6.1 Uvod 6 Igra Chomp Marko Repše, Chomp je nepristranska igra dveh igralcev s popolno informacijo na dvo (ali vec) dimenzionalnem prostoru

Velikost: px
Začni prikazovanje s strani:

Download "6.1 Uvod 6 Igra Chomp Marko Repše, Chomp je nepristranska igra dveh igralcev s popolno informacijo na dvo (ali vec) dimenzionalnem prostoru"

Transkripcija

1 6.1 Uvod 6 Igra Chomp Marko Repše, Chomp je nepristranska igra dveh igralcev s popolno informacijo na dvo (ali vec) dimenzionalnem prostoru in na končni ali neskončni čokoladi. Igralca si izmenjujeta priliko hranjenja s čokolado tako, da se v eni potezi poje vse koščke spodaj in desno od izbranega kosa. Vendar pa je najbolj zgornji levi košček zastrupljen in tisti igralec, ki ga poje, izgubi. Bolj splošna oblika chompa je pa igra na katerikoli delno urejeni množici z najmanjšim elementom. V tej igri poteza predstavlja odstranitev elementa vključno z vsemi večjimi. Kdor izbere najmanjši element, izgubi. 6.2 Obstoj zmagovalne strategije Kdo zmaga? Da se pokazati, da ima prvi igralec zmagovalno strategijo. Kakšno natančno za poljubno velikost plošče in to na preprost način še ni znano. Moramo obravnavati določene posebne primer, kot bomo videli v nadaljevanju. Denimo, da ima drugi igralec zmagovalno strategijo proti katerikoli prvi potezi prvega igralca. In denimo, da prvi igralec izbere najbolj zgornjo, desno točko, torej zmanjša čokolado za en stolpec. Ker smo predopostavili, da ima drugi igralec zmagovalno strategijo, lahko primerno odigra z naslednjo potezo. Ampak če taka strategija res obstaja, bi jo takoj lahko uporabil prvi igralec. Torej drugi igralec ne more imeti zmagovalne strategije. Vsaka n n plošča ima preprosto zmagovalno strategijo za prvega igralca. Prvi igralec izbere najprej točko (1, 1), potem pa simetrično odgovarja na poteze drugega igralca. Torej če izbere (a, 0), vrnemo z (0, a). S tem plošča ohranja obliko, le manjša se, in v zadnjem koraku drugemu igralcu ne preostane drugega, kot da poje zadnji košček in izgubi n Chomp Najbolj preprost primer igre je kar 2 n plošča, zato je naravno tu začeti z obravnavo. Izrek 6.1 V 2 n igri Chompa je (a, a 1) P pozicija za a 1. 1

2 1. P 1 (a) : (a, a 1) za a P 2 (a) : Pozicije oblike (a, b), če velja: a b 0 in a b 1. Poteze, s katerimi pridemo nazaj v P 1 pozicijo. (a, a 1), če je a = b (b + 1, b), če je a b 2 Dokaz z indukcijo. Pozicija P 1 (1) (torej (1, 0)) je trivialno P pozicija. Pozicije, ki jih lahko dosežemo s pozicije P 1 (a), torej (a, a 1) so: (a k, a k) za a k 1 in (a, a k) za a k 2. Te pozicije so oblike P 2 (a) (ali P 2 (a k)), ni pa možno priti v P 1 (a k). Iz P 2 (a) pa lahko pridemo v P 1 (n k) ali v P 2 (a k) za nek k. Ker pa že vemo, da je P 1 (1) P pozicija in da iz P 1 (a) lahko vsakič pridemo v P 1 (a k) v dveh premikih, lahko nasprotnika vedno držimo v P (i) poziciji, kjer n i 1. To pa po indukciji pomeni, da so P 1 ravno vse P pozicije in P 2 ravno N pozicije n Chomp Probamo zdaj razširiti idejo na 3 n Chomp. Poljubno pozicijo lahko zapišemo kot trojico (a, b, c), kjer so a, b, c dolžine zgornje, srednje in spodnje vrstice. Seveda velja a b c 0. Ko je c = 0 smo očitno pri 2 n Chomp-u, katerega smo že obravnavali. Zaenkrat obravnavamo pozicije kjer je c = 1. Trivialno je videti, da je (b + 1, b, 1) N pozicija, saj odstranjevanje spodnje točke (edine v zadnji vrstici), nas pripelje v P pozicijo (b + 1, b, 0). Vidimo tudi, da je pozicija (1, 1, 1) N pozicija, saj iz nje lahko pridemo do pozicije (1, 0, 0), kar je očitno P pozicija. Pozicije (a, a, 0) in (a, b, 0), kjer je a b 2 so N pozicije, ker smo te že obravnavali iz 2 n Chompa. Katere so najmanjše P pozicije, kjer je c 1? Hitro se da preveriti, da so pozicije (4, 0, 0), (3, 1, 0), (2, 2, 0), (2, 1, 1) N pozicije. Med pet celičnimi pozicijami so (5, 0, 0), (4, 1, 0) N pozicije. Vemo že, da je (3, 2, 0) P pozicija. Torej sta poziciji (2, 2, 1), (3, 1, 1) P poziciji, saj vse možne poteze nas pripeljejo v N pozicijo. Edini P poziciji (a, b, c), kjer je c = 1 so (2, 2, 1) in (3, 1, 1). Vsaka N pozicija s c = 1 in najmanj 6 celic je oblike: (3, 2, 1), (3, 3, 1), (4 + α, 1, 1) (α 0), (2 + α, 2 + β, 1) (α β 0, α + β > 0) in zmagovalne poteze so: (3, 2, 1) (3, 1, 1) (3, 3, 1) (3, 1, 1) 2

3 (4 + α, 1, 1) (3, 1, 1) (2 + α, 2 + β, 1) (2, 2, 1) Izrek 6.2 Chomp pozicija (a, b, 2) je P pozicija natanko tedaj, ko je a b = P 1 (a) : Pozicije oblike (a + 4, a + 2, 2) za a P 2 (a) : Pozicije oblike (a, b, 2) za a b 2 in a b + 2. Lahko je preveriti, da je P 1 (0) P pozicija. Spet vidimo, da lahko pridemo iz P 1 (a) pozicije le v P 2 (a k) pozicijo (v primeru da nasprotnik naredi potezo na (p, q, 1) ali (p, q, 0) je to za nas ugodno, saj od prej že vemo, da so to N pozicije) in iz P 2 (a) pozicije tudi v P 1 (a k) pozicijo. Ker pa smo pa preverili, da je P 1 (0) P položaj, po podobnem premisleku kot pri 2 n Chompu ugotovimo da izrek velja po indukciji. Torej so P 1 vse P pozicije, P 2 pa N pozicije Vzorci Lahko se nadaljuje obravnava 3 n chompa z vedno večjimi c-ji. Izkaže se, da za majhne c imamo ali končno mnogo P pozicij (,, c) (ker se pojavi P pozicija (a, a, c) (če je to res P pozicija potem je dosegljiva iz vseh večjih pozicij, zato so te N pozicije)), ali pa dobimo linearen vzorec dovolj pozno za vse večje P pozicije; da se a in b razlikujeta za konstanto. Te primere se sicer da obravnavati na roko, ampak postane hitro zelo težavno, zato se uporablja računalnik za iskanje P pozicij. Prva izjema se pojavi pri c = 120. Izaže se, da še vedno imamo vzorec P pozicij, kjer je a funkcija b-ja, le da ni več tako preprosta. Da se pokazati, da v tem primeru je a = b + konstanta + ( 1) b. Pri večjih c-jih se še bolj zakomplicira. Zato lahko definiramo: f(b, c) je tisti a, da je (a, b, c) P pozicija. 3

