Lovro Rojko ZAZNAVA MIŠIČNE UTRUJENOSTI S POMOČJO POVRŠINSKIH ELEKTROMIOGRAMOV IN SENZORJA MICROSOFT KINECT Magistrsko delo Maribor, junij 2017

Velikost: px
Začni prikazovanje s strani:

Download "Lovro Rojko ZAZNAVA MIŠIČNE UTRUJENOSTI S POMOČJO POVRŠINSKIH ELEKTROMIOGRAMOV IN SENZORJA MICROSOFT KINECT Magistrsko delo Maribor, junij 2017"

Transkripcija

1 Lovro Rojko ZAZNAVA MIŠIČNE UTRUJENOSTI S POMOČJO POVRŠINSKIH ELEKTROMIOGRAMOV IN SENZORJA MICROSOFT KINECT Magistrsko delo Maribor, junij 2017

2 ZAZNAVA MIŠIČNE UTRUJENOSTI S POMOČJO POVRŠINSKIH ELEKTROMIOGRAMOV IN SENZORJA MICROSOFT KINECT Magistrsko delo Študent: Lovro Rojko Študijski program: Računalništvo in informacijske tehnologije MAG Mentor: Lektorica: red. prof. dr. Aleš Holobar Mija Žlahtič, mag. slov. jez. in knjiž.

3 i

4 ZAHVALA Zahvaljujem se mentorju red. prof. dr. Alešu Holobarju za vso spodbudo, potrpežljivost in pomoč pri izdelavi magistrske naloge. Posebna zahvala gre mojim staršem, ki so me skozi vsa leta študija podpirali in vzpodbujali. ii

5 ZAZNAVA MIŠIČNE UTRUJENOSTI S POMOČJO POVRŠINSKIH ELEKTROMIOGRAMOV IN SENZORJA MICROSOFT KINECT Ključne besede: Kinect, elektromiogram, mišična utrujenost, hitrost, pot, pospeški, RMS, kinetične meritve, vmesniki človek stroj UDK: 004.5: (043.2) Povzetek V magistrskem delu smo proučevali možnost zaznavanja mišične utrujenosti s pomočjo senzorja Microsoft Kinect. Opisali smo zajem površinskih elektromiogramov (EMG) dvoglave in troglave nadlaktne mišice in kinetičnih meritev zgornjih okončin štirih zdravih merjencev in analizirali skupne karakteristike zajetih signalov. Iz kinetičnih meritev smo izračunali štiri veličine, in sicer pot, hitrost, pospešek in višino izvedene vaje. Časovne spremembe teh veličin smo statistično primerjali s spremembo amplitude signalov EMG, ki je znan pokazatelj mišične utrujenosti. Ugotovili smo, da se utrujenost mišice relativno dobro odraža v višini gibov, ostale kinetične metrike pa so bile za našo raziskavo manj informativne. Na podlagi teh rezultatov ocenjujemo, da je v primeru večkratnih ponovitev gibov zgornjih okončin možno zaznavati mišično utrujenost tudi samo iz kinetičnih meritev. iii

6 MUSCLE FATIGUE DETECTION WITH SURFACE ELECTROMYOGRAMS AND MICROSOFT KINECT SENSOR Key words: Kinect, electromyogram, muscle fatigue, speed, distance, acceleration, root mean square, kinetic measurement s, human-computer interfaces UDK: 004.5: (043.2) Abstract In this thesis, we examined the possibility of detecting muscle fatigue by using a Microsoft Kinect sensor. We simultaneously acquired surface electromyograms (EMG) of biceps brachii and triceps muscles and movements of upper extremity by Kinect sensor in four healthy subjects and analysed the common characteristics of the acquired signals. For each movement repetition, we calculated five different metrics from kinetic measurements, namely number of movement repetitions per time unit, distance, speed, acceleration and the maximal height of the arm. Temporal changes in these variables were statistically compared with the changes in the root mean square amplitude of the EMG signals, which is a well-known indicator of muscle fatigue. We found that muscle fatigue is relatively well reflected in the height of the arm, whereas the other tested kinetic metrics were less indicative for muscle fatigue. Based on these results we conclude that muscle fatigue can be detected from kinetic measurements of repeated upper limb movements. iv

7 KAZALO VSEBINE 1 UVOD STANJE TEHNIKE Senzor Microsoft Kinect Strojna oprema Kinecta Površinski elektromiogrami in elektrofiziološka demonstracija mišične utrujenosti Elektrofiziološka demonstracija mišične utrujenosti ZASNOVA REŠITVE IN IMPLEMENTACIJA Uporabljene tehnologije Razvojno okolje Microsoft Visual Studio in programski jezik C# Microsoft Visual Studio in senzor Microsoft Kinect Programski jezik MATLAB Strojna oprema za zajem signalov EMG Eksperimentalni protokol Zajem signalov Sledenje gibanju človeškega skeleta s pomočjo senzorja Microsoft Kinect Zajemanje podatkov z elektromiografom Segmentacija gibov v njihove ponovitve Kinetične meritve gibov Višina Pot Hitrost Pospeški Korenjena srednja kvadratična vrednost Statistična analiza spreminjanja vrednosti veličin skozi čas Analiza korelacij med posameznimi veličinami Regresija sprememb posameznih metrik z odstranitvijo osamelcev SKLEPI IN DISKUSIJA VIRI v

8 KAZALO SLIK Slika 2.1: Površinske elektrode za zajem signalov EMG... 6 Slika 2.2: Igelne elektrode za zajem signalov EMG... 6 Slika 2.3: Graf mišične utrujenosti... 8 Slika 3.1: Ojačevalec EMG-USB2, s katerim smo opravljali meritve površinskih signalov EMG Slika 3.2: Segmentacija gibov v sedem ponovitev glede na višino zapestja Slika 3.3: Primer zajetih vzorcev višine desnega zapestja (merjenec B, meritev 1) Slika 3.4: Primer izračunane poti desnega zapestja (merjenec B, meritev 1) Slika 3.5: Primer hitrosti skozi čas desnega zapestja (merjenec B, meritev 1) Slika 3.6: Primer pospeškov skozi čas za desno zapestje (merjenec B, meritev 1) Slika 3.7: Povprečne vrednosti in standardne deviacije števila ponovitev gibov leve roke (vsi merjenci, vse meritve) Slika 3.8: Povprečne vrednosti in standardne deviacije števila ponovitev gibov desne roke (vsi merjenci, vse meritve) Slika 3.9: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG dvoglave nadlaktne mišice (dolga glava) na desni roki (merjenec B, meritev 1); *p < 0,05, **p < 0, Slika 3.10: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG dvoglave nadlaktne mišice (kratka glava) na desni roki (merjenec B, meritev 1); *p < 0,05, **p < 0, Slika 3.11: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG troglave nadlaktne mišice (lateralna glava) na desni roki (merjenec B, meritev 1); *p < 0,05, **p < 0, Slika 3.12: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG troglave nadlaktne mišice (medialna glava) na desni roki (merjenec B, meritev 1); *p < 0,05, **p < 0, Slika 3.13: Povprečne vrednosti in standardne deviacije višine desnega zapestja (merjenec B, meritev 1); *p < 0,05, **p < 0, Slika 3.14: Povprečne vrednosti in standardne deviacije hitrosti desnega zapestja (merjenec B, meritev 1); *p < 0,05, **p < 0, Slika 3.15: Povprečne vrednosti in standardne deviacije pospeškov desnega zapestja (merjenec B, meritev 1); *p < 0,05, **p < 0, Slika 3.16: Povprečne vrednosti in standardne deviacije poti desnega zapestja (merjenec B, meritev 1); *p < 0,05, **p < 0, Slika 3.17: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG dvoglave nadlaktne mišice (dolga glava) na levi roki (merjenec B, meritev 1); *p < 0,05, **p < 0, Slika 3.18: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG dvoglave nadlaktne mišice (kratka glava) na levi roki (merjenec B, meritev 1); *p < 0,05, **p < 0, vi

9 Slika 3.19: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG troglave nadlaktne mišice (lateralna glava) na levi roki (merjenec B, meritev 1); *p < 0,05, **p < 0, Slika 3.20: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG troglave nadlaktne mišice (medialna glava) na levi roki (merjenec B, meritev 1); *p < 0,05, **p < 0, Slika 3.21: Povprečne vrednosti in standardne deviacije višine levega zapestja (merjenec B, meritev 1); *p < 0,05, **p < 0, Slika 3.22: Povprečne vrednosti in standardne deviacije hitrosti levega zapestja (merjenec B, meritev 1); *p < 0,05, **p < 0, Slika 3.23: Povprečne vrednosti in standardne deviacije pospeškov levega zapestja (merjenec B, meritev 1); *p < 0,05, **p < 0, Slika 3.24: Povprečne vrednosti in standardne deviacije poti levega zapestja (merjenec B, meritev 1); *p < 0,05, **p < 0, Slika 3.25: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG dvoglave nadlaktne mišice (dolga glava) na desni roki (merjenec B, meritev 2); *p < 0,05, **p < 0, Slika 3.26: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG dvoglave nadlaktne mišice (kratka glava) na desni roki (merjenec B, meritev 2); *p < 0,05, **p < 0, Slika 3.27: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG troglave nadlaktne mišice (lateralna glava) na desni roki (merjenec B, meritev 2); *p < 0,05, **p < 0, Slika 3.28: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG troglave nadlaktne mišice (medialna glava) na desni roki (merjenec B, meritev 2); *p < 0,05, **p < 0, Slika 3.29: Povprečne vrednosti in standardne deviacije višine desnega zapestja (merjenec B, meritev 2); *p < 0,05, **p < 0, Slika 3.30: Povprečne vrednosti in standardne deviacije veličine hitrosti desnega zapestja (merjenec B, meritev 2); *p < 0,05, **p < 0, Slika 3.31: Povprečne vrednosti in standardne deviacije pospeškov desnega zapestja (merjenec B, meritev 2); *p < 0,05, **p < 0, Slika 3.32: Povprečne vrednosti in standardne deviacije poti desnega zapestja (merjenec B, meritev 2); *p < 0,05, **p < 0, Slika 3.33: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG dvoglave nadlaktne mišice (dolga glava) na levi roki (merjenec B, meritev 2); *p < 0,05, **p < 0, Slika 3.34: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG dvoglave nadlaktne mišice (kratka glava) na levi roki (merjenec B, meritev 2); *p < 0,05, **p < 0, Slika 3.35: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG troglave nadlaktne mišice (lateralna glava) na levi roki (merjenec B, meritev 2); *p < 0,05, **p < 0, Slika 3.36: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG troglave nadlaktne mišice (medialna glava) na levi roki (merjenec B, meritev 2); *p < 0,05, **p < 0, vii

10 Slika 3.37: Povprečne vrednosti in standardne deviacije višine levega zapestja (merjenec B, meritev 2); *p < 0,05, **p < 0, Slika 3.38: Povprečne vrednosti in standardne deviacije hitrosti levega zapestja (merjenec B, meritev 2); *p < 0,05, **p < 0, Slika 3.39: Povprečne vrednosti in standardne deviacije pospeškov levega zapestja (merjenec B, meritev 2); *p < 0,05, **p < 0, Slika 3.40: Povprečne vrednosti in standardne deviacije veličine poti levega zapestja (merjenec B, meritev 2); *p < 0,05, **p < 0, Slika 3.41: Linearna regresija maksimalnih vrednosti višine leve (levi graf) in desne roke (desni graf) pri meritvi 1 merjenca B Slika 3.42: Linearna regresija maksimalnih vrednosti hitrosti leve (levi graf) in desne roke (desni graf) pri meritvi 1 merjenca B Slika 3.43: Linearna regresija maksimalnih vrednosti pospeškov leve (levi graf) in desne roke (desni graf) pri meritvi 1 merjenca B Slika 3.44: Linearna regresija maksimalnih vrednosti poti leve (levi graf) in desne roke (desni graf) pri meritvi 1 merjenca B Slika 3.45: Linearna regresija maksimalnih vrednosti EMG dvoglave nadlaktne mišice leve (levi graf) in desne roke (desni graf) pri meritvi 1 merjenca B Slika 3.46: Linearna regresija RMS višine leve (levi graf) in desne roke (desni graf) pri meritvi 1 merjenca B Slika 3.47 Linearna regresija RMS hitrosti leve (levi graf) in desne roke (desni graf) pri meritvi 1 merjenca B Slika 3.48: Linearna regresija RMS pospeškov leve (levi graf) in desne roke (desni graf) pri meritvi 1 merjenca B Slika 3.49: Linearna regresija RMS poti leve (levi graf) in desne roke (desni graf) pri meritvi 1 merjenca B Slika 3.50: Linearna regresija RMS EMG dvoglave nadlaktne mišice leve (levi graf) in desne roke (desni graf) pri meritvi 1 merjenca B Slika 3.51: Absolutne povprečne vrednosti in standardne deviacije maksimalnih vrednosti koeficienta p1 (leva roka, vsi merjenci, vse meritve); *p < 0,05, **p < 0,01, # negativna povprečna vrednost Slika 3.52: Absolutne povprečne vrednosti in standardne deviacije maksimalnih vrednosti koeficienta p2 (leva roka, vsi merjenci, vse meritve); *p < 0,05, **p < 0, Slika 3.53: Absolutne povprečne vrednosti in standardne deviacije maksimalnih vrednosti koeficienta določanja (leva roka, vsi merjenci, vse meritve); *p < 0,05, **p < 0, Slika 3.54: Absolutne povprečne vrednosti in standardne deviacije maksimalnih vrednosti vsote kvadratov ostankov (leva roka, vsi merjenci, vse meritve); *p < 0,05, **p < 0, viii

