brain sciences Cerebellar Cortex and Cerebellar White Matter Volume in Normal Cognition, Mild Cognitive Impairment, and Dementia Article

Podobni dokumenti
ARRS-BI-FR-PROTEUS-JR-Prijava/2011 Stran 1 od 7 Oznaka prijave: Javni razpis za sofinanciranje znanstvenoraziskovalnega sodelovanja med Republiko Slov

Športno društvo Jesenice, Ledarska 4, 4270 Jesenice, Tel.: (04) , Fax: (04) , Drsalni klub Jesenice in Zv

Microsoft Word - ARRS-MS-BR-07-A-2009.doc

PRESENT SIMPLE TENSE The sun gives us light. The sun does not give us light. Does It give us light? Raba: Za splošno znane resnice. I watch TV sometim

Društvo za elektronske športe - spid.si Vaneča 69a 9201 Puconci Pravila tekmovanja na EPICENTER LAN 12 Hearthstone Na dogodku izvaja: Blaž Oršoš Datum

Microsoft Word - M docx

Microsoft Word - ARRS-MS-CEA-03-A-2009.doc

VISOKA ZDRAVSTVENA ŠOLA V CELJU DIPLOMSKO DELO VLOGA MEDICINSKE SESTRE PRI OBRAVNAVI OTROKA Z EPILEPSIJO HEALTH EDUCATION OF A NURSE WHEN TREATING A C

ZAHTEVA ZA VZDRŽEVANJE LEI (sklad) REQUEST FOR A MAINTENANCE OF LEI (fund) 1. PODATKI O SKLADU / FUND DATA: LEI: Ime / Legal Name: Druga imena sklada

Preštudirati je potrebno: Floyd, Principles of Electric Circuits Pri posameznih poglavjih so označene naloge, ki bi jih bilo smiselno rešiti. Bolj pom

Workhealth II

Microsoft Word - ARRS-MS-FI-06-A-2010.doc

Microsoft Word - GB-PSP-2006.doc

Slide 1

PRILOGA 1 Seznam standardov Direktiva Sveta z dne 20. junija 1990 o približevanju zakonodaje držav članic o aktivnih medicinskih pripomočkih za vsadit

VISOKA ZDRAVSTVENA ŠOLA V CELJU DIPLOMSKO DELO PREPREČEVANJE ZAPLETOV PRI PACIENTIH Z VSTAVLJENIM URINSKIM KATETROM PREVENTION OF COMPLICATIONS AT THE

Oznaka prijave: Javni razpis za sofinanciranje znanstvenoraziskovalnega sodelovanja med Republiko Slovenijo in Združenimi državami Amerike v letih 201

Microsoft Word - Met_postaja_Jelendol1.doc

Poštnin«plačana» HalenisKi list rotovhh GLASILO OSVOBODILNE FRONTE DOLENJSKIH OKRAJEV NOVO L e t o III. Štev. 51. MESTO, POSAMEZNA ŠTEVILKA 8 M N TEDN

Uradni list Republike Slovenije Št. 39 / / Stran 6173 EVROPSKA ŠOLA:... Učenec:... Datum rojstva:... Letnik:... Razrednik:... ŠOLSKO POROČI

Slide 1

2_Novosti na področju zakonodaje

Digiars_Adobe_cenik_maj2012_AVLKOM.xls

ARS1

Oznaka prijave: Javni razpis za sofinanciranje znanstvenoraziskovalnega sodelovanja med Republiko Slovenijo in Združenimi državami Amerike v letih 201

Microsoft Word - SevnoIII.doc

Digiars_Adobe_cenik_oktnov2012_AVLKOM.xls

PROFILNA TEHNIKA / OPREMA DELOVNIH MEST PROFILE TECHNIC / WORKSTATION ACCESSORIES INFO ELEMENTI / INFO ELEMENTS INFO TABLA A4 / INFO BOARD A4 U8L U8 U

Microsoft Word - OBR-N_S_24_001-01_ za objavo.docx

Microsoft Word - si-6 Uporaba informacijsko-komunikacijske tehnologije IKT v gospodinjstvih 1 cetrt 05.doc

Resonance v Osončju Resonanca 1:2 Druge orbitalne resonance: 2:3 Pluto Neptune 2:4 Tethys Mimas (Saturnovi luni) 1:2 Dione Enceladus (Saturnovi luni)

Microsoft Word - Meteoroloıka postaja Kobarid3.doc

UČNI NAČRT PREDMETA / COURSE SYLLABUS Predmet: Matematična fizika II Course title: Mathematical Physics II Študijski program in stopnja Study programm

Sprememba obsega pogodbe o vzpostavitvi in vzdrževanju akreditacije

ROSEE_projekt_Kolesarji

UČNI NAČRT PREDMETA/COURSE SYLLABUS

Ljubljana, Hotel Union, Slovenia Saturday, 7 th December 2013 Slovenian Society of Cardiology is organizing Central European summit on Interventional

Predmet: Course title: UČNI NAČRT PREDMETA/COURSE SYLLABUS Matematična fizika II Mathematical Physics II Študijski programi in stopnja Študijska smer

/sjph Zdr Varst. 2019;58(2): Dolenc E, Rotar-Pavlič D. Frailty assessment scales for the elderly and their application in prima

Slide 1

Microsoft Word - SI_vaja5.doc

KLIMATSKE ZNAČILNOSTI LETA 1993 Aleška Bernot-lvančič* Leto 1993 je bilo glede na podatke 30-letnega klimatološkega niza nadpovprečno toplo, s

Metode objektivnega vrednotenja 2016_17_DKT

REŠEVANJE DIFERENCIALNIH ENAČB Z MEHANSKIMI RAČUNSKIMI STROJI Pino Koc Seminar za učitelje matematike FMF, Ljubljana, 25. september 2015 Vir: [1] 1

Predmet: Course title: UČNI NAČRT PREDMETA / COURSE SYLLABUS Psihologija osebnosti Psychology of Personality Študijski program in stopnja Study progra