4 c: b: Tabela vrednosti f(b, c) pri danih b, c. Vrednost c = 120 je prvikrat, ko se zgodi, da vzorec ni ne konstantna f(b, c) = a 0 ne linearna funkcija f(b, c) = b + d. Dobimo ponavljajoč vzorec 1, 1, 1, 1, 1, (s periodo 2) dodan na linearno funkcijo. Seveda to prinese vprašanje, če je za vsak c N ta vzorec periodičen. Izkaže se, da je; trditev je dokazal Steven Byrnes, dokaz izpustimo. Zgled 6.1 c = 6541, zaetek = 9250, perioda = 9, vzorec = 1, 1, 1, 3, 0, 1, 1, 1, 3 Na ta način delujejo nekateri programi, s katerimi iščemo P pozicije 3 n Chomp-a pri fiksnem c. Ugane vzorec in ga proba dokazati. 6.5 Transfinitni Chomp Ker se Chomp da igrati na katerikoli delno urejeni množici, ga lahko igramo tudi na plošči ordinalnih števil. Izkaže se, da ima ω ω Chomp enostavno rešitev za prvega igralca. V resnici je enaka zmagovalni strategiji kot na končni n n plošči. Prvi igralec ponovno izbere točko (1, 1) in potem odgovarja simetrično. Izrek 6.3 Prvi igralec ne zmaga vseh transfinitnih iger. Dokaz: Poglejmo si primer 2 ω. Torej začetna pozicija je (ω, ω). Prvi igralec mora naredit potezo, kar pripelje igro v pozicijo (n, n) ali (ω, n). V obeh primerih je za drugega igralca zmagovalna poteza oblike (a + 1, a), za katero pa že vemo, da je P pozicija. V tem primeru prvi igralec izgubi. 4

5 Omenimo tudi, da prvi igralec zmaga vse igre oblike 2 α za vse α > ω, saj lahko takoj premakne v (ω, ω) in potem uporabi strategijo drugega igralca D Chomp Obstaja tudi igra 3D Chompa, kjer namesto pravokotnike, odstranjujemo kvadre. Poteza je odstranitev bloka in vse bloke z večjimi koordinatami. Na ta način lahko Chomp posplošimo na poljubno dimenzijo. Seveda, na ta način postane igra bistveno težja. Oglejmo si najbolj preprost primer, ko je igra oblike 2 2 n. Izrek n Chomp zmagamo tako, da izberemo točko (n, n, n, n 1). Naj bo prva komponenta število kosov na mestu x = 1, y = 1, druga na mestu x = 2, y = 1, tretja x = 1, y = 2 in četrta x = 2, y = 2. Prestavljamo si, da imamo stolp kosov nad xy ravnino. P pozicije so oblike (a, a, a, a 1) in (a, b, c, d), kjer b + c = a 1 in d = min(a, b). 1. P 1 (a) : (a, a, a, a 1). 2. P 2 (a) : Pozicija oblike (a, b, c, d) kjer b + c = a 1 in d = min(b, c). 3. P 3 (a) : Ni P 1 (a) niti P 2 (a) pozicija. Najprej poglejmo, da sta P 1 (1) in P 2 (1) P poziciji. Res velja, saj (1, 1, 1, 0) je že znana pozicija iz 2 n Chompa, medtem ko je (1, 0, 0, 0) očitno P pozicija. Iz P 1 (a) lahko pridemo v pozicije (a, a, a, a k), (a, a, a k, a k), (a, a k, a, a k) in (a k, a k, a k, a k) za a k 1. Vse te pozicije so očitno N(a). Iz teh pozicij pa s pravilnimi potezami pridemo v P 1 ali P 2 pozicije: (a, a, a, a 1 k) (a k, a k, a k, a 1 k) (a, a, a k, a k) (a, k 1, a k, min(k 1, a k)) (a, a k, a, a k) (a, a k, k 1, min(a k, k 1)) (a k, a k, a k, a k) (a k, a k, a k, a k 1) Iz P 1 ne moremo priti v P 2 (ali iz P 2 v P 1 ) v eni potezi, kar pomeni, da iz teh pozicij pridemo le v P 3 pozicije. Ker pa vemo, da sta P 1 (1) in P 2 (1) P poziciji, po indukciji velja, da so P 1 in P 2 P pozicije in P 3 N pozicije. 5

Kazalo 1 DVOMESTNE RELACIJE Operacije z dvomestnimi relacijami Predstavitev relacij

Kazalo 1 DVOMESTNE RELACIJE Operacije z dvomestnimi relacijami Predstavitev relacij Kazalo 1 DVOMESTNE RELACIJE 1 1.1 Operacije z dvomestnimi relacijami...................... 2 1.2 Predstavitev relacij............................... 3 1.3 Lastnosti relacij na dani množici (R X X)................

Prikaži več

2.1 Osnovni pojmi 2 Nim Ga²per Ko²mrlj, Denicija 2.1 P-poloºaj je poloºaj, ki je izgubljen za igralca na potezi. N- poloºaj je poloºaj, ki

2.1 Osnovni pojmi 2 Nim Ga²per Ko²mrlj, Denicija 2.1 P-poloºaj je poloºaj, ki je izgubljen za igralca na potezi. N- poloºaj je poloºaj, ki 2.1 Osnovni pojmi 2 Nim Ga²per Ko²mrlj, 2. 3. 2009 Denicija 2.1 P-poloºaj je poloºaj, ki je izgubljen za igralca na potezi. N- poloºaj je poloºaj, ki je dobljen za igralca na potezi. Poloºaj je kon en,

Prikaži več

Vaje: Matrike 1. Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N 0 1 n ; n N Pokaži, da je množica x 0 y 0 x

Vaje: Matrike 1. Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N 0 1 n ; n N Pokaži, da je množica x 0 y 0 x Vaje: Matrike 1 Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N n 1 1 0 1 ; n N 0 2 Pokaži, da je množica x 0 y 0 x y x + z ; x, y, z R y x z x vektorski podprostor v prostoru matrik

Prikaži več

5 SIMPLICIALNI KOMPLEKSI Definicija 5.1 Vektorji r 0,..., r k v R n so afino neodvisni, če so vektorji r 1 r 0, r 2 r 0,..., r k r 0 linearno neodvisn