11 Slika 3.55: Absolutne povprečne vrednosti in standardne deviacije maksimalnih vrednosti koeficienta p1 (desna roka, vsi merjenci, vse meritve); *p < 0,05, **p < 0,01, # negativna povprečna vrednost Slika 3.56: Absolutne povprečne vrednosti in standardne deviacije maksimalnih vrednosti koeficienta p2 (desna roka, vsi merjenci, vse meritve); *p < 0,05, **p < 0, Slika 3.57: Absolutne povprečne vrednosti in standardne deviacije maksimalnih vrednosti koeficienta določanja (desna roka, vsi merjenci, vse meritve); *p < 0,05, **p < 0, Slika 3.58: Absolutne povprečne vrednosti in standardne deviacije maksimalnih vrednosti vsote kvadratov ostanka (desna roka, vsi merjenci, vse meritve); *p < 0,05, **p < 0, ix

12 KAZALO TABEL Tabela 3.1: Korelacijski koeficienti maksimalnih vrednosti ocenjenih veličin leve roke (merjenec B, meritev 1) Tabela 3.2: Korelacijski koeficienti maksimalnih vrednosti ocenjenih veličin desne roke (merjenec B, meritev 1) Tabela 3.3: Korelacijski koeficienti RMS ocenjenih veličin leve roke (merjenec B, meritev 1) Tabela 3.4: Korelacijski koeficienti RMS ocenjenih veličin desne roke (merjenec B, meritev 1) Tabela 3.5: Korelacijski koeficienti maksimalnih vrednosti ocenjenih veličin leve roke (vsi merjenci, vse meritve) Tabela 3.6: Korelacijski koeficienti maksimalnih vrednosti ocenjenih veličin desne roke Tabela 3.7: Korelacijski koeficienti RMS ocenjenih veličin leve roke (vsi merjenci, vse meritve) Tabela 3.8: Korelacijski koeficienti RMS ocenjenih veličin desne roke (vsi merjenci, vse meritve) 40 x

13 SEZNAM KRATIC EMG elektromiogram (ang. electromyography) RMS korenjena srednja kvadratična vrednost (ang. root mean square) USB univerzalno serijsko vodilo (ang. Universal Serial Bus) XML deklarativni jezik (ang. Extensible Markup Language) XAML deklarativni jezik, ki temelji na XML (ang. Extensible Application Markup Language) WPF orodje za izgradnjo grafičnih vmesnikov z uporabo XAML (ang. Windows Presentation Foundation) SDK orodje za razvoj aplikacij (ang. software development kit) DNM dvoglava nadlaktna mišica TNM troglava nadlaktna mišica MUAP akcijski potencial motorične enote (ang. motor unit action potential) MVC maksimalna prostovoljna kontrakcija mišice (ang. maximal voluntary contraction) MFCV prevodna hitrost mišičnih vlaken (ang. muscle fiber conduction velocity) MNF povprečna frekvenca (ang. mean frequency) xi

14 1 UVOD V magistrskem delu smo proučevali in raziskovali mišično utrujenost človeka ob telesnem naporu. V ta namen smo človeško telo povezali z računalnikom in uporabili analizo površinskih elektromiogramov, ki omogoča merjenje utrujenosti mišic. Pridobivanje podatkov z metodo elektromiografije je relativno zapleten postopek, saj je treba vsakega merjenca posebej povezati na elekromiograf, izmeriti signale in jih nato analizirati. Vsaka elektroda, ki je nameščena na merjenca, je s kablom povezana na elektromiograf. Takšen postopek je zamuden in delno ovira gibanje merjenca. Ugodnejša rešitev bi bila, da merjenci ne bi bili neposredno povezani na računalnik, tako bi se tudi izognili zamudnemu nameščanju elektrod nanje. Za merjence bi to pomenilo veliko večje ugodje pri izvajanju vaj, saj jih ne bi ovirale elektrode in kabli, ki povezujejo človeško telo na elektromiograf, prav tako bi jim lahko določili prostor za izvajanje vaj ter takoj pričeli z meritvami. Zanje in za raziskovalce bi to predstavljalo velik prihranek časa, saj se jim ne bi bilo treba ukvarjati s predhodnimi pripravami. Ena od možnih rešitev zaznavanja mišične utrujenosti je zaznavanje s pomočjo globinske slike, ki jo lahko pridobimo iz kinetičnih vmesnikov, kot je na primer Microsoft Kinect [20]. Kinect je senzor, ki je bil v prvi vrsti razvit za igralno konzolo XBOX 360, se pravi za industrijo videoiger, a je hitro pridobil popularnost tudi na drugih področjih. Magistrsko delo je razdeljeno na več poglavij, znotraj katerih smo prikazali možnost uporabe senzorja Microsoft Kinect za zaznavanje mišične utrujenosti in kot manj moteče alternativne metode elektromiografiji. V drugem poglavju smo predstavili trenutno stanje tehnike in podrobneje opisali Microsoft Kinect in elekromiograf. V tretjem poglavju smo opisali zajem podatkov iz elektromiografa in Kinecta ter postopke ocenjevanja mišične utrujenosti. V četrtem poglavju smo predstavili zasnovo testiranja in rezultate, v zadnjem poglavju pa smo analizirali ugotovitve in podali sklepna razmišljanja. 1

15 2 STANJE TEHNIKE Kinetični vmesniki so vmesniki, s katerimi zajemamo kinematiko človeškega telesa. Obstaja več pristopov, kako zajeti človeško telo in ga prenesti v digitalni svet. Najbolj razširjen in zaenkrat najbolj natančen pristop je s snemanjem osebe iz več zornih kotov in z večjim številom kamer. Oseba ima na sebi pritrjene referenčne točke (ang. markers). Te točke sistemi zaznajo in jih prenesejo v digitalni svet. Mi smo se odločili uporabiti način z zajemom globinskih slik. Ta način je manj uporaben, saj je tudi manj natančen [7]. Uporabili smo senzor Microsoft Kinect. Ta je v prvi vrsti namenjen igranju videoiger na igralni konzoli XBOX 360, a je hitro pridobil na popularnosti tudi na drugih področjih. 2.1 Senzor Microsoft Kinect Senzor Microsoft Kinect (v nadaljevanju Kinect) je bil izdan leta 2010 za igralno konzolo Microsoft XBOX 360. Bil je razvit in oglaševan kot revolucionarna periferija, ki bo spremenila način, kako ljudje komunicirajo z videoigrami in digitalnim svetom. S Kinectom lahko ljudje vzpostavijo interakcijo z digitalnim svetom brez igralnih ploščkov in igralnih palic. Igralec se bolj poglobi v videoigro, saj lahko uporablja svoje telo in je doživljanje interakcije z računalnikom bolj naravno. Kinect ima vgrajeno zaznavo telesa, kar je ključnega pomena. Računalnik mora najprej razumeti/razpoznati naše gibe, preden se lahko nanje odzove. Na področju zaznavanja kinetičnega gibanja človeškega telesa je bilo objavljenih veliko raziskav [19]. Izkazalo se je, da je z navadno kamero zelo težko doseči verodostojno razpoznavo, zato Kinect uporablja globinski vid. Vpliv, ki ga je imel Kinect, se je razširil tudi preko meja videoiger. Inovativni pristop zaznavanja gibov telesa, povezan z nizkocenovno napravo Kinect, je pripomogel k večji popularnosti zajema in analize gibov. Kinect so začeli uporabljati tudi v medicini, za 2

16 pomoč slabovidnim [23], za razpoznavanje in prevajanje znakovnega jezika [24, 25], v glasbi [20] in na mnogih drugih področjih. Omeniti je treba, da so za Kinect že kar po treh urah od evropske izdaje napisali gonilnik, kar je pomenilo, da senzor ni bil omejen samo na uporabo z igralno konzolo Microsoft XBOX 360, ampak so ga lahko samostojno povezali na osebni računalnik [17]. Okoli Kinecta se je v zgodnjem času hitro zgradila velika skupnost. Kinect so začeli uporabljati kot visokokakovostni 3D-optični bralnik, z njim posneli predmet iz vseh vidnih strani in tako zgradil 3D-mrežo predmeta [30, 31, 32]. Drugi so senzor uporabili za pomoč pri prevajanju znakovnega jezika. Tako so olajšali komunikacijo z ljudmi, ki znakovnega jezika ne poznajo, ali celo omogočili prevajanje iz enega znakovnega jezika v drugega. Senzor je zajel znake, jih zaznal in prevedel [24, 25]. Drugi raziskovalci so poskušali izboljšati in pohitriti delo znotraj operacijskih sob, kjer so uporabili Kinect kot orodje za komunikacijo medicinskega osebja z računalnikom [26]. V operacijski sobi je nameščen monitor in Kinect. Medicinsko osebje z gestami upravlja s podatki na monitorju (medicinska dokumentacija, 3D-modeli človeških organov). Kinect je bil uporabljen tudi za pomoč ljudem s težavami z motoriko telesa, kot so na primer starejše osebe, osebe s Parkinsonovo boleznijo in osebe, ki so doživele možgansko kap. S Kinectom so pri bolnikih spremljali napredek rehabilitacije ali njihovo degradacijo [3, 4]. Navdušenci pa so Kinect uporabili še za marsikaj drugega. S Kinectom so lahko izrazili in uresničili svoje dolgoletne želje. Veliko takih projektov smo našli na spletni strani KinectHacks.com [18], ki je ena izmed prvih skupnosti, v kateri so uporabniki delili svoje projekte. Na tej strani najdemo veliko projektov, ki so povezani z medicino, 3Dmodeliranjem, glasbo, navidezno resničnostjo in še mnogo več. Stran je vredna ogleda, če želimo videti kaj več o tem, kaj vse lahko naredimo s senzorjem. 3

17 2.2 Strojna oprema Kinecta Kinect je poznan po tem, da zna zajemati globinsko sliko okolice. S pomočjo globinske slike zazna človeško telo in njegovo gibanje. To pa ni edino, kar zmore, saj vsebuje še druge komponente, ki so manj znane, a enako pomembne. Ohišje Kinecta je podolgovate oblike. Nameščeno je na motoriziranem podstavku, s katerim lahko nadziramo naklon senzorja, da je zajem globinske slike optimalen. Motoriziran podstavek omogoča poljubne nastavitve naklona senzorja, od vodoravnega položaja do 27 stopinj navzgor ali navzdol. Celotni razpon naklona je torej 54 stopinj [13]. Vgrajeni kameri v privzetem načinu zajemata sliko s 30 slikovnimi okvirji na sekundo pri ločljivosti pikslov. Najvišja ločljivost, ki jo lahko nastavimo, je pikslov. Pri višji ločljivosti frekvenca zajema slik pade pod 30 slikovnih okvirjev na sekundo. Barvna kamera pošilja podatke z 32-bitno ločljivostjo po 8 bitov na barvni kanal, IR-kamera pa pošilja podatke z 11-bitno ločljivostjo. To pomeni, da ima globinska slika 2048 razredov ločljivosti. Vidljivost kamer je omejena na 57 stopinj vodoravno in 43 stopinj navpično. Zajem globinske slike poteka tako, da IR-oddajnik oddaja IR-žarke z znanim vzorcem. IR-kamera zazna njihov odboj in iz tega vzorca izračuna razdaljo, na kateri se nahajajo predmeti. Senzor ima tudi štiri mikrofone, porazdeljene po celotni širini ohišja. Zaradi velikega števila mikrofonov omogoča zaznavanje smeri zvoka. S pomočjo pospeškometra se lahko senzor orientira v prostoru. Kinect je v zasnovi narejen za prepoznavanje oseb, ki so obrnjene proti senzorju. Če je oseba, ki jo zaznavamo, obrnjena stran, jo senzor stežka prepozna. Vidno polje Kinecta ni veliko. Zazna do šest oseb, pozicijo telesa pa lahko zazna samo za dve osebi. V privzetem načinu zazna osebe na razdalji od 0,8 metra do štiri metre. Za najboljšo zaznavo telesa je priporočena razdalja med 1,2 metra in 3,5 metra [33]. 4