PRILOGA 1: SODELOVANJE NA JAVNEM NAROČILU - ENOSTAVNI POSTOPEK ANNEX 1: PARTICIPATION IN THE TENDER SIMPLIFIED PROCEDURE 1. OPIS PREDMETA JAVNEGA NARO

UČNI NAČRT PREDMETA/COURSE SYLLABUS

PAST CONTINUOUS Past continuous uporabljamo, ko želimo opisati dogodke, ki so se dogajali v preteklosti. Dogodki so se zaključili v preteklosti in nič

Predmet: Course title: UČNI NAČRT PREDMETA / COURSE SYLLABUS SMERNI SEMINAR SEMINAR Študijski program in stopnja Study programme and level Študijska s

INFORMACIJSKA DRUŽBA IS oktober 2010 VZGOJA IN IZOBRAŽEVANJE V INFORMACIJSKI DRUŽBI Integriranje spletne aplikacije Bubbl v vzgojno učni proc

NASLOV PREDAVANJA IME IN PRIIMEK PREDAVATELJA

UČNI NAČRT PREDMETA / COURSE SYLLABUS Predmet: Podatkovne baze 2 Course title: Data bases 2 Študijski program in stopnja Study programme and level Vis

UČNI NAČRT PREDMETA/COURSE SYLLABUS

Predmet: Course title: UČNI NAČRT PREDMETA / COURSE SYLLABUS Politične ureditve in analiza politik Political Systems and Policy Analysis Študijski pro

PREDLOG ZA AKREDITACIJO

Predmet: Course title: UČNI NAČRT PREDMETA / COURSE SYLLABUS Napredne metode računalniškega vida Advanced topics in computer vision Študijski program

UČNI NAČRT PREDMETA / COURSE SYLLABUS Predmet: Ekonometrija 1 Course title: Econometrics 1 Študijski program in stopnja Study programme and level Univ

Microsoft Word - si Vpis studentov na terciarno izob v st le doc

Predmet: Course title: UČNI NAČRT PREDMETA / COURSE SYLLABUS epravo elaw Študijski program in stopnja Study programme and level Informatika v sodobni

APS1

VODNATOST POVRŠINSKIH VODA V LETU 2017 THE COVERAGE OF SURFACE WATERS IN 2017 Igor Strojan Ministrstvo za okolje in prostor, Agencija RS za okolje, Vo

PowerPoint Presentation

00ABILHAND-Kids_Slovenian_Slovenia

Source: Maketa, kolaž in računalniška vizualizacija Edvard Ravnikar required

UČNI NAČRT PREDMETA / COURSE SYLLABUS Predmet: Statistične metode 1 Course title: Statistical methods 1 Študijski program in stopnja Study programme a

Microsoft Word - Meteoroloıka postaja Kanèevci1.doc

(Microsoft PowerPoint - Predstavitev IJS kon\350na.ppt)

PANGeA-monograph_KONČNA

SKUPNE EU PRIJAVE PROJEKTOV RAZISKOVALNE SFERE IN GOSPODARSTVA Maribor, Inovacije v MSP Innovation in SMEs dr. Igor Milek, SME NKO SPIRIT S

PowerPointova predstavitev

Microsoft Word - A-3-Dezelak-SLO.doc

Pomen zgodnje vključitve bolnika na čakalni seznam za presaditev ledvice Miha Arnol Ljubljana, 28. marec 2019

Microsoft Word - doktorat1_home_cp2.doc

Microsoft Word - P101-A doc

Transkripcija:

brain sciences Article Cerebellar Cortex and Cerebellar White Matter Volume in Normal Cognition, Mild Cognitive Impairment, and Dementia Nauris Zdanovskis 1,2, *, Ardis Platkājis 1,2, Andrejs Kostiks 3, Ol, esja Grigorjeva 4 and Guntis Karelis 3 1 Department of Radiology, Riga Stradins University, Dzirciema Street 16, LV-1007 Riga, Latvia; ardis.platkajis@rsu.lv 2 Department of Radiology, Riga East University Hospital, Hipokrata Street 2, LV-1038 Riga, Latvia 3 Department of Neurosurgery and Neurology, Riga East University Hospital, Hipokrata Street 2, LV-1038 Riga, Latvia; andrejs.kostiks@gmail.com (A.K.); guntis.karelis@gmail.com (G.K.) 4 Department of Computer Control Systems, Riga Technical University, Kal, k, u Street 1, LV-1658 Riga, Latvia; Olesja.Grigorjeva@rtu.lv * Correspondence: nauris.zdanovskis@rsu.lv Citation: Zdanovskis, N.; Platkājis, A.; Kostiks, A.; Grigorjeva, O.; Karelis, G. Cerebellar Cortex and Cerebellar White Matter Volume in Normal Cognition, Mild Cognitive Impairment, and Dementia. Brain Sci. 2021, 11, 1134. https://doi.org/ 10.3390/brainsci11091134 Academic Editor: Krystal Parker Received: 25 July 2021 Accepted: 25 August 2021 Published: 26 August 2021 Publisher s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. Copyright: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Abstract: The cerebellum is commonly viewed as a structure that is primarily responsible for the coordination of voluntary movement, gait, posture, and speech. Recent research has shown evidence that the cerebellum is also responsible for cognition. We analyzed 28 participants divided into three groups (9 with normal cognition, 9 with mild cognitive impairment, and 10 with moderate/severe cognitive impairment) based on the Montreal Cognitive Assessment. We analyzed the cerebellar cortex and white matter volume and assessed differences Participants with normal cognition had higher average values in total cerebellar volume, cerebellar white matter volume, and cerebellar cortex volume in both hemispheres, but by performing the Kruskal Wallis test, we did not find these values to be statistically significant. Keywords: cerebellum; cortex; volumetry; MRI; dementia; cognitive impairment; white matter 1. Introduction The cerebellum is commonly seen as a structure that is primarily responsible for the coordination of voluntary movement, gait, posture, and speech [1 3]. Recent research has shown there is clear evidence that the cerebellum is responsible not only for motor functions but also for cognition [1,4]. Based on cerebellar anatomy, it is not difficult to theoretically conclude that the cerebellum could be involved in cognition; i.e., we have approximately 16 billion neurons in the cerebral cortex compared to 69 billion neurons in the cerebellum, and the same analogy applies to cerebellar connections [1,5]. The cerebellum is connected to the brain via three peduncles (superior, middle, and inferior cerebellar peduncles), which form cerebellar pathways and connections to the brain. There are several afferent tracts (cortico-ponto-cerebellar, cortico-olivo-cerebellar, cortico-reticulo-cerebellar, spinocerebellar, dorsal spinocerebellar, ventral spinocerebellar, cuneocerebellar, vestibulocerebellar, rostral spinocerebellar tract, and vestibulocerebellar tract) and efferent tracts (rubrospinal tract and cerebellovestibular tract) [5,6]. These tracts connect to the sensorimotor and association areas of the cerebral cortex [7]. In functional magnetic resonance studies (fmri), the functional topography of the cerebellum shows that sensorimotor tasks engage the cerebellar anterior lobe and lobule VIII, and cognitive tasks activate the posterolateral cerebellar hemispheres [8 10]. Neuroimaging studies suggest that the cerebellum forms anatomical connections with the prefrontal cortex, which is important for normal cognitive function [11 13]. Additionally, there is evidence that abnormal prefrontal cerebellar connections are seen in patients with autism [14,15] and schizophrenia [16]. In terms of cerebellar contribution to cognition, several mechanisms have been described. In particular, cerebellar cognitive affective syndrome (CGAS) is characterized by Brain Sci. 2021, 11, 1134. https://doi.org/10.3390/brainsci11091134 https://www.mdpi.com/journal/brainsci