5 SIMPLICIALNI KOMPLEKSI Definicija 5.1 Vektorji r 0,..., r k v R n so afino neodvisni, če so vektorji r 1 r 0, r 2 r 0,..., r k r 0 linearno neodvisn 5 SIMPLICIALNI KOMPLEKSI Definicija 5.1 Vektorji r 0,..., r k v R n so afino neodvisni, če so vektorji r 1 r 0, r 2 r 0,..., r k r 0 linearno neodvisni. Če so krajevni vektorji do točk a 0,..., a k v R

Prikaži več

1. izbirni test za MMO 2018 Ljubljana, 16. december Naj bo n naravno število. Na mizi imamo n 2 okraskov n različnih barv in ni nujno, da imam

1. izbirni test za MMO 2018 Ljubljana, 16. december Naj bo n naravno število. Na mizi imamo n 2 okraskov n različnih barv in ni nujno, da imam 1. izbirni test za MMO 018 Ljubljana, 16. december 017 1. Naj bo n naravno število. Na mizi imamo n okraskov n različnih barv in ni nujno, da imamo enako število okraskov vsake barve. Dokaži, da se okraske

Prikaži več

EKVITABILNE PARTICIJE IN TOEPLITZOVE MATRIKE Aleksandar Jurišić Politehnika Nova Gorica in IMFM Vipavska 13, p.p. 301, Nova Gorica Slovenija Štefko Mi

EKVITABILNE PARTICIJE IN TOEPLITZOVE MATRIKE Aleksandar Jurišić Politehnika Nova Gorica in IMFM Vipavska 13, p.p. 301, Nova Gorica Slovenija Štefko Mi EKVITABILNE PARTICIJE IN TOEPLITZOVE MATRIKE Aleksandar Jurišić Politehnika Nova Gorica in IMFM Vipavska 13, p.p. 301, Nova Gorica Slovenija Štefko Miklavič 30. okt. 2003 Math. Subj. Class. (2000): 05E{20,

Prikaži več

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5. februar 2018 Navodila Pazljivo preberite

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5. februar 2018 Navodila Pazljivo preberite Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5 februar 018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Nalog je

Prikaži več

Vrste

Vrste Matematika 1 17. - 24. november 2009 Funkcija, ki ni algebraična, se imenuje transcendentna funkcija. Podrobneje si bomo ogledali naslednje transcendentne funkcije: eksponentno, logaritemsko, kotne, ciklometrične,

Prikaži več

Osnove matematicne analize 2018/19

Osnove matematicne analize  2018/19 Osnove matematične analize 2018/19 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D f R priredi natanko

Prikaži več

Ravninski grafi Tina Malec 6. februar 2007 Predstavili bomo nekaj osnovnih dejstev o ravninskih grafih, pojem dualnega grafa (k danemu grafu) ter kako

Ravninski grafi Tina Malec 6. februar 2007 Predstavili bomo nekaj osnovnih dejstev o ravninskih grafih, pojem dualnega grafa (k danemu grafu) ter kako Ravninski grafi Tina Malec 6. februar 2007 Predstavili bomo nekaj osnovnih dejstev o ravninskih grafih, pojem dualnega grafa (k danemu grafu) ter kako ugotoviti, ali je nek graf ravninski. 1 Osnovni pojmi

Prikaži več

Učinkovita izvedba algoritma Goldberg-Tarjan Teja Peklaj 26. februar Definicije Definicija 1 Naj bo (G, u, s, t) omrežje, f : E(G) R, za katero v

Učinkovita izvedba algoritma Goldberg-Tarjan Teja Peklaj 26. februar Definicije Definicija 1 Naj bo (G, u, s, t) omrežje, f : E(G) R, za katero v Učinkovita izvedba algoritma Goldberg-Tarjan Teja Peklaj 26. februar 2009 1 Definicije Definicija 1 Naj bo (G, u, s, t) omrežje, f : E(G) R, za katero velja 0 f(e) u(e) za e E(G). Za v V (G) definiramo presežek

Prikaži več

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6. julij 2018 Navodila Pazljivo preberite be

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6. julij 2018 Navodila Pazljivo preberite be Ime in priimek: Vpisna št: FAKULEA ZA MAEMAIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6 julij 2018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Za pozitiven rezultat

Prikaži več

MAGIČNI KVADRATI DIMENZIJE 4n+2

MAGIČNI KVADRATI DIMENZIJE 4n+2 List za mlade matematike, fizike, astronome in računalnikarje ISSN 0351-6652 Letnik 18 (1990/1991) Številka 6 Strani 322 327 Borut Zalar: MAGIČNI KVADRATI DIMENZIJE 4n + 2 Ključne besede: matematika, aritmetika,

Prikaži več

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Katja Ciglar Analiza občutljivosti v Excel-u Seminarska naloga pri predmetu Optimizacija v fina

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Katja Ciglar Analiza občutljivosti v Excel-u Seminarska naloga pri predmetu Optimizacija v fina UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Katja Ciglar Analiza občutljivosti v Excel-u Seminarska naloga pri predmetu Optimizacija v financah Ljubljana, 2010 1. Klasični pristop k analizi

Prikaži več

Urejevalna razdalja Avtorji: Nino Cajnkar, Gregor Kikelj Mentorica: Anja Petković 1 Motivacija Tajnica v posadki MARS - a je pridna delavka, ampak se

Urejevalna razdalja Avtorji: Nino Cajnkar, Gregor Kikelj Mentorica: Anja Petković 1 Motivacija Tajnica v posadki MARS - a je pridna delavka, ampak se Urejevalna razdalja Avtorji: Nino Cajnkar, Gregor Kikelj Mentorica: Anja Petković 1 Motivacija Tajnica v posadki MARS - a je pridna delavka, ampak se velikokrat zmoti. Na srečo piše v programu Microsoft

Prikaži več

Turingov stroj in programiranje Barbara Strniša Opis in definicija Definirajmo nekaj oznak: Σ abeceda... končna neprazna množica simbolo

Turingov stroj in programiranje Barbara Strniša Opis in definicija Definirajmo nekaj oznak: Σ abeceda... končna neprazna množica simbolo Turingov stroj in programiranje Barbara Strniša 12. 4. 2010 1 Opis in definicija Definirajmo nekaj oznak: Σ abeceda... končna neprazna množica simbolov (običajno Σ 2) Σ n = {s 1 s 2... s n ; s i Σ, i =

Prikaži več

DN5(Kor).dvi

DN5(Kor).dvi Koreni Število x, ki reši enačbo x n = a, imenujemo n-ti koren števila a in to označimo z n a. Pri tem je n naravno število, a pa poljubno realno število. x = n a x n = a. ( n a ) n = a. ( n a ) m = n

Prikaži več

Poročilo za 1. del seminarske naloge- igrica Kača Opis igrice Kača (Snake) je klasična igrica, pogosto prednaložena na malce starejših mobilnih telefo

Poročilo za 1. del seminarske naloge- igrica Kača Opis igrice Kača (Snake) je klasična igrica, pogosto prednaložena na malce starejših mobilnih telefo Poročilo za 1. del seminarske naloge- igrica Kača Opis igrice Kača (Snake) je klasična igrica, pogosto prednaložena na malce starejših mobilnih telefonih. Obstaja precej različic, sam pa sem sestavil meni