18 2.3 Površinski elektromiogrami in elektrofiziološka demonstracija mišične utrujenosti Elektromiografija je elekrodiagnostična tehnika, s katero ocenjujemo električno aktivnost skeletnih mišic. Meritve se opravljajo z elektromiografi, ki posnamejo elektromiogram (EMG), to je električni potencial, ki ga proizvedejo mišične celice, ko so aktivirane. Prvi dokumentiran začetek elektromiografije sega v sedemnajsto stoletje. Francesco Redi je odkril posebno mišico v električni jegulji, ki proizvaja elektriko [42]. Leta 1773 je Walsh uspel demonstrirati, da je ta mišica sposobna proizvesti iskro [41]. Nekaj let pozneje, leta 1792, je Luigi Galvani izdal knjigo, v kateri je opisal, da lahko električni impulz povzroči krčenje mišice [40]. Leta 1922 sta Gasser in Erlanger uporabila osciloskop, s katerim sta prikazala električne signale v mišicah [54]. Vendar zaradi stohastične narave mioelektričnih signalov ni bilo možno pridobiti veliko informacij. Po letu 1980 pa so pospešeno začeli uporabljati elektromiografijo, saj je industrija tako napredovala, da je bila strojna oprema dovolj natančna in poceni za širšo uporabo [55]. Danes vemo, da so skeletne mišice sestavljene iz nekaj tisoč mišičnih vlaken, ki se medsebojno povezujejo v osnovne funkcionalne enote mišic, tako imenovane motorične enote. Vsaka motorična enota združuje od nekaj deset do nekaj sto mišičnih vlaken, ki jih oživčuje en sam motorični nevron. Vsa vlakna motorične enote sočasno prejmejo električni impulz in se prožijo sinhrono. Električno vzbujanje (tako imenovani akcijski potencial) se širi od živčno-mišičnega stičišča proti kitam in povzroča krčenje mišičnih vlaken. V zdravih mišicah so motorične enote aktivne asinhrono in tvorijo interferenčne signale EMG. Obstajata dva načina merjenja signalov EMG, in sicer površinski in igelni [1]. Površinske meritve ocenjujejo delovanje mišic na podlagi posnetih signalov iz površine kože. Te signale lahko merimo s parom elektrod ali s poljem več elektrod. V vsakem primeru potrebujemo več kot eno elektrodo, saj se pri elektromiografiji meri razlika v električnem 5

19 potencialu vsaj dveh elektrod (slika 2.1). Slabosti takšnega pristopa so, da smo omejeni na površino, kjer so elektrode lahko izpostavljene električnim prispevkom drugih mišic, ki jih ne merimo [2]. Na uspešnost meritev vpliva tudi položaj mišice oz. globina mišičnih vlaken pod površino kože. Slika 2.1: Površinske elektrode za zajem signalov EMG Igelni EMG uporablja drugačen tip elektrod za zajemanje signalov (slika 2.2). Elektrode so v tem primeru majhne igle, ki prebodejo kožo. S tem zagotovimo čistejši in frekvenčno bogatejši signal [10]. Slika 2.2: Igelne elektrode za zajem signalov EMG 6

20 2.4 Elektrofiziološka demonstracija mišične utrujenosti V našem telesu se nahajajo tri različne vrste mišic, in sicer skeletne, srčne in gladke mišice. Skeletne mišice so mišice, s katerimi se lahko nadzorovano premikamo. Na okostje so pritrjene s tetivami in se uporabljajo za premikanje našega telesa. Kljub temu da lahko mišice nadzorujemo, je gibanje v veliki meri tudi nezaveden proces. Skeletne mišice so zgrajene iz več mišičnih vlaken, ki so povezane v več snopov, obdanih z vezivom, imenovanim mišična ovojnica. Povprečen moški ima do 42 % mišične mase, ženska pa do 36 % [16]. Gladke mišice so mišice, na katere nimamo zavestnega vpliva in so predvsem del notranjih organov, od želodca, malega in velikega črevesa do sečil in krvnih žil. Srčne mišice, kot pove že ime, so mišice, ki so zadolžene za nemoteno delovanje srca in jih prav tako kot gladkih mišic ne moremo zavestno nadzorovati. Mioelektrična manifestacija mišične utrujenosti se kaže kot skupek kompleksnih sprememb karakteristik signalov EMG. Te spremembe se lahko pojavijo zaradi utrujenosti centralnega sistema, ki nadzoruje mišice, ali zaradi sprememb lastnosti mišičnih vlaken, na primer prevodne hitrosti električnih potencialov po mišičnem tkivu [8]. Mišično utrujenost lahko razumemo in definiramo iz več zornih kotov, med drugim kot [9, 10]: dolgo izvajanje fizične aktivnosti, ki zmanjša moč človeka za nadaljnje izvajanje vaj; spremembo signalov EMG, pri katerih se poveča amplituda in zmanjša frekvenca signala; občutek, ki se ga zavedamo in vpliva na naše gibanje in premikanje udov. Mišična utrujenost je pojav, ki se začne s krčenjem mišice in napreduje v nezmožnost vzdrževanja potrebne sile. Časovni trenutek, ko mišična sila občutneje popusti, imenujemo točka vzdržljivosti. Med krčenjem mišice se zgodi veliko elektrofizioloških sprememb. Ob kontrakcijski stopnji nad 50 % MVC (ang. maximal voluntary contraction) je skrčitev ishemična [43]. Pod temi pogoji se postopno zniža prevodna hitrost mišičnih vlaken (ang. muscle fiber conduction velocity), to je hitrost potovanja akcijskih potencialov 7

21 motorične enote (ang. motor unit action potencial) po mišičnih vlaknih. Posledično se frekvenčna vsebina površinskih signalov EMG pomakne proti nižjim frekvencam. Zaradi mišične utrujenosti se torej zniža povprečna frekvenca (ang. mean frequency MNF) površinskega signala EMG [44, 45]. Obratno pa se zaradi postopne rekrutacije vedno novih motoričnih enot v mišici pri podmaksimalnih hotnih mišičnih skrčitvah srednja kvadratična vrednost (ang. root mean square RMS) signalov EMG povečuje (slika 2.3). Slika 2.3: Graf mišične utrujenosti Kot vidimo, mišična utrujenost ni samo fizična sprememba v telesu, ampak tudi zavedanje motoričnih sposobnosti, ki vplivajo na našo aktivnost. V grobem lahko mišično utrujenost opišemo kot počasno degradacijo moči/sile [11]. Celoten proces utrujenosti še ni v celoti raziskan. Za utrujenost ni odgovoren en sam faktor. Na mišično utrujenost v velikem delu vpliva proces, ki je najbolj obremenjen med fizično aktivnostjo. Pri zaznavanju utrujenosti je še veliko neznanega. Zato ne obstaja samo en odgovor na to, kaj vpliva na utrujenost. 8

22 3 ZASNOVA REŠITVE IN IMPLEMENTACIJA Za testno območje smo si pripravili 2 2 metra velik prostor, kjer so merjenci izvajali vajo. Na eni strani smo na višini enega metra postavili Kinect, na drugi strani, kakšna dva metra od senzorja, pa smo postavili merjenca. Ob njem smo postavili napravo za zajem signalov EMG. 3.1 Uporabljene tehnologije Za primerjanje globinske slike Kinecta in površinskega signala EMG smo uporabili več programskih okolij. Glavni sta bili Microsoft Visual Studio [27] in MATLAB [28]. Za zajem globinske slike iz Kinecta smo uporabili Microsoft Visual Studio, aplikacijo za zajem kinetičnih meritev pa smo napisali v jeziku C# Razvojno okolje Microsoft Visual Studio in programski jezik C# Microsoft Visual Studio je namenjen razvijanju aplikacij, predvsem za operacijski sistem (v nadaljevanju OS) Windows. Med razvijalci je OS Windows zelo priljubljeno razvojno okolje, saj zagotavlja stabilno podporo razvoju programske opreme. Microsoft ponuja tako plačljivo kot brezplačno različico Microsoft Visual Studia [27]. Za razvoj aplikacije smo uporabili brezplačno različico, ki je na voljo samostojnim razvijalcem. Projekt, ki smo ga izbrali, je bil tipa WPF. WPF pomeni Windows Presentation Foundation in daje večji poudarek grafičnemu prikazu aplikacije kot drugi tipi projektov [13]. Za oblikovanje grafičnega vmesnika uporablja XAML, ki je baziran na notaciji XML [34]. 9

23 Programski jezik, ki smo ga uporabili za implementacijo aplikacije, je bil C#. V njem smo pisali zato, ker je tudi programska knjižnica za Kinect napisana v C# in je razvoj tako lažji [13] Microsoft Visual Studio in senzor Microsoft Kinect Za začetek uporabe Kinecta na našem računalniku, moramo najprej namestiti Kinect for Windows SDK (ang. software development kit) [14]. S tem dodamo nove programske knjižnice in gonilnike, ki nam omogočajo dostop do funkcionalnosti, ki jih Kinect ponuja. Na koncu moramo še preko priključka USB (ang. Universal Serial Bus) Kinect priključiti na računalnik. V našem primeru je bila verzija nameščenega gonilnika 1.8. Ob namestitvi gonilnika smo namestili še dodatne preizkusne aplikacije, ki nam prikažejo zmogljivosti in uporabo Kinecta [14] Programski jezik MATLAB MATLAB je programski jezik, ki ga je v sedemdesetih letih prejšnjega stoletja začel razvijati Cleve Moler, takratni vodja oddelka za računalništvo na Univerzi v Novi Mehiki. Namen je bil njegovim študentom omogočiti dostop do matematičnih razvojnih okolij LINPACK [22] in EISPACK [21], ne da bi jim bilo predhodno treba znati uporabljati programski jezik FORTRAN. Aplikacija se je začela hitro širiti po univerzah in je dobila veliko privržencev. Jack Little, inženir na Univerzi v Stanfordu, se je z aplikacijo srečal leta V aplikaciji je zaznal komercialni potencial, zato se je združil z Molerjem in Stevom Bangertom. Leta 1984 so MATLAB prepisali v programski jezik C in tako nadaljevali njegov razvoj [12]. Aplikacija je postala razvojna platforma, optimizirana za reševanje inženirskih in znanstvenih problemov. Sintaksa programskega jezika MATLAB temelji na matrikah, zato velja za enega izmed najbolj naravnih jezikov za izvajanje matematičnih izračunov. Vgrajena vizualizacijska orodja ponujajo hiter in enostaven način pridobivanja informacij 10

24 iz podatkov, ki jih obdelujemo. Aplikacija nas vzpodbuja, da jo preizkušamo, z njo eksperimentiramo in raziskujemo podatke, ki jih srečujemo vsak dan [12]. Izrazitejše prednosti programskega jezika MATLAB vključujejo [28]: visokonivojski jezik za znanstvene in inženirske preračune, grafični vmesnik za vizualizacijo podatkov, orodjarne za klasifikacijo podatkov, analizo signalov, orodja za izgradnjo lastnih vmesnikov za aplikacije in vmesnik za prevajanje v več programskih jezikov, kot so C/C++, Java,.NET, Python, SQL, Hadoop in Microsoft Excel Strojna oprema za zajem signalov EMG Za zajemanje površinskih signalov EMG smo uporabili večkanalni ojačevalec EMG-USB2 (OT Bioelettronica, Torino, Italija; slika 3.1). Ojačevalec omogoča zaznavo in snemanje signalov, ki jih človeško telo generira. Signale, ki jih pridobi, ojača, filtrira in pretvori v digitalni signal, ki ga nato pošlje računalniku preko vmesnika USB. EMG-USB2 je namenjen profesionalnim raziskavam. Je modularni sistem, ki lahko zajema od 16 do 256 kanalov. Analogne signale, ki jih ojačevalec zajame, pretvori v 12-bitne podatke, ki jih posreduje računalniku [15]. Slika 3.1: Ojačevalec EMG-USB2, s katerim smo opravljali meritve površinskih signalov EMG 11

25 3.2 Eksperimentalni protokol V sklopu meritev smo izvedli meritve s štirimi osebami (merjenci), ki so se prostovoljno javile, da bi sodelovale v naši raziskavi. Merjenci so bili stari med 26 in 30 let, visoki med 170 in 175 centimetrov z različno telesno postavo. Merjence smo seznanili z namenom meritev, našimi pričakovanji, kaj bodo opravili v času meritev in kaj bomo med potekom meritve počeli mi. Študija je bila odobrena s strani Komisije RS za medicinsko etiko in je potekala v skladu s Helsinško deklaracijo. Merjenci so bili postavljeni pred senzor Kinect, tako da so bili obrnjeni proti njemu. Vaja, ki so jo morali izvajati, je bila zastavljena tako, da jo je senzor Kinect zaznal čim lažje. Naloga merjencev je bila dvigovanje uteži. Uteži so bile od merjenca do merjenca različne. Vsak od merjencev si je sam izbral težo uteži. Teža, ki so jo merjenci dvigovali, je bila od enega do dveh kilogramov. V začetnem položaju so imeli merjenci nadlakti ob telesu, podlakti pa pod kotom 90 stopinj glede na telo. Podlaket so dvigovali ob telesu in ne pred telesom. Tako je senzor Kinect lažje zaznal njihove gibe. Prva ponovitev vaje je trajala pet minut ali do praga utrujenosti, kjer merjenec ni več mogel izvajati vaje. Po prvi ponovitvi je imel merjenec pet minut počitka. Druga ponovitev vaje je trajala tri minute ali do omenjenega praga utrujenosti. Zaradi omejitev Kinecta smo morali biti pri izbiri vaj in mišic pazljivi. V zgodnji fazi testiranja zmogljivosti Kinecta se je izkazalo, da Kinect najbolje zajema kinetične podatke, če smo obrnjeni proti senzorju. Izkazalo se je tudi, da vaje, ki jih opravljamo pred telesom (npr. dvigovanje podlakti pred telesom), Kinect zazna s težavo. Kinect je uspešno zaznaval vaje, ki so jih merjenci izvajali ob boku telesa, kot so na primer dvig podlakti ali roke ob telesu in enako za dvig noge ob telesu. To nas je omejilo pri izbiri vaj in mišic, ki jih lahko natančno izmerimo. S testiranjem zmogljivosti Kinecta smo ugotovili, da je najprimernejša vaja za izvajanje meritev mišične utrujenosti dvigovanje podlakti ob telesu. Izbrana vaja je bila primerna tudi za zaznavo površinskih signalov EMG, saj smo lahko elektrode na ojačevalec povezali preko hrbta, kjer so kabli merjence najmanj motili pri 12

