvodna ura spoznati vsebine učnega načrta, način dela, učne pripomočke za pouk matematike v 6. razredu

Prikaži več

Lehmerjev algoritem za racunanje najvecjega skupnega delitelja

Lehmerjev algoritem za racunanje najvecjega skupnega delitelja Univerza v Ljubljani Fakulteta za računalništvo in informatiko ter Fakulteta za Matematiko in Fiziko Mirjam Kolar Lehmerjev algoritem za računanje največjega skupnega delitelja DIPLOMSKO DELO NA INTERDISCIPLINARNEM

Prikaži več

Osnovni pojmi(17)

Osnovni pojmi(17) Osnovni poji pri obravnavi periodičnih signalov Equation Section 6 Vsebina: Opis periodičnih signalov s periodo, frekvenco in krožno frekvenco. Razlaga pojov aplituda, faza, haronični signal. Določanje

Prikaži več

brestov LETO VIl številka MAJ 1973 lasilo delovne sku SEDANJI KORAK STABILIZACIJE Smo v času, ko se nam ne le bistrijo pota držbeno-ekonomske u

brestov LETO VIl številka MAJ 1973 lasilo delovne sku SEDANJI KORAK STABILIZACIJE Smo v času, ko se nam ne le bistrijo pota držbeno-ekonomske u brestov LETO VIl številka 68 31. MAJ 1973 lasilo delovne sku SEDANJI KORAK STABILIZACIJE Smo v času, ko se nam ne le bistrijo ota držbeno-ekonomske usmeritve, ač a smo se že mašli v konkretnem dogajanju.

Prikaži več

ZveznostFunkcij11.dvi

ZveznostFunkcij11.dvi II. LIMITA IN ZVEZNOST FUNKCIJ. Preslikave med množicami Funkcija ali preslikava med dvema množicama A in B je predpis f, ki vsakemu elementu x množice A priredi natanko določen element y množice B. Važno

Prikaži več