Brain Sci. 2021, 11, 1134 2 of 10 impaired executive function (including planning, set-shifting, abstract reasoning, verbal fluency, working memory), visuospatial memory and perception impairment, personality changes, and impaired verbal fluency. These impairments were seen in patients with large, bilateral, or pan-cerebellar disorders. Cerebellar lesions were located in the posterior lobe, vermis, and anterior lobe [1,17,18]. In cerebellar stroke, lesion location is associated either with motor or cognitive deficits; i.e., anterior lobe lesions usually impact motor functions, and posterior lobe lesions are associated with worse cognitive scores [8,10,18]. It is important to note cerebellar changes with aging; i.e., with aging, there is a 10% to 40% decrease in the Purkinje cell layer and reduction in dorsal vermis volume [1,19,20]. While the cerebellum is not the primary region of interest in aging and cognition, cell loss in this region could potentially lead to functional changes [1]. In recent studies, there is evidence that the cerebellum contributes to cognitive functioning, and, thus, it should be noted when analyzing magnetic resonance examinations in patients with cognitive impairment. In our study, we evaluated cerebellar white matter volume and cerebellar cortex volume in participants with normal cognition, mild cognitive impairment, and moderate/severe cognitive impairment. 2. Materials and Methods 2.1. Participant Groups and Montreal Cognitive Assessment Cutoff Scores Participants with suspected cognitive impairment were admitted to the neurologist. All participants were evaluated by the board-certified neurologist, and the Montreal Cognitive Assessment (MoCA) was carried out. All participants had at least 16 years of higher education. We divided participants into 3 groups [21,22]: 1. Participants with normal cognition (NC) with MoCA scores 27; 2. Participants with mild cognitive impairment (MCI) with MoCA scores 18 and 23; 3. Participants with moderate and severe cognitive impairment (SCI) with MoCA scores 17. We excluded participants with MoCA scores of 24, 25, and 26 as these scores are inconclusive and can provide false-positive or false-negative results. Scores lower than 23 are not healthy with 88% accuracy and scores 27 are not pathological with 91% accuracy [23]. Participant demographic data and MoCA results based on the participant group are shown in Table 1. Table 1. Demographic data and MoCA scores in participant groups (NC normal cognition, MCI mild cognitive impairment, SCI moderate and severe cognitive impairment). Age MoCA Participants 9 9 10 9 9 10 Female:Male 6:3 4:5 6:4 6:3 4:5 6:4 Mean 55.1 71.4 74.8 28.7 20.9 10.1 Std. Error of Mean 5.4 2.4 3.3 0.3 0.7 1.3 Median 51.0 71.0 71.0 29.0 20.0 11.5 Std. Deviation 16.1 7.2 10.4 1.0 2.1 4.1 Minimum 35.0 58.0 66.0 27.0 18.0 4.0 Maximum 76.0 82.0 96.0 30.0 23.0 15.0 Exclusion criteria for participants were clinically significant neurological diseases (tumors, major stroke, malformations, etc.), drug use, and alcohol abuse. Study participants did not have other significant pathological findings on magnetic resonance imaging (MRI). Based on the neurological assessment and MRI data, participants in MCI and SCI groups had mixed types of cognitive impairment; i.e., we did not have participants in