26 izvajanju vaje. Elektrode za zajem signalov EMG smo nalepili na kožo, pod katero so se nahajale dolga in kratka glava dvoglave nadlaktne mišice (DNMD in DNMK) in medialna in lateralna glava troglave nadlaktne mišice (TNMM, TNML). Elektrode smo na merjence nalepili na zgornjo polovico glave posamezne mišice, nad inervacijsko cono. Na posamezno roko vsakega merjenca smo nalepili po štiri elektrode. 3.3 Zajem signalov Sledenje gibanju človeškega skeleta s pomočjo senzorja Microsoft Kinect Kot smo že omenili, ima Kinect infrardečo in barvno kamero. To nam omogoča, da lahko zajamemo globinsko in barvno sliko hkrati. Z izdajo Kinect SDK [14] sta bila omogočena zajem globinske slike in sledenje gibanju telesa. To orodje je namenjeno zbiranju položaja sklepov, ki so obrnjeni proti senzorju. Kinect zbira položaj sklepov za vsako posamezno sliko. Za vsako sliko se oceni in zabeleži pozicija 20 sklepov [35]. Za vsako točko imamo tri podatke [5]. Prvi podatek je indeks sklepa (vsak sklep ima svoj indeks). Drugi podatek je pozicija sklepa, ki jo določajo koordinate X, Y in Z. Koordinate so izražene v metrih. Koordinatni sistem je desno orientiran. Globina, na kateri se nahajajo predmeti ali telo merjene osebe, je izražena na osi z koordinatnega sistema. Os y je usmerjena navzgor, os x pa se razteza od desne proti levi. Zadnji podatek, ki ga dobimo, je status sklepa. Če Kinect sklep zazna, je status sklepa zaznan (ang. tracked). Če sklep ni zaznan, ga algoritem poskuša oceniti in je status sklepa ocenjen (ang. inffered). Če pa ga algoritem ne more oceniti, je status sklepa nezaznan (ang. non-tracked) [5]. Za vključitev knjižnice za delo s Kinectom moramo našemu programu dodati naslednjo vrstico: using Microsoft.Kinect; Kinect zazna do šest oseb, od tega dve osebi v celoti, zato smo v programski kodi določili, za katero osebo smo zajeli podatke sklepov. Podatki so se nahajali v podatkovni strukturi Skeleton. Ta vsebuje podatke sklepov podatkovne strukture JointCollection, vsak sklep pa 13

27 je tipa Joint [29]. Vsaka instanca podatkovne strukture Joint vsebuje prostorske podatke položaja sklepa v prostoru. Podatke smo s Kinectom snemali ves čas izvajanja gibanja oziroma fizičnih vaj z utežmi. Kinect ima možnost zajemati telo na dva načina, in sicer v stoječem (ang. standing) in sedečem (ang. seated) načinu. Razlika med njima je, da v stoječem načinu zajemamo vseh 20 sklepov, v sedečem pa samo 10 sklepov. Čeprav je pri sedečem načinu treba zaznati in zajeti manj točk, se je pri testiranju Kinecta izkazalo, da v tem načinu počasneje zajema podatke. Temu smo se želeli izogniti, zato smo se odločili, da bomo telo zajemali v stoječem načinu. V stoječem načinu smo podatke zajemali s hitrostjo 30 slikovnih okvirjev na sekundo. To pomeni, da smo pridobili 30 prostorskih podatkov položaja vsakega sklepa na sekundo. Na koncu meritev smo zbrali vse podatke in jih shranili v tekstovno datoteko. Vanjo smo zapisali imena zajetih sklepov, prostorske podatke skozi čas ter trajanje posamezne meritve [6] Zajemanje podatkov z elektromiografom Pritrditev elektrod na merjenca in preizkus kvalitete sprejemanja signalov EMG sta trajala približno 20 minut. To smo morali narediti pred vsakim merjenjem vsake osebe posebej. Signale EMG smo zajemali s samolepilnimi elektrodami CDE BX proizvajalca Spes Medica S.r.l., Battipaglia (Sa), Italija. Premer elektrod je znašal 24 milimetrov. Ojačevalec EMG-USB2 je zajete bipolarne signale EMG pretvoril v digitalne in jih preko vmesnika USB poslal računalniku. Naprava je signale zajemala s frekvenco 2048 vzorcev na sekundo. Po protokolu meritev smo si ob nameščanju elektrod zabeležili položaj vsake posamezne elektrode na telesu merjenca. Signale smo pred vsako novo meritvijo preverili in po potrebi na ojačevalcu prilagodili stopnjo ojačenja. Po zaključenih meritvah smo signale shranili v datoteko. 14

28 V i š i n a 3.4 Segmentacija gibov v njihove ponovitve Zajete signale smo segmentirali v posamezne ponovitve gibov. Vsak zajeti podatek iz Kinecta vsebuje koordinate X, Y in Z. Iz tega lahko določimo pozicijo sklepov v prostoru. Pri vaji, ki so jo morali merjenci izvajati, je bila za segmentacijo najbolj primerna koordinata X, ki je predstavljala višino zajetega sklepa. Za našo segmentacijo smo uporabili koordinato X zapestja posamezne roke. Zapestju se je pri vaji najbolj spreminjala višina in iz nihanja višinskih podatkov smo lahko segmentirali podatke na posamezne ponovitve gibov. V ta namen smo poiskali minimume koordinate X (slika 3.2). Vsak minimum je predstavljal začetek novega giba. Iz tako pridobljenih podatkov smo nato segmentirali površinske signale EMG. To smo naredili tako, da smo v času poravnali prvo in zadnjo ponovitev giba v signalih EMG s prvo in zadnjo ponovitvijo giba v signalih iz Kinecta Vzorci 10 4 Slika 3.2: Segmentacija gibov v sedem ponovitev glede na višino zapestja 15

29 3.5 Kinetične meritve gibov Stopnjo utrujenosti smo ocenili tako, da smo podatke Kinecta dodatno obdelali. Odločili smo se za štiri veličine: višino, opravljeno pot ter hitrosti in pospeške sklepov med posamezno ponovitvijo Višina Kinetične meritve zajemajo prostorske koordinate X, Y in Z sklepov v prostoru. X predstavlja višino (slika 3.3), Y predstavlja odmik levo in desno od sredine kamere in Z predstavlja globino oziroma oddaljenost od senzorja Microsoft Kinect. Izhodišče koordinatnega sistema je v sredini kamere. Slika 3.3: Primer zajetih vzorcev višine desnega zapestja (merjenec B, meritev 1) Pot Opravljeno pot smo računali med dvema zaporedno zajetima koordinatama posameznih sklepov: 16

30 X = b. X a. X (3.1) Y = b. Y a. Y (3.2) Z = b. Z a. Z (3.3) d = X 2 + Y 2 + Z 2 (3.4) Pri tem sta a in b dva zaporedno zajeta podatka in d opravljena pot. Primer izračunane poti d prikazujemo na sliki 3.4. Slika 3.4: Primer izračunane poti desnega zapestja (merjenec B, meritev 1) Hitrost Hitrost sklepov smo izračunali tako, da smo opravljeno pot med dvema zaporednima meritvama poti sklepa delili s trajanjem časovnega intervala med eno in drugo meritvijo: v = d t (3.5) Primer izračunane hitrosti prikazujemo na sliki

31 Slika 3.5: Primer hitrosti skozi čas desnega zapestja (merjenec B, meritev 1) Pospeški Pospeške smo izračunali med tremi zaporednimi prostorskimi meritvami sklepa. Najprej smo izračunali dve zaporedni hitrosti sklepa, nato pa razliko hitrosti delili z dolžino časovnega intervala med dvema zaporednima meritvama: v 1 = d 1 t v 2 = d 2 t a = v 2 v 1 Δt (3.6) (3.7) (3.8) Pri tem sta d 1 in d 2 opravljeni poti med prvo in drugo ter drugo in tretjo zaporedno meritvijo, Δt pa je pretečen čas med izračunoma hitrosti v 1 in v 2. Primer izračunanih pospeškov prikazujemo na sliki

32 Slika 3.6: Primer pospeškov skozi čas za desno zapestje (merjenec B, meritev 1) Te štiri veličine smo v nadaljevanju uporabili za ocenjevanje utrujenosti. Naša predpostavka je bila, da bo merjenec, ki izvaja vajo, skozi čas postal utrujen in bo vajo začel izvajati počasneje. Posledično bi to pomenilo, da se bo pot, ki jo podlaket naredi v določenem časovnem okvirju, zmanjšala, prav tako se bo zmanjšala hitrost izvajanja vaje in pospeški, ki jih mora merjenec vzdržati, da bi vajo izvajal enakomerno Korenjena srednja kvadratična vrednost Podatke, ki smo jih zajeli z elektromiografom in senzorjem Kinect, smo prenesli v MATLAB. Na podlagi drugih študij, ki smo jih opisali v predhodnih poglavjih, bi morali iz naših podatkov razbrati, da se korenjen RMS signalov EMG s časom povečuje [11]. Nad segmentiranimi veličinami višine, hitrosti, pospeškov, poti, površinskih signalov EMG dvoglave in troglave nadlaktne mišice smo izračunali metrike RMS (3.9) in poiskali maksimalno vrednost (3.10) v posameznem segmentu. 19

33 x RMS = 1 N (x x x N 2 ) (3.9) x max = max (x 1, x 2, x N ) (3.10) x je v našem primeru vektor meritev površinskih signalov EMG, višine, hitrosti, pospeškov in poti. N je število vzorcev na ponovitev giba. 3.6 Statistična analiza spreminjanja vrednosti veličin skozi čas Statistično analizo smo opravili nad segmentiranimi gibi. Te gibe smo razdelili v 20 sekundne odseke. Za veličine, ki smo jih segmentirali po posameznih gibih, smo izračunali povprečno vrednost μ in standardno deviacijo S veličine A: N μ = 1 A N i=1 i (3.11) S = 1 N A N 1 i=1 i μ 2 (3.12) Na koncu smo s Kruskal-Wallisovim testom preverili statistično značilna odstopanja med posameznimi 20 sekundnimi odseki. Stopnjo statistične značilnosti smo nastavili na p < 0,05 (označeno z *) in p < 0,01 (označeno z **). Sliki 3.7 in 3.8 prikazujeta število ponovitev posameznega giba v 20 sekundnih intervalih. Rezultati statistične analize so prikazani na slikah od 3.9 do

34 Slika 3.7: Povprečne vrednosti in standardne deviacije števila ponovitev gibov leve roke (vsi merjenci, vse meritve) Slika 3.8: Povprečne vrednosti in standardne deviacije števila ponovitev gibov desne roke (vsi merjenci, vse meritve) 21

35 Slika 3.9: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG dvoglave nadlaktne mišice (dolga glava) na desni roki (merjenec B, meritev 1); *p < 0,05, **p < 0,01 Slika 3.10: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG dvoglave nadlaktne mišice (kratka glava) na desni roki (merjenec B, meritev 1); *p < 0,05, **p < 0,01 22

36 Slika 3.11: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG troglave nadlaktne mišice (lateralna glava) na desni roki (merjenec B, meritev 1); *p < 0,05, **p < 0,01 Slika 3.12: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG troglave nadlaktne mišice (medialna glava) na desni roki (merjenec B, meritev 1); *p < 0,05, **p < 0,01 23

37 Slika 3.13: Povprečne vrednosti in standardne deviacije višine desnega zapestja (merjenec B, meritev 1); *p < 0,05, **p < 0,01 Slika 3.14: Povprečne vrednosti in standardne deviacije hitrosti desnega zapestja (merjenec B, meritev 1); *p < 0,05, **p < 0,01 24

38 Slika 3.15: Povprečne vrednosti in standardne deviacije pospeškov desnega zapestja (merjenec B, meritev 1); *p < 0,05, **p < 0,01 Slika 3.16: Povprečne vrednosti in standardne deviacije poti desnega zapestja (merjenec B, meritev 1); *p < 0,05, **p < 0,01 25

39 Slika 3.17: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG dvoglave nadlaktne mišice (dolga glava) na levi roki (merjenec B, meritev 1); *p < 0,05, **p < 0,01 Slika 3.18: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG dvoglave nadlaktne mišice (kratka glava) na levi roki (merjenec B, meritev 1); *p < 0,05, **p < 0,01 26

40 Slika 3.19: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG troglave nadlaktne mišice (lateralna glava) na levi roki (merjenec B, meritev 1); *p < 0,05, **p < 0,01 Slika 3.20: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG troglave nadlaktne mišice (medialna glava) na levi roki (merjenec B, meritev 1); *p < 0,05, **p < 0,01 27