Prikaži več

Namesto (x,y)R uporabljamo xRy

Namesto (x,y)R uporabljamo xRy RELACIJE Namesto (x,y) R uporabljamo xry Def.: Naj bo R AxA D R = { x; y A: xry } je domena ali definicijsko obmocje relacije R Z R = { y; x A: xry } je zaloga vrednosti relacije R Za zgled od zadnjič:

Prikaži več

Matematika 2

Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 23. april 2014 Soda in liha Fourierjeva vrsta Opomba Pri razvoju sode periodične funkcije f v Fourierjevo vrsto v razvoju nastopajo

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/testi in izpiti/ /IZPITI/FKKT-februar-14.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/testi in izpiti/ /IZPITI/FKKT-februar-14.dvi Kemijska tehnologija, Kemija Bolonjski univerzitetni program Smer: KT K WolframA: DA NE Računski del izpita pri predmetu MATEMATIKA I 6. 2. 2014 Čas reševanja je 75 minut. Navodila: Pripravi osebni dokument.

Prikaži več

Slide 1

Slide 1 Vsak vektor na premici skozi izhodišče lahko zapišemo kot kjer je v smerni vektor premice in a poljubno število. r a v Vsak vektor na ravnini skozi izhodišče lahko zapišemo kot kjer sta v, v vektorja na

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNISTVO Matematika 2. kolokvij. december 2 Ime in priimek: Vpisna st: Navodila Pazljivo preberite besedilo naloge, preden se lotite resevanja. Veljale bodo samo resitve na papirju, kjer

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNISTVO Matematika Pisni izpit. junij 22 Ime in priimek Vpisna st Navodila Pazljivo preberite besedilo naloge, preden se lotite resevanja. Veljale bodo samo resitve na papirju, kjer so

Prikaži več

Brownova kovariancna razdalja

Brownova kovariancna razdalja Brownova kovariančna razdalja Nace Čebulj Fakulteta za matematiko in fiziko 8. januar 2015 Nova mera odvisnosti Motivacija in definicija S primerno izbiro funkcije uteži w(t, s) lahko definiramo mero odvisnosti

Prikaži več

POPOLNI KVADER

POPOLNI KVADER List za mlade matematike, fizike, astronome in računalnikarje ISSN 031-662 Letnik 18 (1990/1991) Številka 3 Strani 134 139 Edvard Kramar: POPOLNI KVADER Ključne besede: matematika, geometrija, kvader,

Prikaži več

3. Metode, ki temeljijo na minimalnem ostanku Denimo, da smo z Arnoldijevim algoritmom zgenerirali ON bazo podprostora Krilova K k (A, r 0 ) in velja

3. Metode, ki temeljijo na minimalnem ostanku Denimo, da smo z Arnoldijevim algoritmom zgenerirali ON bazo podprostora Krilova K k (A, r 0 ) in velja 3. Metode, ki temeljijo na minimalnem ostanku Denimo, da smo z Arnoldijevim algoritmom zgenerirali ON bazo podprostora Krilova K k (A, r 0 ) in velja AV k = V k H k + h k+1,k v k+1 e T k = V kh k+1,k.

Prikaži več

GeomInterp.dvi

GeomInterp.dvi Univerza v Ljubljani Fakulteta za matematiko in fiziko Seminar za Numerično analizo Geometrijska interpolacija z ravninskimi parametričnimi polinomskimi krivuljami Gašper Jaklič, Jernej Kozak, Marjeta

Prikaži več

Poslovilno predavanje

Poslovilno predavanje Poslovilno predavanje Matematične teme z didaktiko Marko Razpet, Pedagoška fakulteta Ljubljana, 20. november 2014 1 / 32 Naše skupne ure Matematične tehnologije 2011/12 Funkcije več spremenljivk 2011/12

Prikaži več

glava.dvi

glava.dvi Lastnosti verjetnosti 1. Za dogodka A in B velja: P(A B) = P(A) + P(B) P(A B) 2. Za dogodke A, B in C velja: P(A B C) = P(A) + P(B) + P(C) P(A B) P(A C) P(B C) + P(A B C) Kako lahko to pravilo posplošimo

Prikaži več

FGG13

FGG13 10.8 Metoda zveznega nadaljevanja To je metoda za reševanje nelinearne enačbe f(x) = 0. Če je težko poiskati začetni približek (še posebno pri nelinearnih sistemih), si lahko pomagamo z uvedbo dodatnega

Prikaži več

RAČUNALNIŠKA ORODJA V MATEMATIKI

RAČUNALNIŠKA ORODJA V MATEMATIKI DEFINICIJA V PARAVOKOTNEM TRIKOTNIKU DEFINICIJA NA ENOTSKI KROŢNICI GRAFI IN LASTNOSTI SINUSA IN KOSINUSA POMEMBNEJŠE FORMULE Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z

Prikaži več

Space Invaders Opis igre: Originalna igra: Space Invaders je arkadna igra, ki so jo ustvarili leta Bila je ena izmed prvih streljaških iger, v k

Space Invaders Opis igre: Originalna igra: Space Invaders je arkadna igra, ki so jo ustvarili leta Bila je ena izmed prvih streljaških iger, v k Space Invaders Opis igre: Originalna igra: Space Invaders je arkadna igra, ki so jo ustvarili leta 1978. Bila je ena izmed prvih streljaških iger, v kateri je igralec vodil laserski top ali vesoljsko ladjo,

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-avgust-17.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-avgust-17.dvi Vpisna številka Priimek, ime Smer: K KT WA Izpit pri predmetu MATEMATIKA I Računski del Ugasni in odstrani mobilni telefon. Uporaba knjig in zapiskov ni dovoljena. Dovoljeni pripomočki so: kemični svinčnik,

Prikaži več

Microsoft PowerPoint - Objekti_gradnja.ppt

Microsoft PowerPoint - Objekti_gradnja.ppt Naredimo razred Katera so stanja/lastnosti Kaj hočemo o objektih te vrste vedeti Kakšne lastnosti imajo Katere so metode Kakšno je znanje objektov Na katere ukaze se odzovejo Način predstavitve lastnosti

Prikaži več

UM FKKT, Bolonjski visoko²olski program Kemijska tehnologija Vpisna ²tevilka Priimek, ime 3. test pri predmetu MATEMATIKA II Ra unski del

UM FKKT, Bolonjski visoko²olski program Kemijska tehnologija Vpisna ²tevilka Priimek, ime 3. test pri predmetu MATEMATIKA II Ra unski del UM FKKT, Bolonjski visoko²olski program Kemijska tehnologija Vpisna ²tevilka Priimek, ime 3. test pri predmetu MATEMATIKA II Ra unski del 13. 6. 2016 Navodila: Pripravi osebni dokument. Ugasni in odstrani

Prikaži več

Osnove verjetnosti in statistika

Osnove verjetnosti in statistika Osnove verjetnosti in statistika Gašper Fijavž Fakulteta za računalništvo in informatiko Univerza v Ljubljani Ljubljana, 26. februar 2010 Poskus in dogodek Kaj je poskus? Vržemo kovanec. Petkrat vržemo