Brain Sci. 2021, 11, 1134 3 of 10 MCI and SCI groups that had clear evidence of one type of dementia (vascular dementia, Alzheimer s disease, Lewy body dementia, or frontotemporal dementia). All patients had at least some T2 white matter hyperintensities and some degree of global cortical atrophy in combination with other cerebral lobe atrophies. 2.2. Magnetic Resonance Imaging (MRI) Data Acquisition and Post-Processing with Freesurfer MRI scans were performed on a single site 3T scanner in a university hospital setting. For cerebellar parcellation, we used a sagittal 3D T1-weighted MP RAGE (Magnetization Prepared Gradient Echo) sequence with 1 mm voxel size. Scans were converted from DICOM format to neuroimaging informatics technology initiative (NIfTI) files and then post-processed. Cortical reconstruction and volumetric segmentation were performed with the FreeSurfer 7.2.0. image analysis suite, which is documented and freely available for download online (http://surfer.nmr.mgh.harvard.edu/, accessed on 1 July 2021). The technical details of FreeSurfer processing steps and procedures are described in prior publications [24 42]. 2.3. Statistical Analysis Statistical analysis was performed by using the software JASP Version 0.14.1 (Amsterdam, Netherlands). We analyzed descriptive statistics in all participant groups and performed the Kruskal Wallis test to identify statistically significant differences Furthermore, we analyzed descriptive statistics for each participant group for both cerebellar white matter volume and cortex volume, including mean, median, standard deviation, minimum, and maximum values. 3. Results We compared total cerebellum volume, white matter volume and cortex volume in both cerebellar hemispheres and performed the Kruskal Wallis test to evaluate statistical significance In addition, we calculated mean, median, standard deviation, minimum, and maximum values for each participant group. Results are grouped based on cerebellar anatomical parcellation left hemisphere white matter and cortex volume, right hemisphere white matter and cortex volume, and total cerebellum volume. 3.1. Left Cerebellum White Matter Volume Left cerebellum white matter volume data were acquired from FreeSurfer parcellation statistical data. The descriptive statistics of participant groups are shown in Table 2. Table 2. Descriptive statistics for left cerebellum white matter volume in participants with normal cognition (NC), mild cognitive impairment (MCI), and moderate/severe cognitive impairment (SCI). Left Cerebellum White Matter Volume, mm 3 Participants 9 9 10 Mean 12,684.2 11,429.8 11,506.7 Median 12,750.5 10,647.7 11,726.8 Std. Deviation 1699.8 1849.2 1852.4 Minimum 9944.9 10,186.9 7885.2 Maximum 14,908.2 16,105.9 14,536.1 Comparing mean values in groups, we found the highest values in the normal cognition participant group and the lowest values were found in the mild cognitive impairment group (Figure 1).

Brain Sci. 2021, 11, 1134 4 of 11 Comparing mean values in groups, we found the highest values in the normal cognition participant group and the lowest values were found in the mild cognitive impairment group (Figure 1). Brain Sci. 2021, 11, 1134 4 of 10. Figure 1. Mean left cerebellum white matter volume in mm 3 with standard deviation in participant Figure 1. Mean left cerebellum white matter volume in mm 3 with standard deviation in participant Black dots represent outliers (i.e., exceptionally diverging values). Black dots represent outliers (i.e., exceptionally diverging values). The Kruskal Wallis test was conducted to assess differences No statistically The Kruskal Wallis significant changes test was were conducted found to assess differences participant groups (H (2) = No 3.476, statistically p = 0.176). significant changes were found participant groups (H (2) = 3.476, p = 0.176). 3.2. Left Cerebellum Cortex Volume 3.2. Left Left Cerebellum cerebellum Cortex cortex Volume volume data were acquired from FreeSurfer parcellation statistical Left data. cerebellum The descriptive cortex statistics volume of data participant were acquired groupsfrom are shown FreeSurfer in Table parcellation 3. statistical data. The descriptive statistics of participant groups are shown in Table 3. Table 3. Descriptive statistics for left cerebellum cortex volume in participant groups with normal Table cognition 3. Descriptive (NC), mild statistics cognitivefor impairment left cerebellum (MCI), cortex and moderate/severe volume in participant cognitive groups impairment with normal (SCI). cognition (NC), mild cognitive impairment (MCI), and moderate/severe cognitive impairment (SCI). Left Cerebellum Cortex Volume, mm 3 Left Cerebellum Cortex Volume, mm 3 Participants 9 9 10 Participants 9 10 Mean 52,724.6 50,075.8 51,631.8 Median Mean 52,724.6 52,665.2 50,075.8 51,573.7 51,631.8 51,431.8 Std. Median Deviation 52,665.2 5596.8 51,573.7 4919.9 51,431.8 6323.4 Std. Minimum Deviation 5596.8 46,530.4 4919.9 41,886.6 40,268.9 6323.4 Maximum Minimum 46,530.4 62,715.6 41,886.6 57,555.6 40,268.9 62,242.0 Maximum 62,715.6 57,555.6 62,242.0 Comparing mean values in the groups, we found the highest values in the normal Comparing mean values in the groups, we found the highest values in the normal cognition participant group, the lowest values were found in the mild cognitive impairment cognition participant group, the lowest values were found in the mild cognitive impairment group, and the highest variability was found in the moderate/severe cognitive impairment group group, (Figure and 2). the highest variability was found in the moderate/severe cognitive impairment The Kruskal Wallis group (Figure 2). test was conducted to assess differences No statistically significant changes were found participant groups (H (2) = 0.970, p = 0.616). 3.3. Right Cerebellum White Matter Volume Right cerebellum white matter volume data were acquired from parcellation statistical data. The descriptive statistics of participant groups are shown in Table 4.