41 Slika 3.21: Povprečne vrednosti in standardne deviacije višine levega zapestja (merjenec B, meritev 1); *p < 0,05, **p < 0,01 Slika 3.22: Povprečne vrednosti in standardne deviacije hitrosti levega zapestja (merjenec B, meritev 1); *p < 0,05, **p < 0,01 28

42 Slika 3.23: Povprečne vrednosti in standardne deviacije pospeškov levega zapestja (merjenec B, meritev 1); *p < 0,05, **p < 0,01 Slika 3.24: Povprečne vrednosti in standardne deviacije poti levega zapestja (merjenec B, meritev 1); *p < 0,05, **p < 0,01 29

43 Slika 3.25: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG dvoglave nadlaktne mišice (dolga glava) na desni roki (merjenec B, meritev 2); *p < 0,05, **p < 0,01 Slika 3.26: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG dvoglave nadlaktne mišice (kratka glava) na desni roki (merjenec B, meritev 2); *p < 0,05, **p < 0,01 30

44 Slika 3.27: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG troglave nadlaktne mišice (lateralna glava) na desni roki (merjenec B, meritev 2); *p < 0,05, **p < 0,01 Slika 3.28: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG troglave nadlaktne mišice (medialna glava) na desni roki (merjenec B, meritev 2); *p < 0,05, **p < 0,01 31

45 Slika 3.29: Povprečne vrednosti in standardne deviacije višine desnega zapestja (merjenec B, meritev 2); *p < 0,05, **p < 0,01 Slika 3.30: Povprečne vrednosti in standardne deviacije veličine hitrosti desnega zapestja (merjenec B, meritev 2); *p < 0,05, **p < 0,01 32

46 Slika 3.31: Povprečne vrednosti in standardne deviacije pospeškov desnega zapestja (merjenec B, meritev 2); *p < 0,05, **p < 0,01 Slika 3.32: Povprečne vrednosti in standardne deviacije poti desnega zapestja (merjenec B, meritev 2); *p < 0,05, **p < 0,01 33

47 Slika 3.33: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG dvoglave nadlaktne mišice (dolga glava) na levi roki (merjenec B, meritev 2); *p < 0,05, **p < 0,01 Slika 3.34: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG dvoglave nadlaktne mišice (kratka glava) na levi roki (merjenec B, meritev 2); *p < 0,05, **p < 0,01 34

48 Slika 3.35: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG troglave nadlaktne mišice (lateralna glava) na levi roki (merjenec B, meritev 2); *p < 0,05, **p < 0,01 Slika 3.36: Povprečne vrednosti in standardne deviacije metrike RMS signalov EMG troglave nadlaktne mišice (medialna glava) na levi roki (merjenec B, meritev 2); *p < 0,05, **p < 0,01 35

49 Slika 3.37: Povprečne vrednosti in standardne deviacije višine levega zapestja (merjenec B, meritev 2); *p < 0,05, **p < 0,01 Slika 3.38: Povprečne vrednosti in standardne deviacije hitrosti levega zapestja (merjenec B, meritev 2); *p < 0,05, **p < 0,01 36

50 Slika 3.39: Povprečne vrednosti in standardne deviacije pospeškov levega zapestja (merjenec B, meritev 2); *p < 0,05, **p < 0,01 Slika 3.40: Povprečne vrednosti in standardne deviacije veličine poti levega zapestja (merjenec B, meritev 2); *p < 0,05, **p < 0,01 37

51 3.7 Analiza korelacij med posameznimi veličinami Korelacijske koeficiente smo preračunali med RMS vrednostmi veličin in maksimalnimi vrednostmi veličin v posameznih ponovitvah gibov. Korelacijske koeficiente med posameznimi pari veličin smo preračunali na naslednji način: 1 1 n x (g(x) g )(h(x) h ) (3.13) σ g σ h Pri tem sta σ g in σ h standardni deviaciji signala g in h, f in g sta povprečni vrednosti signalov g in h, n pa je dolžina signala. Rezultate analize korelacij med posameznimi veličinami prikazujemo v tabelah Tabela 3.1: Korelacijski koeficienti maksimalnih vrednosti ocenjenih veličin leve roke (merjenec B, meritev 1) višina hitrost pospeški pot EMG DNMD EMG DNMK višina 1,00 0,75 0,42 0,75 0,44 0,35 hitrost 0,75 1,00 0,42 1,00 0,34 0,30 pospeški 0,42 0,43 1,00 0,43 0,24 0,23 pot 0,75 1,00 0,43 1,00 0,34 0,30 Tabela 3.2: Korelacijski koeficienti maksimalnih vrednosti ocenjenih veličin desne roke (merjenec B, meritev 1) višina hitrost pospeški pot EMG DNMD EMG DNMK višina 1,00 0,25 0,24 0,25 0,52 0,41 hitrost 0,25 1,00 0,26 1,00 0,33 0,31 pospeški 0,24 0,26 1,00 0,26 0,19 0,19 pot 0,25 1,00 0,26 1,00 0,33 0,31 38

ŠTEVCI PROMETA IN NJIHOVA UPORABA ZA NAMENE STATISTIK ČRT GRAHONJA

ŠTEVCI PROMETA IN NJIHOVA UPORABA ZA NAMENE STATISTIK ČRT GRAHONJA ŠTEVCI PROMETA IN NJIHOVA UPORABA ZA NAMENE STATISTIK ČRT GRAHONJA Navdih Poizvedovanje po BD podatkovnih virih, ki imajo časovno dimenzijo in so dostopni. Večji promet pomeni večje število dobrin in močnejšo

Prikaži več

LABORATORIJSKE VAJE IZ FIZIKE

LABORATORIJSKE VAJE IZ FIZIKE UVOD LABORATORIJSKE VAJE IZ FIZIKE V tem šolskem letu ste se odločili za fiziko kot izbirni predmet. Laboratorijske vaje boste opravljali med poukom od začetka oktobra do konca aprila. Zunanji kandidati

Prikaži več

7. VAJA A. ENAČBA ZBIRALNE LEČE

7. VAJA A. ENAČBA ZBIRALNE LEČE 7. VAJA A. ENAČBA ZBIRALNE LEČE 1. UVOD Enačbo leče dobimo navadno s pomočjo geometrijskih konstrukcij. V našem primeru bomo do te enačbe prišli eksperimentalno, z merjenjem razdalj a in b. 2. NALOGA Izračunaj

Prikaži več

10. Meritev šumnega števila ojačevalnika Vsako radijsko zvezo načrtujemo za zahtevano razmerje signal/šum. Šum ima vsaj dva izvora: naravni šum T A, k

10. Meritev šumnega števila ojačevalnika Vsako radijsko zvezo načrtujemo za zahtevano razmerje signal/šum. Šum ima vsaj dva izvora: naravni šum T A, k 10. Meritev šumnega števila ojačevalnika Vsako radijsko zvezo načrtujemo za zahtevano razmerje signal/šum. Šum ima vsaj dva izvora: naravni šum T A, ki ga sprejme antena in dodatni šum T S radijskega sprejemnika.

Prikaži več

Uradni list RS - 12(71)/2005, Mednarodne pogodbe

Uradni list RS - 12(71)/2005, Mednarodne pogodbe PRILOGA 3 Osnovne značilnosti, ki se sporočajo za usklajevanje 1. Zgradba podatkovne zbirke Podatkovno zbirko sestavljajo zapisi, ločeni po znakovnih parih "pomik na začetek vrstice pomik v novo vrstico"

Prikaži več

Microsoft Word - SI_vaja5.doc

Microsoft Word - SI_vaja5.doc Univerza v Ljubljani, Zdravstvena fakulteta Sanitarno inženirstvo Statistika Inštitut za biostatistiko in medicinsko informatiko Š.l. 2011/2012, 3. letnik (1. stopnja), Vaja 5 Naloge 1. del: t test za

Prikaži več

innbox_f60_navodila.indd

innbox_f60_navodila.indd Osnovna navodila Komunikacijski prehod Innbox F60 SFP AC Varnostna opozorila Pri uporabi opreme upoštevajte naslednja opozorila in varnostne ukrepe. Da bi v največji meri izkoristili najnovejšo tehnologijo

Prikaži več

Microsoft Word - CNR-BTU3_Bluetooth_vmesnik

Microsoft Word - CNR-BTU3_Bluetooth_vmesnik CNR-BTU3 Bluetooth vmesnik A. Vsebina pakiranja Bluetooth USB Adapter Bluetooth programska oprema in CD z gonilniki Navodila za uporabo in CD 1. Namestitev Bluetooth programske opreme za Windowse 1. Vstavite

Prikaži več

OCENJEVANJE IZIDA REHABILITACIJE PRI OSEBAH S KRONIČNO RAZŠIRJENO BOLEČINO

OCENJEVANJE IZIDA REHABILITACIJE PRI OSEBAH S KRONIČNO RAZŠIRJENO BOLEČINO TELESNA VADBA/ŠORT ZA LJUDI PO PREBOLELI MOŽGANSKI KAPI Doc.dr.Nika Goljar, dr.med. 13. KONGRES ŠPORTA ZA VSE ŠPORTNA REKREACIJA INVALIDOV Ljubljana, 30.11.2018 Uvod 15 milj. ljudi doživi MK / leto, t.j.

Prikaži več

10108-Bench-mark-brochure-6pg.indd

10108-Bench-mark-brochure-6pg.indd Unikatna konstrukcija mostu Kompaktna izvedba O podjetju Perceptron: Temperaturna kompenzacija stroja in merjenca (opcijsko) X in Y osi na isti stopnji za povečano togost Perceptron (NASDAQ: PRCP) zagotavlja

Prikaži več

BYOB Žogica v vesolju Besedilo naloge Glavna ideja igre je paziti, da žoga ne pade na tla igralne površine, pri tem pa zbrati čim več točk. Podobno ig

BYOB Žogica v vesolju Besedilo naloge Glavna ideja igre je paziti, da žoga ne pade na tla igralne površine, pri tem pa zbrati čim več točk. Podobno ig BYOB Žogica v vesolju Besedilo naloge Glavna ideja igre je paziti, da žoga ne pade na tla igralne površe, pri tem pa zbrati čim več točk. Podobno igro najdemo tudi v knjigi Scratch (Lajovic, 2011), vendar

Prikaži več

Osnove statistike v fizični geografiji 2

Osnove statistike v fizični geografiji 2 Osnove statistike v geografiji - Metodologija geografskega raziskovanja - dr. Gregor Kovačič, doc. Bivariantna analiza Lastnosti so med sabo odvisne (vzročnoposledično povezane), kadar ena lastnost (spremenljivka

Prikaži več

Navodila za uporabo Mini prenosna HD kamera s snemalnikom

Navodila za uporabo Mini prenosna HD kamera s snemalnikom Navodila za uporabo Mini prenosna HD kamera s snemalnikom www.spyshop.eu Izdelku so priložena navodila v angleščini, ki poleg teksta prikazujejo tudi slikovni prikaz sestave in delovanja izdelka. Lastnosti

Prikaži več

Diapozitiv 1

Diapozitiv 1 Vhodno izhodne naprave Laboratorijska vaja 5 - LV 1 Meritve dolžine in karakteristične impedance linije VIN - LV 1 Rozman,Škraba, FRI Model linije Rs Z 0, Vs u i u l R L V S - Napetost izvora [V] R S -

Prikaži več

Navodila za uporabo Mini snemalnik

Navodila za uporabo Mini snemalnik Navodila za uporabo Mini snemalnik www.spyshop.eu Pred vami so navodila za pravilno uporabo mini snemalnika in opis funkcionalnosti. Lastnosti snemalnika: Naziv Mere Teža Kapaciteta spomina Snemanje Format

Prikaži več

NEVTRIN d.o.o. Podjetje za razvoj elektronike, Podgorje 42a, 1241 Kamnik, Slovenia Telefon: Faks.: in

NEVTRIN d.o.o. Podjetje za razvoj elektronike, Podgorje 42a, 1241 Kamnik, Slovenia Telefon: Faks.: in NEVTRIN d.o.o. Podjetje za razvoj elektronike, Podgorje 42a, 1241 Kamnik, Slovenia Telefon: +386 1 729 6 460 Faks.: +386 1 729 6 466 www.nevtrin.si info@elektrina.si USB RFID READER Navodila za uporabo?