Prikaži več

Prevodnik_v_polju_14_

Prevodnik_v_polju_14_ 14. Prevodnik v električnem polju Vsebina poglavja: prevodnik v zunanjem električnem polju, površina prevodnika je ekvipotencialna ploskev, elektrostatična indukcija (influenca), polje znotraj votline

Prikaži več

FAKULTETA ZA STROJNIŠTVO Matematika 2 Pisni izpit 9. junij 2005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite bese

FAKULTETA ZA STROJNIŠTVO Matematika 2 Pisni izpit 9. junij 2005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite bese FAKULTETA ZA STROJNIŠTVO Matematika Pisni izpit 9. junij 005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Veljale bodo

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNIŠTVO Matematika 2. kolokvij 4. januar 212 Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Veljale bodo samo rešitve na papirju, kjer

Prikaži več

11. Navadne diferencialne enačbe Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogo

11. Navadne diferencialne enačbe Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogo 11. Navadne diferencialne enačbe 11.1. Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogoju y(x 0 ) = y 0, kjer je f dana dovolj gladka funkcija

Prikaži več

FGG14

FGG14 Iterativne metode podprostorov Iterativne metode podprostorov uporabljamo za numerično reševanje linearnih sistemov ali računanje lastnih vrednosti problemov z velikimi razpršenimi matrikami, ki so prevelike,

Prikaži več

Navodila za pripravo spletnih oglasov

Navodila za pripravo spletnih oglasov Navodila za pripravo spletnih oglasov Gradivo pošljite na naslov spletnioglasi@finance.si. Rok oddaje: dva delovna dneva pred začetkom akcije. Zahtevajte potrditev prejema gradiva in njegovo ustreznost.

Prikaži več

Linearna algebra - povzetek vsebine Peter Šemrl Jadranska 21, kabinet 4.10 Izpitni režim: Kolokviji in pisni izpiti so vsi s

Linearna algebra - povzetek vsebine Peter Šemrl Jadranska 21, kabinet 4.10 Izpitni režim: Kolokviji in pisni izpiti so vsi s Linearna algebra - povzetek vsebine Peter Šemrl Jadranska 21, kabinet 410 petersemrl@fmfuni-ljsi Izpitni režim: Kolokviji in pisni izpiti so vsi sestavljeni iz dveh delov: v prvem delu se rešujejo naloge,

Prikaži več

M

M Š i f r a k a n d i d a t a : Državni izpitni center *M16140111* Osnovna raven MATEMATIKA Izpitna pola 1 SPOMLADANSKI IZPITNI ROK Sobota, 4. junij 016 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat

Prikaži več

Uradni list RS - 12(71)/2005, Mednarodne pogodbe

Uradni list RS - 12(71)/2005, Mednarodne pogodbe PRILOGA 3 Osnovne značilnosti, ki se sporočajo za usklajevanje 1. Zgradba podatkovne zbirke Podatkovno zbirko sestavljajo zapisi, ločeni po znakovnih parih "pomik na začetek vrstice pomik v novo vrstico"

Prikaži več

Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y

Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y 2 ). Rešitev: Diferencialna enačba ima ločljive spremenljivke,

Prikaži več

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 31. avgust 2018 Navodila Pazljivo preberite

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 31. avgust 2018 Navodila Pazljivo preberite Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 31 avgust 018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Za pozitiven

Prikaži več

1 Tekmovanje gradbenih tehnikov v izdelavi mostu iz špagetov 1.1 Ekipa Ekipa sestoji iz treh članov, ki jih mentor po predhodni izbiri prijavi na tekm

1 Tekmovanje gradbenih tehnikov v izdelavi mostu iz špagetov 1.1 Ekipa Ekipa sestoji iz treh članov, ki jih mentor po predhodni izbiri prijavi na tekm 1 Tekmovanje gradbenih tehnikov v izdelavi mostu iz špagetov 1.1 Ekipa Ekipa sestoji iz treh članov, ki jih mentor po predhodni izbiri prijavi na tekmovanje. Končni izdelek mora biti produkt lastnega dela

Prikaži več

NEVTRIN d.o.o. Podjetje za razvoj elektronike, Podgorje 42a, 1241 Kamnik, Slovenia Telefon: Faks.: in

NEVTRIN d.o.o. Podjetje za razvoj elektronike, Podgorje 42a, 1241 Kamnik, Slovenia Telefon: Faks.: in NEVTRIN d.o.o. Podjetje za razvoj elektronike, Podgorje 42a, 1241 Kamnik, Slovenia Telefon: +386 1 729 6 460 Faks.: +386 1 729 6 466 www.nevtrin.si info@elektrina.si USB RFID READER Navodila za uporabo?

Prikaži več

Optimizacija z roji delcev - Seminarska naloga pri predmetu Izbrana poglavja iz optimizacije

Optimizacija z roji delcev - Seminarska naloga pri predmetu Izbrana poglavja iz optimizacije Univerza v Ljubljani Fakulteta za matematiko in fiziko Seminarska naloga pri predmetu Izbrana poglavja iz optimizacije 2. junij 2011 Koncept PSO Motivacija: vedenje organizmov v naravi Ideja: koordinirano

Prikaži več

UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO Oddelek za matematiko in računalništvo DIPLOMSKO DELO Peter Škofič Maribor, 2014

UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO Oddelek za matematiko in računalništvo DIPLOMSKO DELO Peter Škofič Maribor, 2014 UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO Oddelek za matematiko in računalništvo DIPLOMSKO DELO Peter Škofič Maribor, 2014 UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO

Prikaži več

Univerza v Ljubljani FAKULTETA ZA RAČUNALNIŠTVO IN INFORMATIKO Tržaška c. 25, 1000 Ljubljana Realizacija n-bitnega polnega seštevalnika z uporabo kvan

Univerza v Ljubljani FAKULTETA ZA RAČUNALNIŠTVO IN INFORMATIKO Tržaška c. 25, 1000 Ljubljana Realizacija n-bitnega polnega seštevalnika z uporabo kvan Univerza v Ljubljani FAKULTETA ZA RAČUNALNIŠTVO IN INFORMATIKO Tržaška c. 25, 1000 Ljubljana Realizacija n-bitnega polnega seštevalnika z uporabo kvantnih celičnih avtomatov SEMINARSKA NALOGA Univerzitetna

Prikaži več

'Kombinatoricna optimizacija / Lokalna optimizacija'

'Kombinatoricna optimizacija / Lokalna optimizacija' Kombinatorična optimizacija 3. Lokalna optimizacija Vladimir Batagelj FMF, matematika na vrhu različica: 15. november 2006 / 23 : 17 V. Batagelj: Kombinatorična optimizacija / 3. Lokalna optimizacija 1

Prikaži več

Microsoft Word - UP_Lekcija04_2014.docx

Microsoft Word - UP_Lekcija04_2014.docx 4. Zanka while Zanke pri programiranju uporabljamo, kadar moramo stavek ali skupino stavkov izvršiti večkrat zaporedoma. Namesto, da iste (ali podobne) stavke pišemo n-krat, jih napišemo samo enkrat in