Brain Sci. 2021, 11, 1134 5 of 10 Brain Sci. 2021, 11, 1134 5 of 11 Figure Figure 2. 2. Mean Mean left left cerebellum cerebellum cortex cortex volume volume in mm in mm 3 with 3 with standard standard deviation deviation in participant in participant Black dots represent outliers (i.e., (i.e., exceptionally diverging diverging values). values). TableThe 4. Descriptive Kruskal Wallis statistics test for was right conducted cerebellum to assess white matter differences volume in participants No withsta- normal tistically cognition significant (NC), mild cognitive changes impairment were found (MCI), and participant moderate/severe groups cognitive (H (2) impairment = 0.970, p = (SCI). 0.616). Right Cerebellum White Matter Volume, mm 3 3.3. Right Cerebellum White Matter NC Volume MCI SCI Right Participants cerebellum white matter 9volume data were acquired 9 from parcellation 10 statistical data. The Meandescriptive statistics 12,535.4 of participant groups 11,542.3 are shown in Table 4. 11,073.9 Median 12,279.9 11,124.0 11,237.1 Table Std. 4. Descriptive Deviationstatistics for right 1551.1 cerebellum white matter 1542.9 volume in participants with 2078.7 normal cognition Minimum (NC), mild cognitive impairment 10,220.2(MCI), and moderate/severe 9552.4 cognitive impairment 6591.0(SCI). Maximum 15,019.2 14,494.6 14,550.6 Right Cerebellum White Matter Volume, mm 3 Comparing mean values in NC groups, we found the MCI highest values in the SCI normal cognition Brain Sci. 2021, 11, 1134 participant group, and the lowest values were found in the moderate/severe cognitive Participants 9 9 10 6 of 11 impairment Mean group (Figure 3). 12,535.4 11,542.3 11,073.9 Median 12,279.9 11,124.0 11,237.1 Std. Deviation 1551.1 1542.9 2078.7 Minimum 10,220.2 9552.4 6591.0 Maximum 15,019.2 14,494.6 14,550.6 Comparing mean values in groups, we found the highest values in the normal cognition participant group, and the lowest values were found in the moderate/severe cognitive impairment group (Figure 3). Figure3. 3. Meanright right cerebellumwhite white matter matter volume volume in mm in mm 3 with 3 with standard standard deviation deviation in participant in participant Black dots represent outliers (i.e., (i.e., exceptionally diverging values). values). The Kruskal Wallis test was conducted to assess differences No statistically significant changes were found participant groups (H (2) = 2.987, p = 0.225).

Brain Sci. 2021, 11, 1134 6 of 10 The Kruskal Wallis test was conducted to assess differences No statistically significant changes were found participant groups (H (2) = 2.987, p = 0.225). 3.4. Right Cerebellum Cortex Volume Right cerebellum cortex volume data were acquired from FreeSurfer parcellation statistical data. The descriptive statistics of participant groups are shown in Table 5. Table 5. Descriptive statistics for right cerebellum cortex volume in participants with normal cognition (NC), mild cognitive impairment (MCI), and moderate/severe cognitive impairment (SCI). Right Cerebellum Cortex Volume, mm 3 Participants 9 9 10 Mean 53,667.8 51,066.6 52,981.4 Median 52,242.6 52,704.6 54,000.4 Std. Deviation 5982.1 5194.9 7410.6 Minimum 47,858.8 42,292.4 39,232.7 Maximum 63,872.6 58,125.1 65,617.1 Brain Sci. 2021, 11, 1134 Comparing mean values in groups, we found the highest values in the normal7 cognition participant group, and the lowest values were found in the mild cognitive impairment of 11 group (Figure 4). Figure 4. 4. Mean Meanright cerebellum cortex volume in in mm 3 with with standard deviation in participant Black dots represent outliers (i.e., exceptionally diverging values). The The Kruskal Wallis Kruskal Wallis test test was was conducted conducted to to assess assess differences differences No statistically No statistically significant significant changes changes were were found found participant participant groups groups (H (2) (H = (2) 0.467, = 0.467, p = 0.792). p = 0.792). 3.5. Total Cerebellum Volume 3.5. Total Cerebellum Volume Total cerebellum volume was calculated as a sum of white matter and gray matter Total cerebellum volume was calculated as sum of white matter and gray matter volume in the right and left cerebellum. The descriptive statistics of participant groups are volume in the right and left cerebellum. The descriptive statistics of participant groups shown in Table 6. are shown in Table 6. Table 6. Descriptive statistics for total cerebellar volume in participants with normal cognition (NC), mild cognitive impairment (MCI), and moderate/severe cognitive impairment (SCI). Total Cerebellum Volume, mm 3 Participants 9 9 10

Brain Sci. 2021, 11, 1134 7 of 10 Table 6. Descriptive statistics for total cerebellar volume in participants with normal cognition (NC), mild cognitive impairment (MCI), and moderate/severe cognitive impairment (SCI). Total Cerebellum Volume, mm 3 Participants 9 9 10 Mean 131,612.0 124,113.8 127,193.8 Median 131,689.9 125,600.9 130,447.9 Std. Deviation 14,099.5 11,921.3 16,451.6 Minimum 115,429.9 104,217.5 93,977.8 Maximum 155,494.1 140,885.4 152,585.8 Brain Sci. 2021, 11, 1134 Comparing mean values in groups, we found the highest values in the normal8 cognition participant group, and the lowest values were found in the mild cognitive impairment of 11 group (Figure 5). Figure 5. Mean total cerebellum volume values in mm Figure 5. Mean total cerebellum volume values in mm 3 with standard deviation in participant 3 with standard deviation in participant Black Black dots dots represent represent outliers outliers (i.e., (i.e., exceptionally exceptionally diverging diverging values). values). The Kruskal Wallis test was conducted to assess differences No The Kruskal Wallis test was conducted to assess differences No statistically significant changes were found participant groups (H (2) = 1.188, p = statistically significant changes were found participant groups (H (2) = 1.188, p = 0.552). 0.552). 4. Discussion 4. Discussion In our study, we focused on general cerebellar quantitative measurement, i.e., white matter In our andstudy, cortical we volume focused in on both general cerebellar cerebellar hemispheres. quantitative measurement, i.e., white matter Today, and cortical the cerebellum volume is in recognized both cerebellar as anhemispheres. associative center of higher cognitive functions Today, [43,44]. the Thanks cerebellum to the is recognized fmri studies, as an itassociative was possible center to of map higher functional cognitive cerebrocerebellar [43,44]. connections Thanks to the andfmri identify studies, specific it was cerebellar possible regions to map that functional are responsible cerebro-cere- for functionbellar cognition connections [45]. and identify specific cerebellar regions that are responsible for cognition [45]. Although the cerebellum contributes to cognition, when correlating cerebellar size, volume, Although or general the cerebellum structure, itcontributes has a poor correlation to cognition, with when cognitive correlating tests. cerebellar These findings size, volume, have been or reported general structure, in severalit articles: has a poor correlation with cognitive tests. These findings have Paradiso been reported et al. in correlated several articles: cerebellar volume with general intelligence, and although thereparadiso was a positive et al. correlated correlation, cerebellar it was not volume statistically with general significant intelligence, [46]. and although there Bernard was a positive et al. analyzed correlation, theit volume was not ofstatistically several anatomical significant regions [46]. in the cerebellum (anterior Bernard part, et crus al. analyzed 1, posterior the volume part, andof vermis) several anatomical and correlated regions volumetric in the cerebellum data with (anterior part, crus 1, posterior part, and vermis) and correlated volumetric data with cognitive tasks (digit symbol, trails, spatial span, spatial learning, letter span, and verbal learning) and did not find a statistically significant relationship [47]. Hoogenda et al. found a minor relationship larger cerebellar volume and better cognition in healthy older adults, which further attenuated after correcting for cer-