Prikaži več

Microsoft PowerPoint - Presentation1

Microsoft PowerPoint - Presentation1 Drža telesa čelno proti tlom»klop«vzdrževati ravno linijo telesa. Opora je na podlahteh in prstih nog. Stisnite trebušne mišice in postavite medenico v nevtralni položaj (t.j. poteg popka noter in stisk

Prikaži več

Tekaški program in vaje za prijeten 10 km tek

Tekaški program in vaje za prijeten 10 km tek Tekaški program in vaje za prijeten 10 km tek Tekaški program za tek na 10 km (1. 7. - 7. 7.) Intervalni trening 5 x 400 m (200 m hoje med ovitvami) Tekaški program za tek na 10 km (8. 7. 14. 7.) Fartlek

Prikaži več

predstavitev fakultete za matematiko 2017 A

predstavitev fakultete za matematiko 2017 A ZAKAJ ŠTUDIJ MATEMATIKE? Ker vam je všeč in vam gre dobro od rok! lepa, eksaktna veda, ki ne zastara matematičnoanalitično sklepanje je uporabno povsod matematiki so zaposljivi ZAKAJ V LJUBLJANI? najdaljša

Prikaži več

Vaja 2 Virtualizacija fizičnih strežnikov in virtualni PC A. Strežnik Vmware ESX Namestitev strežnika VMware ESX 3.5 na fizični strežnik 2. Nas

Vaja 2 Virtualizacija fizičnih strežnikov in virtualni PC A. Strežnik Vmware ESX Namestitev strežnika VMware ESX 3.5 na fizični strežnik 2. Nas Vaja 2 Virtualizacija fizičnih strežnikov in virtualni PC A. Strežnik Vmware ESX 3.5 1. Namestitev strežnika VMware ESX 3.5 na fizični strežnik 2. Nastavitve strežnika ESX 3. Namestitev in nastavitve VM

Prikaži več

PowerPoint Presentation

PowerPoint Presentation Lasersko obarvanje kovin Motivacija: Z laserskim obsevanjem je možno spremeniti tudi barvo kovinskih površin, kar odpira povsem nove možnosti označevanja in dekoracije najrazličnejših sestavnih delov in

Prikaži več

Naloge 1. Dva električna grelnika z ohmskima upornostma 60 Ω in 30 Ω vežemo vzporedno in priključimo na idealni enosmerni tokovni vir s tokom 10 A. Tr

Naloge 1. Dva električna grelnika z ohmskima upornostma 60 Ω in 30 Ω vežemo vzporedno in priključimo na idealni enosmerni tokovni vir s tokom 10 A. Tr Naloge 1. Dva električna grelnika z ohmskima upornostma 60 Ω in 30 Ω vežemo vzporedno in priključimo na idealni enosmerni tokovni vir s tokom 10 A. Trditev: idealni enosmerni tokovni vir obratuje z močjo

Prikaži več

Poskusi s kondenzatorji

Poskusi s kondenzatorji Poskusi s kondenzatorji Samo Lasič, Fakulteta za Matematiko in Fiziko, Oddelek za fiziko, Ljubljana Povzetek Opisani so nekateri poskusi s kondenzatorji, ki smo jih izvedli z merilnim vmesnikom LabPro.

Prikaži več

Povratne informacije pri 74 bolnikih

Povratne informacije pri  74 bolnikih Primarij Tatjana Erjavec, dr.med., specialistka interne medicine Telesna vadba po možganski kapi v bivalnem okolju V projekt smo vključili vse v letu 2006 obstoječe klube v Sloveniji. Odzvalo se jih je

Prikaži več

Diapozitiv 1

Diapozitiv 1 ZAHTEVE TENIŠKE IGRE V tej predstavitvi bomo... Analizirali teniško igro z vidika fizioloških procesov Predstavili energijske procese, ki potekajo pri športni aktivnosti Kako nam poznavanje energijskih

Prikaži več

STAVKI _5_

STAVKI _5_ 5. Stavki (Teoremi) Vsebina: Stavek superpozicije, stavek Thévenina in Nortona, maksimalna moč na bremenu (drugič), stavek Tellegena. 1. Stavek superpozicije Ta stavek določa, da lahko poljubno vezje sestavljeno

Prikaži več

Microsoft Word - Avditorne.docx

Microsoft Word - Avditorne.docx 1. Naloga Delovanje oscilatorja je odvisno od kapacitivnosti kondenzatorja C. Dopustno območje izhodnih frekvenc je podano z dopustnim območjem kapacitivnosti C od 1,35 do 1,61 nf. Uporabljen je kondenzator

Prikaži več

VIDEOANALIZA GIBANJ Za kratke projektne naloge lahko dijaki z domačimi digitalnimi fotoaparati posnamejo nekaj sekundne videofilme poljubnih gibanj. U

VIDEOANALIZA GIBANJ Za kratke projektne naloge lahko dijaki z domačimi digitalnimi fotoaparati posnamejo nekaj sekundne videofilme poljubnih gibanj. U VIDEOANALIZA GIBANJ Za kratke projektne naloge lahko dijaki z domačimi digitalnimi fotoaparati posnamejo nekaj sekundne videofilme poljubnih gibanj. Uporabni so skoraj vsi domači digitalni fotoaparati.

Prikaži več

FIZIKA IN ARHITEKTURA SKOZI NAŠA UŠESA

FIZIKA IN ARHITEKTURA SKOZI NAŠA UŠESA FIZIKA IN ARHITEKTURA SKOZI NAŠA UŠESA SE SPOMNITE SREDNJEŠOLSKE FIZIKE IN BIOLOGIJE? Saša Galonja univ. dipl. inž. arh. ZAPS marec, april 2012 Vsebina Kaj je zvok? Kako slišimo? Arhitekturna akustika

Prikaži več

IR termometer testo 830 testo 830 hiter, za brezkontaktno merjenje površinske temperature Merjenje z laserskim pointerjem za natančno merjenje tudi na

IR termometer testo 830 testo 830 hiter, za brezkontaktno merjenje površinske temperature Merjenje z laserskim pointerjem za natančno merjenje tudi na IR termometer testo 830 testo 830 hiter, za brezkontaktno merjenje površinske temperature Merjenje z laserskim pointerjem za natančno merjenje tudi na večjih razdaljah Hitro shranjevanje odčitkov (2 odčitka

Prikaži več

an-01-USB_digitalni_zvocniki_Logitech_S-150.docx

an-01-USB_digitalni_zvocniki_Logitech_S-150.docx SLO - NAVODILA ZA UPORABO IN MONTAŽO Kat. št.: 91 60 80 www.conrad.si NAVODILA ZA UPORABO USB digitalni zvočniki Logitech S-150 Kataloška št.: 91 60 80 KAZALO 1. VARNOSTNI NAPOTKI... 3 2. NASTAVITEV VAŠIH

Prikaži več

Microsoft Word - SI_vaja1.doc

Microsoft Word - SI_vaja1.doc Univerza v Ljubljani, Zdravstvena fakulteta Sanitarno inženirstvo Statistika Inštitut za biostatistiko in medicinsko informatiko Š.l. 2011/2012, 3. letnik (1. stopnja), Vaja 1 Naloge 1. del: Opisna statistika

Prikaži več

Microsoft Word - Pravila - AJKTM 2016.docx

Microsoft Word - Pravila - AJKTM 2016.docx PRAVILA ALI JE KAJ TRDEN MOST 2016 3. maj 5. maj 2016 10. 4. 2016 Maribor, Slovenija 1 Osnove o tekmovanju 1.1 Ekipa Ekipa sestoji iz treh članov, ki so se po predhodnem postopku prijavili na tekmovanje

Prikaži več

1 Tekmovanje gradbenih tehnikov v izdelavi mostu iz špagetov 1.1 Ekipa Ekipa sestoji iz treh članov, ki jih mentor po predhodni izbiri prijavi na tekm

1 Tekmovanje gradbenih tehnikov v izdelavi mostu iz špagetov 1.1 Ekipa Ekipa sestoji iz treh članov, ki jih mentor po predhodni izbiri prijavi na tekm 1 Tekmovanje gradbenih tehnikov v izdelavi mostu iz špagetov 1.1 Ekipa Ekipa sestoji iz treh članov, ki jih mentor po predhodni izbiri prijavi na tekmovanje. Končni izdelek mora biti produkt lastnega dela

Prikaži več

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Katja Ciglar Analiza občutljivosti v Excel-u Seminarska naloga pri predmetu Optimizacija v fina

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Katja Ciglar Analiza občutljivosti v Excel-u Seminarska naloga pri predmetu Optimizacija v fina UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Katja Ciglar Analiza občutljivosti v Excel-u Seminarska naloga pri predmetu Optimizacija v financah Ljubljana, 2010 1. Klasični pristop k analizi

Prikaži več

Microsoft Word - avd_vaje_ars1_1.doc

Microsoft Word - avd_vaje_ars1_1.doc ARS I Avditorne vaje Pri nekem programu je potrebno izvršiti N=1620 ukazov. Pogostost in trajanje posameznih vrst ukazov računalnika sta naslednja: Vrsta ukaza Štev. urinih period Pogostost Prenosi podatkov

Prikaži več

MB_Studenci

MB_Studenci RAZISKOVALNI PROJEKT TRAJNE MERITVE ELEKTROMAGNETNIH SEVANJ V SLOVENSKIH OBČINAH Mestna občina Maribor (Mestna četrt Studenci) 13.12. - 15.12. 2009 MERILNA KAMPANJA OBČINA MARIBOR (MČ STUDENCI) stran 2

Prikaži več

Univerza v Ljubljani Naravoslovnotehniška fakulteta Oddelek za tekstilstvo Sledenje pogledu (Eye tracking) Seminarska naloga pri predmetu Interaktivni

Univerza v Ljubljani Naravoslovnotehniška fakulteta Oddelek za tekstilstvo Sledenje pogledu (Eye tracking) Seminarska naloga pri predmetu Interaktivni Univerza v Ljubljani Naravoslovnotehniška fakulteta Oddelek za tekstilstvo Sledenje pogledu (Eye tracking) Seminarska naloga pri predmetu Interaktivni mediji Smer študija: Načrtovanje tekstilij in oblačil,

Prikaži več

Poročilo o opravljenem delu pri praktičnem pouku fizike: MERJENJE S KLJUNASTIM MERILOM Ime in priimek: Mitja Kočevar Razred: 1. f Učitelj: Otmar Uranj

Poročilo o opravljenem delu pri praktičnem pouku fizike: MERJENJE S KLJUNASTIM MERILOM Ime in priimek: Mitja Kočevar Razred: 1. f Učitelj: Otmar Uranj Poročilo o opravljenem delu pri praktičnem pouku fizike: MERJENJE S KLJUNASTIM MERILOM Ime in priimek: Mitja Kočevar Razred: 1. f Učitelj: Otmar Uranjek, prof. fizike Datum izvedbe vaje: 11. 11. 2005 Uvod

Prikaži več

NAVODILA ZA UPORABO Smart watch JW018 POZOR! Ura vsebuje magnetne sestavine. Osebe z vgrajenim srčnim spodbujevalnikom (pacemaker) ali kakršnimi drugi

NAVODILA ZA UPORABO Smart watch JW018 POZOR! Ura vsebuje magnetne sestavine. Osebe z vgrajenim srčnim spodbujevalnikom (pacemaker) ali kakršnimi drugi NAVODILA ZA UPORABO Smart watch JW018 POZOR! Ura vsebuje magnetne sestavine. Osebe z vgrajenim srčnim spodbujevalnikom (pacemaker) ali kakršnimi drugimi elektromagnetnimi aparati ne smejo uporabljati tega

Prikaži več

Osnove matematicne analize 2018/19

Osnove matematicne analize  2018/19 Osnove matematične analize 2018/19 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D f R priredi natanko

Prikaži več

Vzpostavitev več nivojske varnostne infrastrukture S pomočjo Elektro Maribor, McAfee SIEM, CISCO ISE, NGFW Zorna Varga, Sfera IT d.o.o in Klemen Bačak

Vzpostavitev več nivojske varnostne infrastrukture S pomočjo Elektro Maribor, McAfee SIEM, CISCO ISE, NGFW Zorna Varga, Sfera IT d.o.o in Klemen Bačak Vzpostavitev več nivojske varnostne infrastrukture S pomočjo Elektro Maribor, McAfee SIEM, CISCO ISE, NGFW Zorna Varga, Sfera IT d.o.o in Klemen Bačak, Sfera IT d.o.o. 1 Priprava na: Vzpostavitev več nivojske

Prikaži več

Analiza vpliva materiala, maziva in aktuatorja na dinamiko pnevmatičnega ventila

Analiza vpliva materiala, maziva in aktuatorja na dinamiko pnevmatičnega ventila Programsko orodje LabVIEW za kreiranje, zajem in obdelavo signalov (statične in dinamične karakteristike hidravličnih proporcionalnih ventilov) Marko Šimic Telefon: +386 1 4771 727 e-mail: marko.simic@fs.uni-lj.si

Prikaži več

Avtomatizirano modeliranje pri celostnem upravljanju z vodnimi viri

Avtomatizirano modeliranje pri celostnem upravljanju z vodnimi viri Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo 36. Goljevščkov spominski dan Modeliranje kroženja vode in spiranja hranil v porečju reke Pesnice Mateja Škerjanec 1 Tjaša Kanduč 2 David Kocman

Prikaži več

VETRNO KOLO

VETRNO KOLO VETRNO KOLO KAZALO: Zgodovina Razvoj vetrnic Vrste vetrnic Značilnosti Uporaba Sestavni deli Delovanje Animacije Prednosti in slabosti Viri in literatura ZGODOVINA: Ljudje izkoriščamo energijo vetra že

Prikaži več

UČNA PRIPRAVA - ŠPORTNA VZGOJA Kandidatki: L. P., D. V. Didaktik: mag. Č.M. Učitelj: prof. B. V. Datum: Šola: OŠ Franca Rozmana Staneta Ra