Prikaži več

Podatkovni model ER

Podatkovni model ER Podatkovni model Entiteta- Razmerje Iztok Savnik, FAMNIT 2018/19 Pregled: Načrtovanje podatkovnih baz Konceptualno načtrovanje: (ER Model) Kaj so entite in razmerja v aplikacijskem okolju? Katere podatke

Prikaži več

Vektorji - naloge za test Naloga 1 Ali so točke A(1, 2, 3), B(0, 3, 7), C(3, 5, 11) b) A(0, 3, 5), B(1, 2, 2), C(3, 0, 4) kolinearne? Naloga 2 Ali toč

Vektorji - naloge za test Naloga 1 Ali so točke A(1, 2, 3), B(0, 3, 7), C(3, 5, 11) b) A(0, 3, 5), B(1, 2, 2), C(3, 0, 4) kolinearne? Naloga 2 Ali toč Vektorji - naloge za test Naloga 1 li so točke (1, 2, 3), (0, 3, 7), C(3, 5, 11) b) (0, 3, 5), (1, 2, 2), C(3, 0, 4) kolinearne? Naloga 2 li točke a) (6, 0, 2), (2, 0, 4), C(6, 6, 1) in D(2, 6, 3), b)

Prikaži več

Napotki za izbiro gibljivih verig Stegne 25, 1000 Ljubljana, tel: , fax:

Napotki za izbiro gibljivih verig   Stegne 25, 1000 Ljubljana, tel: , fax: Napotki za izbiro gibljivih verig Postopek za izbiro verige Vrsta gibanja Izračun teže instalacij Izbira verige glede na težo Hod verige Dolžina verige Radij verige Hitrost in pospešek gibanja Instalacije

Prikaži več

GHOSTBUSTERS navodila za učitelje O PROJEKTU S tem projektom se učenci sami naučijo izdelati igro. Ustvariti morajo več ikon (duhcov ali kaj drugega)

GHOSTBUSTERS navodila za učitelje O PROJEKTU S tem projektom se učenci sami naučijo izdelati igro. Ustvariti morajo več ikon (duhcov ali kaj drugega) GHOSTBUSTERS navodila za učitelje O PROJEKTU S tem projektom se učenci sami naučijo izdelati igro. Ustvariti morajo več ikon (duhcov ali kaj drugega) in za vsako napisati svojo kodo. Dve ikoni imata isto

Prikaži več

BYOB Žogica v vesolju Besedilo naloge Glavna ideja igre je paziti, da žoga ne pade na tla igralne površine, pri tem pa zbrati čim več točk. Podobno ig

BYOB Žogica v vesolju Besedilo naloge Glavna ideja igre je paziti, da žoga ne pade na tla igralne površine, pri tem pa zbrati čim več točk. Podobno ig BYOB Žogica v vesolju Besedilo naloge Glavna ideja igre je paziti, da žoga ne pade na tla igralne površe, pri tem pa zbrati čim več točk. Podobno igro najdemo tudi v knjigi Scratch (Lajovic, 2011), vendar

Prikaži več

Matematika II (UN) 1. kolokvij (13. april 2012) RE ITVE Naloga 1 (25 to k) Dana je linearna preslikava s predpisom τ( x) = A x A 1 x, kjer je A

Matematika II (UN) 1. kolokvij (13. april 2012) RE ITVE Naloga 1 (25 to k) Dana je linearna preslikava s predpisom τ( x) = A x A 1 x, kjer je A Matematika II (UN) 1 kolokvij (13 april 01) RE ITVE Naloga 1 (5 to k) Dana je linearna preslikava s predpisom τ( x) = A x A 1 x, kjer je 0 1 1 A = 1, 1 A 1 pa je inverzna matrika matrike A a) Poi² ite

Prikaži več

10. Meritev šumnega števila ojačevalnika Vsako radijsko zvezo načrtujemo za zahtevano razmerje signal/šum. Šum ima vsaj dva izvora: naravni šum T A, k

10. Meritev šumnega števila ojačevalnika Vsako radijsko zvezo načrtujemo za zahtevano razmerje signal/šum. Šum ima vsaj dva izvora: naravni šum T A, k 10. Meritev šumnega števila ojačevalnika Vsako radijsko zvezo načrtujemo za zahtevano razmerje signal/šum. Šum ima vsaj dva izvora: naravni šum T A, ki ga sprejme antena in dodatni šum T S radijskega sprejemnika.

Prikaži več

STAVKI _5_

STAVKI _5_ 5. Stavki (Teoremi) Vsebina: Stavek superpozicije, stavek Thévenina in Nortona, maksimalna moč na bremenu (drugič), stavek Tellegena. 1. Stavek superpozicije Ta stavek določa, da lahko poljubno vezje sestavljeno

Prikaži več

Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t

Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t 0.5 1.5 2.0 t a.) Nari²ite tri grafe: graf (klasi ne)

Prikaži več

ANALITIČNA GEOMETRIJA V RAVNINI

ANALITIČNA GEOMETRIJA V RAVNINI 3. Analitična geometrija v ravnini Osnovna ideja analitične geometrije je v tem, da vaskemu geometrijskemu objektu (točki, premici,...) pridružimo števila oz koordinate, ki ta objekt popolnoma popisujejo.

Prikaži več

DS2.dvi

DS2.dvi Diskretne strukture II zapiski predavanj - prezentacija doc. dr. R. Škrekovski 1 Osnovno o grafih Če odnose med določenimi objekti opišemo z dvomestno relacijo, lahko to relacijo tudi narišemo (oz. grafično

Prikaži več

2. Model multiple regresije

2. Model multiple regresije 2. Model multiple regresije doc. dr. Miroslav Verbič miroslav.verbic@ef.uni-lj.si www.miroslav-verbic.si Ljubljana, februar 2014 2.1 Populacijski regresijski model in regresijski model vzorčnih podatkov

Prikaži več

INFORMATOR BIROKRAT 1/2011

INFORMATOR BIROKRAT 1/2011 ta Veleprodaja Maloprodaja Storitve Računovodstvo Proizvodnja Gostinstvo Turizem Hotelirstvo Ticketing CRM Internetna trgovina Izdelava internetnih strani Grafično oblikovanje NOVOSTI IN NASVETI ZA DELO

Prikaži več

FGG02

FGG02 6.6 Simetrični problem lastnih vrednosti Če je A = A T, potem so lastne vrednosti realne, matrika pa se da diagonalizirati. Schurova forma za simetrično matriko je diagonalna matrika. Lastne vrednosti

Prikaži več

4.Racionalna števila Ulomek je zapis oblike. Sestavljen je iz števila a (a ), ki ga imenujemo števec, in iz števila b (b, b 0), ki ga imenujemo imenov