Brain Sci. 2021, 11, 1134 8 of 10 cognitive tasks (digit symbol, trails, spatial span, spatial learning, letter span, and verbal learning) and did not find a statistically significant relationship [47]. Hoogenda et al. found a minor relationship larger cerebellar volume and better cognition in healthy older adults, which further attenuated after correcting for cerebral volume, concluding that it is not the main leading structure in terms of cognition [48]. Mitoma et al. in a consensus paper discussed cerebellar reserve and cerebellar cognitive reserve. The cerebellar reserve is defined as the capacity of the cerebellum to compensate and restore function in response to pathology. Regarding cerebellar cognitive reserve, there may be no structural or functional differences in different disease groups (i.e., Alzheimer s disease, frontotemporal dementia, autism spectrum disorder, schizophrenia, and major depressive disorder) rather than compensatory reorganization changes that improve behavior and cognition [49,50]. In general, although we did not achieve statistically significant results in our study, it is important to be aware of cerebellar contribution to cognitive function, especially in diagnostic imaging in patients with cognitive impairment. Further research is necessary to assess more detailed cerebellar anatomical volumetric measurements and correlate those findings with clinical data and cognitive testing. Limitations This was an exploratory study to assess the cerebellar white matter and cortical volume in association with cognitive impairment and dementia. The limitations of this study include cross-sectional design and a small participant cohort. In addition, it is necessary to note that there were significant differences in the mean age of the participants in study The mean age for the NC group was younger than that for the MCI and SCI Thus, we expected the differences the NC group and either the MCI group or SCI group to be statistically significant, but we did not find any statistically significant differences. 5. Conclusions In our study, we did not find statistically significant differences in cerebellar cortex volume and cerebellar white matter volume in participant groups with normal cognition, mild cognitive impairment, and dementia. Author Contributions: Conceptualization, N.Z. and A.P.; methodology, N.Z., A.P., A.K., G.K. and O.G.; software, N.Z. and O.G.; validation, A.P. and G.K..; formal analysis, N.Z., A.P. and G.K.; investigation, A.K. and G.K.; resources, A.P. and G.K.; data curation, N.Z.; writing original draft preparation, N.Z.; writing review and editing, N.Z., A.P., A.K., G.K. and O.G.; visualization, N.Z.; supervision, A.P. and G.K.; project administration, N.Z. All authors have read and agreed to the published version of the manuscript. Funding: The article has been developed with financing from the European Social Fund and the state budget within the project no. 8.2.2.0/20/I/004 Support for involving doctoral students in scientific research and studies. Institutional Review Board Statement: The study was conducted according to the guidelines of the Declaration of Helsinki and approved by the Institutional Review Board of Riga East University Hospital (No. AP-144/10) and the Ethics committee at Riga East University Hospital Ethics Board (No. 08-A/19). Informed Consent Statement: Informed consent was obtained from all subjects involved in the study. Data Availability Statement: The data presented in this study are available on request from the corresponding author. The data are not publicly available due to data privacy. Conflicts of Interest: The authors declare no conflict of interest.