UČNA PRIPRAVA - ŠPORTNA VZGOJA Kandidatki: L. P., D. V. Didaktik: mag. Č.M. Učitelj: prof. B. V. Datum: Šola: OŠ Franca Rozmana Staneta Ra UČNA PRIPRAVA - ŠPORTNA VZGOJA Kandidatki: L. P., D. V. Didaktik: mag. Č.M. Učitelj: prof. B. V. Datum: 19. 4. 2013 Šola: OŠ Franca Rozmana Staneta Razred: 2. a Zap. Št. ure: Predmet: Športna vzgoja Tematski

Prikaži več

Kdo lahko prelomi špaget na dva dela

Kdo lahko prelomi špaget na dva dela ZNANOST IN TEHNIKA POMAGATA MEDICINI Polžev vsadek, ki nam lahko povrne sluh Jerneja Vrhovec Si predstavljate, da bi se nekega jutra zbudili brez nadležnega zvoka budilke? To verjetno sploh ne bi bilo

Prikaži več

Napotki za izbiro gibljivih verig Stegne 25, 1000 Ljubljana, tel: , fax:

Napotki za izbiro gibljivih verig   Stegne 25, 1000 Ljubljana, tel: , fax: Napotki za izbiro gibljivih verig Postopek za izbiro verige Vrsta gibanja Izračun teže instalacij Izbira verige glede na težo Hod verige Dolžina verige Radij verige Hitrost in pospešek gibanja Instalacije

Prikaži več

ZDRAVSTVENOVZGOJNI NASTOP

ZDRAVSTVENOVZGOJNI NASTOP Strokovno srečanje Programa Svit SVITOV DAN 2016 Ocenjevanje bolečine pri kolonoskopiji 13. december 2016 Austria Trend Hotel Ljubljana Avtorji: Viki Kotar dipl.zn., Maja Košele dipl. ms., Zoran Georgiev

Prikaži več

VHF1-VHF2

VHF1-VHF2 VHF BREZŽIČNI MIKROFONSKI KOMPLET VHF1: 1 CHANNEL VHF2: 2 CHANNELS NAVODILA ZA UPORABO SLO Hvala, ker ste izbrali naš BREZŽIČNI MIKROFONSKI KOMPLET IBIZA SOUND. Za vašo lastno varnost, preberite ta navodila

Prikaži več

Delavnica Načrtovanje digitalnih vezij

Delavnica Načrtovanje digitalnih vezij Laboratorij za načrtovanje integriranih vezij Univerza v Ljubljani Fakulteta za elektrotehniko Programirljivi Digitalni Sistemi Digitalni sistem Digitalni sistemi na integriranem vezju Digitalni sistem

Prikaži več



 STATIČNE RAZTEZNE VAJE (»STREČING«) NEKAJ PRAVIL O RAZTEZANJU PRED RAZTEZANJEM SE VEDNO OGREJ, NAJBOLJE, DA NAREDIŠ VAJE PO TUŠIRANJU, KO SI ŠE OGRET OD TRENINGA PREDEN ZAČNEŠ, SPIJ KOZAREC ALI DVA VODE

Prikaži več

Navodila za programsko opremo FeriX Namestitev na trdi disk Avtor navodil: Martin Terbuc Datum: December 2007 Center odprte kode Slovenije Spletna str

Navodila za programsko opremo FeriX Namestitev na trdi disk Avtor navodil: Martin Terbuc Datum: December 2007 Center odprte kode Slovenije Spletna str Navodila za programsko opremo FeriX Namestitev na trdi disk Avtor navodil: Martin Terbuc Datum: December 2007 Center odprte kode Slovenije Spletna stran: http://www.coks.si/ Elektronski naslov: podpora@coks.si

Prikaži več

Microsoft Word - propozicije_mnogoboj.doc

Microsoft Word - propozicije_mnogoboj.doc SPLOŠNE PROPOZICIJE ATLETSKI MNOGOBOJ UČENCI TEKMUJETE V ATLETSKEM MNOGOBOJU, KAR POMENI, DA TEKMUJETE IZ VEČIH ATLETSKIH DISCIPLIN, REZULTATI PA SE VAM SEŠTEVAJO. TEKMUJE SE V ŠTIRIH KATEGORIJAH: - STAREJŠI

Prikaži več

(Microsoft Word - U\350enje telegrafije po Kochovi metodi.doc)

(Microsoft Word - U\350enje telegrafije po Kochovi metodi.doc) MORSE UČENJE PO KOCHOVI METODI Računalniški program za učenje skupaj z nekaterimi dodatnimi datotekami dobite na spletni strani avtorja: http://www.g4fon.net/. Zanimive strani so tudi: - http://www.qsl.net/n1irz/finley.morse.html

Prikaži več

Poročilo za 1. del seminarske naloge- igrica Kača Opis igrice Kača (Snake) je klasična igrica, pogosto prednaložena na malce starejših mobilnih telefo

Poročilo za 1. del seminarske naloge- igrica Kača Opis igrice Kača (Snake) je klasična igrica, pogosto prednaložena na malce starejših mobilnih telefo Poročilo za 1. del seminarske naloge- igrica Kača Opis igrice Kača (Snake) je klasična igrica, pogosto prednaložena na malce starejših mobilnih telefonih. Obstaja precej različic, sam pa sem sestavil meni

Prikaži več

Microsoft Word - A-3-Dezelak-SLO.doc

Microsoft Word - A-3-Dezelak-SLO.doc 20. posvetovanje "KOMUNALNA ENERGETIKA / POWER ENGINEERING", Maribor, 2011 1 ANALIZA OBRATOVANJA HIDROELEKTRARNE S ŠKOLJČNIM DIAGRAMOM Klemen DEŽELAK POVZETEK V prispevku je predstavljena možnost izvedbe

Prikaži več

Microsoft PowerPoint - CIGER - SK 3-15 Izkusnje nadzora distribucijskih transformatorjev s pomo... [Read-Only]

Microsoft PowerPoint - CIGER - SK 3-15 Izkusnje nadzora distribucijskih transformatorjev s pomo... [Read-Only] CIRED ŠK 3-15 IZKUŠNJE NADZORA DISTRIBUCIJSKIH TRANSFORMATORJEV S POMOČJO ŠTEVCEV ELEKTRIČNE ENERGIJE ŽIGA HRIBAR 1, BOŠTJAN FABJAN 2, TIM GRADNIK 3, BOŠTJAN PODHRAŠKI 4 1 Elektro novi sistemi. d.o.o.,

Prikaži več

seminarska_naloga_za_ev

seminarska_naloga_za_ev Univerza v Ljubljani Fakulteta za elektrotehniko Matevž Seliger 8-kanalni Lightshow Seminarska naloga pri predmetu: V Horjulu, junij 2008 Kazalo: 1 Uvod... 3 1.1 Namen in uporaba izdelka... 3 2 Delovanje...

Prikaži več

DES

DES Laboratorij za načrtovanje integriranih vezij Univerza v Ljubljani Fakulteta za elektrotehniko Digitalni Elektronski Sistemi Digitalni sistemi Vgrajeni digitalni sistemi Digitalni sistem: osebni računalnik

Prikaži več

VIN Lab 1

VIN Lab 1 Vhodno izhodne naprave Laboratorijska vaja 1 - AV 1 Signali, OE, Linije VIN - LV 1 Rozman,Škraba, FRI Laboratorijske vaje VIN Ocena iz vaj je sestavljena iz ocene dveh kolokvijev (50% ocene) in iz poročil

Prikaži več

LiveActive

LiveActive Oblikujte svoje roke s temi 5 vajami brez obiska fitnesa! Dvig noge in nasprotne roke na veliki žogi 1 Vaja Y na telovadni žogi 2 z 8-12 ponovitvami na vsaki strani s 15-20 ponovitvami Dotik roke in nasprotne

Prikaži več

Vostro 430 Informacijski tehnični list o namestitvi in funkcijah

Vostro 430 Informacijski tehnični list o namestitvi in funkcijah O opozorilih OPOZORILO: OPOZORILO označuje možnost poškodb lastnine, telesnih poškodb ali smrti. Dell Vostro 430 List s tehničnimi informacijami o nastavitvi in funkcijah Pogled s sprednje in zadnje strani

Prikaži več

Microsoft Word doc

Microsoft Word doc SLO - NAVODILO ZA NAMESTITEV IN UPORABO Št. izd. : 122383 www.conrad.si ROČNI OSCILOSKOP VELLEMAN HPS140 Št. izdelka: 122383 1 KAZALO 1 MED UPORABO... 3 2 LASTNOSTI IN TEHNIČNI PODATKI... 3 3 OPIS SPREDNJE

Prikaži več

Termostatska glava Halo Termostatske glave Z vgrajenim tipalom

Termostatska glava Halo Termostatske glave Z vgrajenim tipalom Termostatska glava Halo Termostatske glave Z vgrajenim tipalom IMI HEIMEIER / Termostatske glave in radiatorski ventili / Termostatska glava Halo Termostatska glava Halo Termostatska glava Halo se uporablja

Prikaži več

PKP projekt SMART WaterNet_Opis

PKP projekt SMART WaterNet_Opis PKP projekt SMART WaterNet Po kreativni poti do znanja (PKP) opis programa Program Po kreativni poti do znanja omogoča povezovanje visokošolskih zavodov s trgom dela in tako daje možnost študentom za pridobitev

Prikaži več

FOR SMARTER PEOPLE TAKO SE VLOMI PREPREČUJEJO DANES REHAU Smart Guard System plus preventivna protivlomna zaščita WINDOWS. REINVENTED FOR MODERN LIFE.

FOR SMARTER PEOPLE TAKO SE VLOMI PREPREČUJEJO DANES REHAU Smart Guard System plus preventivna protivlomna zaščita WINDOWS. REINVENTED FOR MODERN LIFE. FOR SMARTER PEOPLE TAKO SE VLOMI PREPREČUJEJO DANES REHAU Smart Guard System plus preventivna protivlomna zaščita WINDOWS. REINVENTED FOR MODERN LIFE. NA NOVO ZASNOVANA OKNA Za današnje življenje Naše

Prikaži več

Primer obetavne prakse za dejavnost-i z uporabo IKT 1 Učitelj: MARIJA VOK LIPOVŠEK Šola: OŠ Hruševec-Šentjur Predmet: Biologija 8 Razred: 8.b Št. ur:

Primer obetavne prakse za dejavnost-i z uporabo IKT 1 Učitelj: MARIJA VOK LIPOVŠEK Šola: OŠ Hruševec-Šentjur Predmet: Biologija 8 Razred: 8.b Št. ur: Primer obetavne prakse za dejavnost-i z uporabo IKT 1 Učitelj: MARIJA VOK LIPOVŠEK Šola: OŠ Hruševec-Šentjur Predmet: Biologija 8 Razred: 8.b Št. ur: 1 Vsebinski sklop: OGRODJE Tema: VRSTE IN NALOGE KOSTI

Prikaži več

6.1 Uvod 6 Igra Chomp Marko Repše, Chomp je nepristranska igra dveh igralcev s popolno informacijo na dvo (ali vec) dimenzionalnem prostoru

6.1 Uvod 6 Igra Chomp Marko Repše, Chomp je nepristranska igra dveh igralcev s popolno informacijo na dvo (ali vec) dimenzionalnem prostoru 6.1 Uvod 6 Igra Chomp Marko Repše, 30.03.2009 Chomp je nepristranska igra dveh igralcev s popolno informacijo na dvo (ali vec) dimenzionalnem prostoru in na končni ali neskončni čokoladi. Igralca si izmenjujeta

Prikaži več

Navodila za pripravo oglasov na strani Med.Over.Net v 2.2 Statistično najboljši odziv uporabnikov je na oglase, ki hitro in neposredno prenesejo osnov

Navodila za pripravo oglasov na strani Med.Over.Net v 2.2 Statistično najboljši odziv uporabnikov je na oglase, ki hitro in neposredno prenesejo osnov Navodila za pripravo oglasov na strani Med.Over.Net v 2.2 Statistično najboljši odziv uporabnikov je na oglase, ki hitro in neposredno prenesejo osnovno sporočilo. Izogibajte se daljših besedil in predolgih

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNISTVO Matematika Pisni izpit. junij 22 Ime in priimek Vpisna st Navodila Pazljivo preberite besedilo naloge, preden se lotite resevanja. Veljale bodo samo resitve na papirju, kjer so

Prikaži več

PowerPointova predstavitev

PowerPointova predstavitev INFORMATIKA Tečaj za višjega gasilca OGZ PTUJ 2017 PRIPRAVIL: ANTON KUHAR BOMBEK, GČ VSEBINA TEORETIČNA PREDAVANJA INFORMACIJSKI SISTEMI SISTEM OSEBNIH GESEL IN HIERARHIJA PRISTOJNOSTI PRAKTIČNE VAJE ISKANJE

Prikaži več

RC MNZ - kategorija U12 in U13 TRENING 3-4 SKLOP: Igra 1:1 USMERITEV TRENINGA: CILJ: Igra 1:1 v napadu Utrjevanje uspešnosti igre 1:1 v napadu UVODNI