4.Racionalna števila Ulomek je zapis oblike. Sestavljen je iz števila a (a ), ki ga imenujemo števec, in iz števila b (b, b 0), ki ga imenujemo imenov 4.Racionalna števila Ulomek je zapis oblike. Sestavljen je iz števila a (a ), ki ga imenujemo števec, in iz števila b (b, b 0), ki ga imenujemo imenovalec, ter iz ulomkove črte. Racionalna števila so števila,

Prikaži več

predstavitev fakultete za matematiko 2017 A

predstavitev fakultete za matematiko 2017 A ZAKAJ ŠTUDIJ MATEMATIKE? Ker vam je všeč in vam gre dobro od rok! lepa, eksaktna veda, ki ne zastara matematičnoanalitično sklepanje je uporabno povsod matematiki so zaposljivi ZAKAJ V LJUBLJANI? najdaljša

Prikaži več

ELEKTRIČNI NIHAJNI KROG TEORIJA Električni nihajni krog je električno vezje, ki služi za generacijo visokofrekvenče izmenične napetosti. V osnovi je "

ELEKTRIČNI NIHAJNI KROG TEORIJA Električni nihajni krog je električno vezje, ki služi za generacijo visokofrekvenče izmenične napetosti. V osnovi je ELEKTRIČNI NIHAJNI KROG TEORIJA Električni nihajni krog je električno vezje, ki služi za generacijo visokofrekvenče izmenične napetosti. V osnovi je "električno" nihalo, sestavljeno iz vzporedne vezave

Prikaži več

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 2017

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 2017 UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 217 ii Kazalo Diferencialni račun vektorskih funkcij 1 1.1 Skalarne funkcije...........................

Prikaži več

Datum objave: :54 VPRAŠANJE Spoštovani, prosimo za informacijo - sklop 1, Laboratorijska oprema, digestorij, ali je potrebno ponuditi tud

Datum objave: :54 VPRAŠANJE Spoštovani, prosimo za informacijo - sklop 1, Laboratorijska oprema, digestorij, ali je potrebno ponuditi tud Datum objave: 25.09.2017 10:54 prosimo za informacijo - sklop 1, Laboratorijska oprema, digestorij, ali je potrebno ponuditi tudi poddigestorijske omarice in kakšne, za kakšen namen shranjevanja? Hvala,

Prikaži več

Mladi za napredek Maribora srečanje DOLŽINA»SPIRALE«Matematika Raziskovalna naloga Februar 2015

Mladi za napredek Maribora srečanje DOLŽINA»SPIRALE«Matematika Raziskovalna naloga Februar 2015 Mladi za napredek Maribora 015 3. srečanje DOLŽINA»SPIRALE«Matematika Raziskovalna naloga Februar 015 Kazalo 1. Povzetek...3. Uvod...4 3. Spirala 1...5 4. Spirala...6 5. Spirala 3...8 6. Pitagorejsko drevo...10

Prikaži več

ZveznostFunkcij11.dvi

ZveznostFunkcij11.dvi II. LIMITA IN ZVEZNOST FUNKCIJ. Preslikave med množicami Funkcija ali preslikava med dvema množicama A in B je predpis f, ki vsakemu elementu x množice A priredi natanko določen element y množice B. Važno

Prikaži več

KOMISIJA ZA LOGIKO 32. TEKMOVANJE IZ ZNANJA LOGIKE DRŽAVNO TEKMOVANJE, in 2. letnik Šifra: NALOGA MOŽNE TOČKE DOSEŽENE TOČKE

KOMISIJA ZA LOGIKO 32. TEKMOVANJE IZ ZNANJA LOGIKE DRŽAVNO TEKMOVANJE, in 2. letnik Šifra: NALOGA MOŽNE TOČKE DOSEŽENE TOČKE KOMISIJA ZA LOGIKO 32. TEKMOVANJE IZ ZNANJA LOGIKE DRŽAVNO TEKMOVANJE, 11. 11. 2017 1. in 2. letnik Šifra: NALOGA MOŽNE TOČKE DOSEŽENE TOČKE 1. 20 2. 17 3. 20 4. 20 Skupaj 77 Opombe: pri 1. nalogi se tabela

Prikaži več

Zadeva: Ponudba

Zadeva: Ponudba Navodila za urejanje Spletne strani CTEK.si 1. Dodajanje novega polnilnika Za dodajanje novega polnilnika nikoli ne prepisujte že objavljenih vsebin, ampak sledite tem navodilom. Ta so zagotovilo, da bodo

Prikaži več

PowerPointova predstavitev

PowerPointova predstavitev INTRANET - DETEKTIV Detektivska zbornica Republike Slovenije Pozdravljeni, v kratki predstaviti in navodilih za delo z intranet sistemom Detektiv. Intranet članom Detektivske zbornice RS omogoča, da: -

Prikaži več

Microsoft Word - M docx

Microsoft Word - M docx Š i f r a k a n d i d a t a : Državni izpitni center *M17178111* SPOMLADANSKI IZPITNI ROK Izpitna pola 1 Četrtek, 1. junij 2017 / 90 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero

Prikaži več

Uradni list Republike Slovenije Št. 17 / / Stran 2557 Verzija: v1.0 Datum: Priloga 1: Manevri in tolerance zadovoljive izurjeno

Uradni list Republike Slovenije Št. 17 / / Stran 2557 Verzija: v1.0 Datum: Priloga 1: Manevri in tolerance zadovoljive izurjeno Uradni list Republike Slovenije Št. 17 / 10. 4. 2017 / Stran 2557 Verzija: v1.0 Datum: 26.07.2016 Priloga 1: Manevri in tolerance zadovoljive izurjenosti V nadaljevanju je opisan programa leta in s tem

Prikaži več

CpE & ME 519

CpE & ME 519 2D Transformacije Zakaj potrebujemo transformacije? Animacija Več instanc istega predmeta, variacije istega objekta na sceni Tvorba kompliciranih predmetov iz bolj preprostih Transformacije gledanja Kaj

Prikaži več

%

% OSNOVNA ŠOLA NARODNEGA HEROJA RAJKA HRASTNIK PODRUŽNIČNA ŠOLA DOL PRI HRASTNIKU PODRUŽNICA LOG AKTIV TJA IN NI KRITERIJ OCENJEVANJA 2018/2019 0-44 % nzd (1) 45-64 % zd (2) 65-79 % db (3) 80-89 % pdb (4)

Prikaži več

SPLETNA PRIJAVA NA IZPITE ZA DIJAKE Dijaki se na izpite prijavite na novem portalu novi.lopolis.si z istim uporabniškim imenom in geslom, kot ga upora

SPLETNA PRIJAVA NA IZPITE ZA DIJAKE Dijaki se na izpite prijavite na novem portalu novi.lopolis.si z istim uporabniškim imenom in geslom, kot ga upora SPLETNA PRIJAVA NA IZPITE ZA DIJAKE Dijaki se na izpite prijavite na novem portalu novi.lopolis.si z istim uporabniškim imenom in geslom, kot ga uporabljate tudi za portal Lo.Polis (www.lopolis.si), kjer