Brain Sci. 2021, 11, 1134 9 of 10 References 1. Rapoport, M.; van Reekum, R.; Mayberg, H. The Role of the Cerebellum in Cognition and Behavior. JNP 2000, 12, 193 198. [CrossRef] 2. Manto, M.; Bower, J.M.; Conforto, A.B.; Delgado-García, J.M.; da Guarda, S.N.F.; Gerwig, M.; Habas, C.; Hagura, N.; Ivry, R.B.; Mariën, P.; et al. Consensus Paper: Roles of the Cerebellum in Motor Control The Diversity of Ideas on Cerebellar Involvement in Movement. Cerebellum 2012, 11, 457 487. [CrossRef] 3. Jimsheleishvili, S.; Dididze, M. Neuroanatomy, Cerebellum. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. 4. Jacobs, H.I.L.; Hopkins, D.A.; Mayrhofer, H.C.; Bruner, E.; van Leeuwen, F.W.; Raaijmakers, W.; Schmahmann, J.D. The Cerebellum in Alzheimer s Disease: Evaluating Its Role in Cognitive Decline. Brain 2018, 141, 37 47. [CrossRef] [PubMed] 5. Herculano-Houzel, S. The Human Brain in Numbers: A Linearly Scaled-up Primate Brain. Front. Hum. Neurosci. 2009, 3, 31. [CrossRef] 6. Voogd, J. The Human Cerebellum. J. Chem. Neuroanat. 2003, 26, 243 252. [CrossRef] 7. Strick, P.L.; Dum, R.P.; Fiez, J.A. Cerebellum and Nonmotor Function. Annu. Rev. Neurosci. 2009, 32, 413 434. [CrossRef] 8. Stoodley, C.J.; MacMore, J.P.; Makris, N.; Sherman, J.C.; Schmahmann, J.D. Location of Lesion Determines Motor vs. Cognitive Consequences in Patients with Cerebellar Stroke. NeuroImage Clin. 2016, 12, 765 775. [CrossRef] 9. Keren-Happuch, E.; Chen, S.A.; Ho, M.R.; Desmond, J.E. A Meta-analysis of Cerebellar Contributions to Higher Cognition from PET and FMRI Studies. Hum. Brain Mapp 2012, 35, 593 615. [CrossRef] 10. Stoodley, C.J.; Valera, E.M.; Schmahmann, J.D. Functional Topography of the Cerebellum for Motor and Cognitive Tasks: An FMRI Study. NeuroImage 2012, 59, 1560 1570. [CrossRef] [PubMed] 11. Miller, E.K. The Prefontral Cortex and Cognitive Control. Nat. Rev. Neurosci. 2000, 1, 59 65. [CrossRef] [PubMed] 12. Watson, T.; Becker, N.; Apps, R.; Jones, M. Back to Front: Cerebellar Connections and Interactions with the Prefrontal Cortex. Front. Syst. Neurosci. 2014, 8, 4. [CrossRef] 13. Buckner, R.L.; Krienen, F.M.; Castellanos, A.; Diaz, J.C.; Yeo, B.T.T. The Organization of the Human Cerebellum Estimated by Intrinsic Functional Connectivity. J. Neurophysiol. 2011, 106, 2322 2345. [CrossRef] 14. Fatemi, S.H.; Aldinger, K.A.; Ashwood, P.; Bauman, M.L.; Blaha, C.D.; Blatt, G.J.; Chauhan, A.; Chauhan, V.; Dager, S.R.; Dickson, P.E.; et al. Consensus Paper: Pathological Role of the Cerebellum in Autism. Cerebellum 2012, 11, 777 807. [CrossRef] 15. Fernández, M.; Sierra-Arregui, T.; Peñagarikano, O. The Cerebellum and Autism: More than Motor Control; IntechOpen: London, UK, 2019; ISBN 978-1-78984-052-0. 16. Andreasen, N.C.; Pierson, R. The Role of the Cerebellum in Schizophrenia. Biol. Psychiatry 2008, 64, 81 88. [CrossRef] 17. Schmahmann, J.D.; Sherman, J.C. Cerebellar Cognitive Affective Syndrome. In International Review of Neurobiology; Schmahmann, J.D., Ed.; Review of Academic Press: Cambridge, MA, USA, 1997; Volume 41, pp. 433 440. 18. Schmahmann, J.D. The Cerebellum and Cognition. Neurosci. Lett. 2019, 688, 62 75. [CrossRef] [PubMed] 19. Hall, T.C.; Miller, A.K.H.; Corsellis, J.A.N. Variations in the Human Purkinje Cell Population According to Age and Sex. Neuropathol. Appl. Neurobiol. 1975, 1, 267 292. [CrossRef] 20. Raz, N.; Torres, I.J.; Spencer, W.D.; White, K.; Acker, J.D. Age-Related Regional Differences in Cerebellar Vermis Observed in Vivo. Arch. Neurol. 1992, 49, 412 416. [CrossRef] [PubMed] 21. Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695 699. [CrossRef] 22. FAQ MoCA-Cognitive Assessment. Available online: https://www.mocatest.org/faq/ (accessed on 24 July 2021). 23. Thomann, A.E.; Berres, M.; Goettel, N.; Steiner, L.A.; Monsch, A.U. Enhanced Diagnostic Accuracy for Neurocognitive Disorders: A Revised Cut-off Approach for the Montreal Cognitive Assessment. Alzheimers Res. Ther. 2020, 12, 39. [CrossRef] [PubMed] 24. Segonne, F.; Dale, A.M.; Busa, E.; Glessner, M.; Salat, D.; Hahn, H.K.; Fischl, B. A Hybrid Approach to the Skull Stripping Problem in MRI. NeuroImage 2004, 22, 1060 1075. [CrossRef] 25. Sled, J.G.; Zijdenbos, A.P.; Evans, A.C. A Nonparametric Method for Automatic Correction of Intensity Nonuniformity in MRI Data. IEEE Trans. Med. Imaging 1998, 17, 87 97. [CrossRef] [PubMed] 26. Desikan, R.S.; Ségonne, F.; Fischl, B.; Quinn, B.T.; Dickerson, B.C.; Blacker, D.; Buckner, R.L.; Dale, A.M.; Maguire, R.P.; Hyman, B.T.; et al. An Automated Labeling System for Subdividing the Human Cerebral Cortex on MRI Scans into Gyral Based Regions of Interest. NeuroImage 2006, 31, 968 980. [CrossRef] [PubMed] 27. Fischl, B.; Liu, A.; Dale, A.M. Automated Manifold Surgery: Constructing Geometrically Accurate and Topologically Correct Models of the Human Cerebral Cortex. IEEE Medical Imaging 2001, 20, 70 80. [CrossRef] [PubMed] 28. Fischl, B.; van der Kouwe, A.; Destrieux, C.; Halgren, E.; Ségonne, F.; Salat, D.H.; Busa, E.; Seidman, L.J.; Goldstein, J.; Kennedy, D.; et al. Automatically Parcellating the Human Cerebral Cortex. Cerebral Cortex 2004, 14, 11 22. [CrossRef] [PubMed] 29. Reuter, M.; Fischl, B. Avoiding Asymmetry-Induced Bias in Longitudinal Image Processing. NeuroImage 2011, 57, 19 21. [CrossRef] 30. Fischl, B.; Sereno, M.I.; Dale, A. Cortical Surface-Based Analysis: II: Inflation, Flattening, and a Surface-Based Coordinate System. NeuroImage 1999, 9, 195 207. [CrossRef] 31. Segonne, F.; Pacheco, J.; Fischl, B. Geometrically Accurate Topology-Correction of Cortical Surfaces Using Nonseparating Loops. IEEE Trans. Med. Imaging 2007, 26, 518 529. [CrossRef] [PubMed]