Prikaži več

Equation Chapter 1 Section 24Trifazni sistemi

Equation Chapter 1 Section 24Trifazni sistemi zmenicni_signali_triazni_sistemi(4b).doc / 8.5.7/ Triazni sistemi (4) Spoznali smo že primer dvoaznega sistema pri vrtilnem magnetnem polju, ki sta ga ustvarjala dva para prečno postavljenih tuljav s azno

Prikaži več

DOMACA NALOGA - LABORATORIJSKE VAJE NALOGA 1 Dani sta kompleksni stevili z in z Kompleksno stevilo je definirano kot : z = a + b, a p

DOMACA NALOGA - LABORATORIJSKE VAJE NALOGA 1 Dani sta kompleksni stevili z in z Kompleksno stevilo je definirano kot : z = a + b, a p DOMACA NALOGA - LABORATORIJSKE VAJE NALOGA 1 Dani sta kompleksni stevili z 1 5 2 3 in z 2 3 8 5. Kompleksno stevilo je definirano kot : z = a + b, a predstavlja realno, b pa imaginarno komponento. z 1

Prikaži več

2. izbirni test za MMO 2017 Ljubljana, 17. februar Naj bosta k 1 in k 2 dve krožnici s središčema O 1 in O 2, ki se sekata v dveh točkah, ter

2. izbirni test za MMO 2017 Ljubljana, 17. februar Naj bosta k 1 in k 2 dve krožnici s središčema O 1 in O 2, ki se sekata v dveh točkah, ter 2. izbirni test za MMO 2017 Ljubljana, 17. februar 2017 1. Naj bosta k 1 in k 2 dve krožnici s središčema O 1 in O 2, ki se sekata v dveh točkah, ter naj bo A eno od njunih presečišč. Ena od njunih skupnih

Prikaži več

Diapozitiv 1

Diapozitiv 1 9. Funkcije 1 9. 1. F U N K C I J A m a i n () 9.2. D E F I N I C I J A F U N K C I J E 9.3. S T A V E K r e t u r n 9.4. K L I C F U N K C I J E I N P R E N O S P A R A M E T R O V 9.5. P R E K R I V

Prikaži več

Osnove statistike v fizični geografiji 2

Osnove statistike v fizični geografiji 2 Osnove statistike v geografiji - Metodologija geografskega raziskovanja - dr. Gregor Kovačič, doc. Bivariantna analiza Lastnosti so med sabo odvisne (vzročnoposledično povezane), kadar ena lastnost (spremenljivka

Prikaži več

Priloga 1: Pravila za oblikovanje in uporabo standardiziranih referenc pri opravljanju plačilnih storitev Stran 4012 / Št. 34 / Uradni lis

Priloga 1: Pravila za oblikovanje in uporabo standardiziranih referenc pri opravljanju plačilnih storitev Stran 4012 / Št. 34 / Uradni lis Priloga 1: Pravila za oblikovanje in uporabo standardiziranih referenc pri opravljanju plačilnih storitev Stran 4012 / Št. 34 / 24. 5. 2019 Uradni list Republike Slovenije PRILOGA 1 PRAVILA ZA OBLIKOVANJE

Prikaži več

Razpis športne igre zaposlenih RP _docx

Razpis športne igre zaposlenih RP _docx ŠPORTNE IGRE ZAPOSLENIH 2017 RAZPIS IN OBRAZEC ZA PRIJAVO Spoštovani, Olimpijski komite Slovenije Združenje športnih zvez v sodelovanju z občinskimi športnimi zvezami organizira Športne igre zaposlenih

Prikaži več

Pravila škofjeloške poletne teniške lige 2019 Splošno o ligi pravica nastopa, formiranje skupin, igrišča in uradna žoga 1. Pravico igranja imajo (v ko

Pravila škofjeloške poletne teniške lige 2019 Splošno o ligi pravica nastopa, formiranje skupin, igrišča in uradna žoga 1. Pravico igranja imajo (v ko Pravila škofjeloške poletne teniške lige 2019 Splošno o ligi pravica nastopa, formiranje skupin, igrišča in uradna žoga 1. Pravico igranja imajo (v kolikor tekmovalna komisija na podlagi prijav ne odloči

Prikaži več

ŠTEVCI PROMETA IN NJIHOVA UPORABA ZA NAMENE STATISTIK ČRT GRAHONJA

ŠTEVCI PROMETA IN NJIHOVA UPORABA ZA NAMENE STATISTIK ČRT GRAHONJA ŠTEVCI PROMETA IN NJIHOVA UPORABA ZA NAMENE STATISTIK ČRT GRAHONJA Navdih Poizvedovanje po BD podatkovnih virih, ki imajo časovno dimenzijo in so dostopni. Večji promet pomeni večje število dobrin in močnejšo

Prikaži več

ISOFT , računalniški inženiring

ISOFT , računalniški inženiring ISOFT, računalniški inženiring Marko Kastelic s.p. Sad 2, 1296 Šentvid pri stični Spletna stran podjetja:http://www.isoft.si podjetja ISOFT Spletna stran sistema sledenja vozil track.si: http://www.track.si

Prikaži več

PowerPointova predstavitev

PowerPointova predstavitev TIK terminal nima povezave s strežnikom Ob vpisu v TIK Admin se pojavi napis ni povezave s strežnikom Na terminalu je ikona 1. preverimo ali je pravilno nastavljen IP strežnika 1. Preverimo datoteko TIKSAdmin.INI

Prikaži več

RAM stroj Nataša Naglič 4. junij RAM RAM - random access machine Bralno pisalni, eno akumulatorski računalnik. Sestavljajo ga bralni in pisalni

RAM stroj Nataša Naglič 4. junij RAM RAM - random access machine Bralno pisalni, eno akumulatorski računalnik. Sestavljajo ga bralni in pisalni RAM stroj Nataša Naglič 4. junij 2009 1 RAM RAM - random access machine Bralno pisalni, eno akumulatorski računalnik. Sestavljajo ga bralni in pisalni trak, pomnilnik ter program. Bralni trak- zaporedje

Prikaži več

Microsoft Word - Kolaric_napad krozeci prst.doc

Microsoft Word - Kolaric_napad krozeci prst.doc Marko KOLARIČ ZNAČILNOSTI NAPADA»KROŽEČI PRST«ČLANSKE EKIPE KK PARKLJI BEŽIGRAD 1 UVOD V članku bom predstavil enega izmed napadov, ki jih je članska ekipa KK Parklji Bežigrad najpogosteje uporabljala

Prikaži več

Del 1 Limite

Del 1 Limite Del 1 Limite POGLAVJE 1 Zaporedja realnih števil 1. Osnovne lastnosti realnih števil Naravna števila označujemo z N, cela z Z, racionalna z Q in realna z R. Naravna števila so nastala iz potrebe po preštevanju.

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-junij-17.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-junij-17.dvi Vpisna številka Priimek, ime Smer: K KT WA Izpit pri predmetu MATEMATIKA I Računski del Ugasni in odstrani mobilni telefon. Uporaba knjig in zapiskov ni dovoljena. Dovoljeni pripomočki so: kemični svinčnik,

Prikaži več