Brain Sci. 2021, 11, 1134 10 of 10 32. Fischl, B.; Sereno, M.I.; Tootell, R.B.H.; Dale, A.M. High-Resolution Intersubject Averaging and a Coordinate System for the Cortical Surface. Human Brain Mapping 1999, 8, 272 284. [CrossRef] 33. Reuter, M.; Rosas, H.D.; Fischl, B. Highly Accurate Inverse Consistent Registration: A Robust Approach. NeuroImage 2010, 53, 1181 1196. [CrossRef] 34. Fischl, B.; Dale, A.M. Measuring the Thickness of the Human Cerebral Cortex from Magnetic Resonance Images. Proc. Nat. Acad. Sci. USA 2000, 97, 11050 11055. [CrossRef] 35. Rosas, H.D.; Liu, A.K.; Hersch, S.; Glessner, M.; Ferrante, R.J.; Salat, D.H.; van der Kouwe, A.; Jenkins, B.G.; Dale, A.M.; Fischl, B. Regional and Progressive Thinning of the Cortical Ribbon in Huntington s Disease. Neurology 2002, 58, 695 701. [CrossRef] 36. Kuperberg, G.R.; Broome, M.; McGuire, P.K.; David, A.S.; Eddy, M.; Ozawa, F.; Goff, D.; West, W.C.; Williams, S.C.R.; van der Kouwe, A.; et al. Regionally Localized Thinning of the Cerebral Cortex in Schizophrenia. Arch. General Psychiatry 2003, 60, 878 888. [CrossRef] [PubMed] 37. Jovicich, J.; Czanner, S.; Greve, D.; Haley, E.; van der Kouwe, A.; Gollub, R.; Kennedy, D.; Schmitt, F.; Brown, G.; MacFall, J.; et al. Reliability in Multi-Site Structural MRI Studies: Effects of Gradient Non-Linearity Correction on Phantom and Human Data. NeuroImage 2006, 30, 436 443. [CrossRef] 38. Han, X.; Jovicich, J.; Salat, D.; van der Kouwe, A.; Quinn, B.; Czanner, S.; Busa, E.; Pacheco, J.; Albert, M.; Killiany, R.; et al. Reliability of MRI-Derived Measurements of Human Cerebral Cortical Thickness: The Effects of Field Strength, Scanner Upgrade and Manufacturer. NeuroImage 2006, 32, 180 194. [CrossRef] 39. Fischl, B.; Salat, D.H.; van der Kouwe, A.J.W.; Makris, N.; Ségonne, F.; Quinn, B.T.; Dale, A.M. Sequence-Independent Segmentation of Magnetic Resonance Images. NeuroImage 2004, 23, S69 S84. [CrossRef] [PubMed] 40. Salat, D.; Buckner, R.L.; Snyder, A.Z.; Greve, D.N.; Desikan, R.S.; Busa, E.; Morris, J.C.; Dale, A.; Fischl, B. Thinning of the Cerebral Cortex in Aging. Cerebral Cortex 2004, 14, 721 730. [CrossRef] 41. Fischl, B.; Salat, D.H.; Busa, E.; Albert, M.; Dieterich, M.; Haselgrove, C.; van der Kouwe, A.; Killiany, R.; Kennedy, D.; Klaveness, S.; et al. Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain. Neuron 2002, 33, 341 355. [CrossRef] 42. Reuter, M.; Schmansky, N.J.; Rosas, H.D.; Fischl, B. Within-Subject Template Estimation for Unbiased Longitudinal Image Analysis. NeuroImage 2012, 61, 1402 1418. [CrossRef] 43. Allen, G.; Courchesne, E. The Cerebellum and Non-Motor Function: Clinical Implications. Mol. Psychiatry 1998, 3, 207 210. [CrossRef] 44. Leiner, H.C.; Leiner, A.L.; Dow, R.S. Cognitive and Language Functions of the Human Cerebellum. Trends Neurosci. 1993, 16, 444 447. [CrossRef] 45. Koziol, L.F.; Budding, D.; Andreasen, N.; D Arrigo, S.; Bulgheroni, S.; Imamizu, H.; Ito, M.; Manto, M.; Marvel, C.; Parker, K.; et al. Consensus Paper: The Cerebellum s Role in Movement and Cognition. Cerebellum 2014, 13, 151 177. [CrossRef] 46. Paradiso, S.; Andreasen, N.C.; O Leary, D.S.; Arndt, S.; Robinson, R.G. Cerebellar Size and Cognition: Correlations with IQ, Verbal Memory and Motor Dexterity. Neuropsychiatry Neuropsychol Behav Neurol. 1997, 10, 1 8. 47. Bernard, J.A.; Leopold, D.R.; Calhoun, V.D.; Mittal, V.A. Regional Cerebellar Volume and Cognitive Function from Adolescence to Late Middle Age. Hum. Brain Mapp 2014, 36, 1102 1120. [CrossRef] [PubMed] 48. Hoogendam, Y.Y.; van der Geest, J.N.; Niessen, W.J.; van der Lugt, A.; Hofman, A.; Vernooij, M.W.; Ikram, M.A. The Role of Cerebellar Volume in Cognition in the General Elderly Population. Alzheimer Dis. Assoc. Disord. 2014, 28, 352 357. [CrossRef] [PubMed] 49. Bordignon, A.; Devita, M.; Sergi, G.; Coin, A. Cerebellar Cognitive Reserve : A Possible Further Area of Investigation. Aging Clin. Exp. Res. 2021. [CrossRef] [PubMed] 50. Mitoma, H.; Buffo, A.; Gelfo, F.; Guell, X.; Fucà, E.; Kakei, S.; Lee, J.; Manto, M.; Petrosini, L.; Shaikh, A.G.; et al. Consensus Paper. Cerebellar Reserve: From Cerebellar Physiology to Cerebellar Disorders. Cerebellum 2020, 19, 131 153. [CrossRef] [PubMed]