RC MNZ - kategorija U12 in U13 TRENING 3-4 SKLOP: Igra 1:1 USMERITEV TRENINGA: CILJ: Igra 1:1 v napadu Utrjevanje uspešnosti igre 1:1 v napadu UVODNI RC MNZ - kategorija U12 in U13 TRENING 3-4 SKLOP: Igra 1:1 USMERITEV TRENINGA: CILJ: Igra 1:1 v napadu Utrjevanje uspešnosti igre 1:1 v napadu UVODNI DEL (20 minut) 1. NAVAJANJE NA ŽOGO (12 minut) S klobučki

Prikaži več

AKCIJSKO RAZISKOVANJE INOVACIJSKI PROJEKT ZA ZNANJE IN SPOŠTOVANJE Udeleženci: Učenci 2. c Razredničarka: Irena Železnik, prof. Učni predmet: MAT Učna

AKCIJSKO RAZISKOVANJE INOVACIJSKI PROJEKT ZA ZNANJE IN SPOŠTOVANJE Udeleženci: Učenci 2. c Razredničarka: Irena Železnik, prof. Učni predmet: MAT Učna AKCIJSKO RAZISKOVANJE INOVACIJSKI PROJEKT ZA ZNANJE IN SPOŠTOVANJE Udeleženci: Učenci 2. c Razredničarka: Irena Železnik, prof. Učni predmet: MAT Učna vsebina: Ustno seštevanje in odštevanje do 20 sprehodom

Prikaži več

Diapozitiv 1

Diapozitiv 1 BEKEND - TEHNIKA CILJI 1. Poznati vrste in dele bekenda 2. Uporabiti biomehanske principe pri analizi bekenda 3. Poznati tehnične podrobnosti pri izvedbi bekenda. BEKEND osnovni podatki včasih je bil udarec,

Prikaži več

4. tema pri predmetu Računalniška orodja v fiziki Ljubljana, Grafi II Jure Senčar

4. tema pri predmetu Računalniška orodja v fiziki Ljubljana, Grafi II Jure Senčar 4. tema pri predmetu Računalniška orodja v fiziki Ljubljana, 6.4.29 Grafi II Jure Senčar Relativna sila krčenja - F/Fmax [%]. Naloga Nalogo sem delal v Excelu. Ta ima vgrajeno funkcijo, ki nam vrne logaritemsko

Prikaži več

KAJ JE VZDRŽLJIVOST

KAJ JE VZDRŽLJIVOST 10. 12. 2011 VZDRŽLJIVOST S TEKOM Seminarska naloga KAZALO 1. UVOD... 3 2. KAJ JE VZDRŽLJIVOST... 4 3. METODE ZA RAZVOJ VZDRŽLJIVOSTI... 4 4. TEHNIKA DOLGOTRAJNEGA TEKA... 5 5. GIBALNE (MOTORIČNE) SPOSOBNOSTI...

Prikaži več

Turingov stroj in programiranje Barbara Strniša Opis in definicija Definirajmo nekaj oznak: Σ abeceda... končna neprazna množica simbolo

Turingov stroj in programiranje Barbara Strniša Opis in definicija Definirajmo nekaj oznak: Σ abeceda... končna neprazna množica simbolo Turingov stroj in programiranje Barbara Strniša 12. 4. 2010 1 Opis in definicija Definirajmo nekaj oznak: Σ abeceda... končna neprazna množica simbolov (običajno Σ 2) Σ n = {s 1 s 2... s n ; s i Σ, i =

Prikaži več

Microsoft Word - ELEKTROTEHNIKA2_ junij 2013_pola1 in 2

Microsoft Word - ELEKTROTEHNIKA2_ junij 2013_pola1 in 2 Šifra kandidata: Srednja elektro šola in tehniška gimnazija ELEKTROTEHNIKA PISNA IZPITNA POLA 1 12. junij 2013 Čas pisanja 40 minut Dovoljeno dodatno gradivo in pripomočki: Kandidat prinese nalivno pero

Prikaži več

NAVODILA ZA UPORABO K01-WIFI Hvala, ker ste se odločili za nakup našega izdelka. Pred uporabo enote skrbno preberite ta Navodila za uporabo in jih shr

NAVODILA ZA UPORABO K01-WIFI Hvala, ker ste se odločili za nakup našega izdelka. Pred uporabo enote skrbno preberite ta Navodila za uporabo in jih shr NAVODILA ZA UPORABO Hvala, ker ste se odločili za nakup našega izdelka. Pred uporabo enote skrbno preberite ta in jih shranite za prihodnjo rabo Vsebina 1. Pregled 2. Sistem 3. Prednosti 4. Upravljanje

Prikaži več

Arial 26 pt, bold

Arial 26 pt, bold 3 G MATEMATIKA Milan Černel Osnovna šola Brežice POUČEVANJE MATEMATIKE temeljni in zahtevnejši šolski predmet, pomembna pri razvoju celovite osebnosti učenca, prilagajanje oblik in metod poučevanja učencem

Prikaži več

Nameščanje Adopt Open Java Development Kit 8

Nameščanje Adopt Open Java Development Kit 8 Nameščanje Adopt Open Java Development Kit 8 za Windows x64 IZUM, 2019 IZUM, COBISS, COMARC, COBIB, COLIB, CONOR, SICRIS, E-CRIS so zaščitene znamke v lasti javnega zavoda IZUM. KAZALO VSEBINE 1 Uvod...

Prikaži več

Microsoft Word - Astronomija-Projekt19fin

Microsoft Word - Astronomija-Projekt19fin Univerza v Ljubljani Fakulteta za matematiko in fiziko Jure Hribar, Rok Capuder Radialna odvisnost površinske svetlosti za eliptične galaksije Projektna naloga pri predmetu astronomija Ljubljana, april

Prikaži več

FGG13

FGG13 10.8 Metoda zveznega nadaljevanja To je metoda za reševanje nelinearne enačbe f(x) = 0. Če je težko poiskati začetni približek (še posebno pri nelinearnih sistemih), si lahko pomagamo z uvedbo dodatnega

Prikaži več

(Microsoft PowerPoint - vorsic ET 9.2 OES matri\350ne metode 2011.ppt [Compatibility Mode])

(Microsoft PowerPoint - vorsic ET 9.2 OES matri\350ne metode 2011.ppt [Compatibility Mode]) 8.2 OBRATOVANJE ELEKTROENERGETSKEGA SISTEMA o Matrične metode v razreševanju el. omrežij Matrične enačbe električnih vezij Numerične metode za reševanje linearnih in nelinearnih enačb Sistem algebraičnih

Prikaži več

Microsoft Word - CNC obdelava kazalo vsebine.doc

Microsoft Word - CNC obdelava kazalo vsebine.doc ŠOLSKI CENTER NOVO MESTO VIŠJA STROKOVNA ŠOLA STROJNIŠTVO DIPLOMSKA NALOGA Novo mesto, april 2008 Ime in priimek študenta ŠOLSKI CENTER NOVO MESTO VIŠJA STROKOVNA ŠOLA STROJNIŠTVO DIPLOMSKA NALOGA Novo

Prikaži več

Univerza v Novi Gorici Fakulteta za aplikativno naravoslovje Fizika (I. stopnja) Mehanika 2014/2015 VAJE Gravitacija - ohranitveni zakoni

Univerza v Novi Gorici Fakulteta za aplikativno naravoslovje Fizika (I. stopnja) Mehanika 2014/2015 VAJE Gravitacija - ohranitveni zakoni Univerza v Novi Gorici Fakulteta za aplikativno naravoslovje Fizika (I. stopnja) Mehanika 2014/2015 VAJE 12. 11. 2014 Gravitacija - ohranitveni zakoni 1. Telo z maso M je sestavljeno iz dveh delov z masama

Prikaži več

RAM stroj Nataša Naglič 4. junij RAM RAM - random access machine Bralno pisalni, eno akumulatorski računalnik. Sestavljajo ga bralni in pisalni

RAM stroj Nataša Naglič 4. junij RAM RAM - random access machine Bralno pisalni, eno akumulatorski računalnik. Sestavljajo ga bralni in pisalni RAM stroj Nataša Naglič 4. junij 2009 1 RAM RAM - random access machine Bralno pisalni, eno akumulatorski računalnik. Sestavljajo ga bralni in pisalni trak, pomnilnik ter program. Bralni trak- zaporedje

Prikaži več

Microsoft Word - PLES_valcek2_TS.doc

Microsoft Word - PLES_valcek2_TS.doc POČASNI VALČEK 2. URA Študent: Tjaša Šuštaršič Razred: 4. razred Mentor: Uroš Govc Čas: 11.35 Šola: OŠ Domžale Spol učencev: 10 deklic, 11 dečkov Datum: 30.5.2005 Prostor: Telovadnica Glavni cilj ure:

Prikaži več

PowerPointova predstavitev

PowerPointova predstavitev TIK terminal nima povezave s strežnikom Ob vpisu v TIK Admin se pojavi napis ni povezave s strežnikom Na terminalu je ikona 1. preverimo ali je pravilno nastavljen IP strežnika 1. Preverimo datoteko TIKSAdmin.INI

Prikaži več

Slide 1

Slide 1 Projektno vodenje PREDAVANJE 7 doc. dr. M. Zajc matej.zajc@fe.uni-lj.si Projektno vodenje z orodjem Excel Predstavitev Najbolj razširjeno orodje za delo s preglednicami Dva sklopa funkcij: Obdelava številk

Prikaži več

Poročilo projekta : Učinkovita raba energije Primerjava klasične sončne elektrarne z sončno elektrarno ki sledi soncu. Cilj projekta: Cilj našega proj

Poročilo projekta : Učinkovita raba energije Primerjava klasične sončne elektrarne z sončno elektrarno ki sledi soncu. Cilj projekta: Cilj našega proj Poročilo projekta : Učinkovita raba energije Primerjava klasične sončne elektrarne z sončno elektrarno ki sledi soncu. Cilj projekta: Cilj našega projekta je bil izdelati učilo napravo za prikaz delovanja

Prikaži več

Nameščanje Adopt Open Java Development Kit 8

Nameščanje Adopt Open Java Development Kit 8 Nameščanje Adopt Open Java Development Kit 8 za Windows x64 IZUM, 2019 IZUM, COBISS, COMARC, COBIB, COLIB, CONOR, SICRIS, E-CRIS so zaščitene znamke v lasti javnega zavoda IZUM. KAZALO VSEBINE 1 Uvod...

Prikaži več

DELEGIRANA UREDBA KOMISIJE (EU) 2017/ z dne julija o dopolnitvi Direktive 2014/ 65/ EU Evropskega parlamenta in S

DELEGIRANA  UREDBA  KOMISIJE  (EU)  2017/ z dne julija o dopolnitvi  Direktive  2014/  65/  EU  Evropskega  parlamenta  in  S 31.3.2017 L 87/411 DELEGIRANA UREDBA KOMISIJE (EU) 2017/588 z dne 14. julija 2016 o dopolnitvi Direktive 2014/65/EU Evropskega parlamenta in Sveta v zvezi z regulativnimi tehničnimi standardi glede režima

Prikaži več

Projekt: Kako potekajo krogotoki razvoja v nogometu pri mladih ( uporaba RSA metode dela ) Vaje za spodbujanje gibanja v nogometu- Ime vaje: slalom 1:

Projekt: Kako potekajo krogotoki razvoja v nogometu pri mladih ( uporaba RSA metode dela ) Vaje za spodbujanje gibanja v nogometu- Ime vaje: slalom 1: Vaje za spodbujanje gibanja v nogometu- Ime vaje: slalom 1:0 z žogo ; Skice za trening vaje predvsem za mlajše kategorije; Opis vaje: 1. slalom a) navpično, b) počez in sicer z nogami; rokami; kombinirano

Prikaži več

3

3 3.5 Radiologija Stopnja izobrazbe: Strokovni naslov: visoka strokovna izobrazba diplomirana inženirka radiologije, okrajšava dipl.inž.rad. diplomirani inženir radiologije, okrajšava dipl.inž.rad. Študentje

Prikaži več

Microsoft Word - CNR-MPV2 Quick Guide_SI

Microsoft Word - CNR-MPV2 Quick Guide_SI Canyon multimedijski MP3 predvajalnik Artikel: CNR-MPV2 Opozorilo: Pred uporabo pozorno preberite navodila za uporabo. Podrobna navodila se nahajajo na priloženem CD mediju. Opozorilo: Pred uporabo napolnite

Prikaži več

Delavnica Načrtovanje digitalnih vezij

Delavnica Načrtovanje digitalnih vezij Laboratorij za načrtovanje integriranih vezij Univerza v Ljubljani Fakulteta za elektrotehniko Digitalni Elektronski Sistemi Osnove jezika VHDL Strukturno načrtovanje in testiranje Struktura vezja s komponentami

Prikaži več

Priloga k pravilniku o ocenjevanju za predmet LIKOVNA UMETNOST. Ocenjujemo v skladu s Pravilnikom o preverjanju in ocenjevanju znanja v srednjih šolah

Priloga k pravilniku o ocenjevanju za predmet LIKOVNA UMETNOST. Ocenjujemo v skladu s Pravilnikom o preverjanju in ocenjevanju znanja v srednjih šolah Priloga k pravilniku o ocenjevanju za predmet LIKOVNA UMETNOST. Ocenjujemo v skladu s Pravilnikom o preverjanju in ocenjevanju znanja v srednjih šolah in Pravili ocenjevanja Gimnazije Novo mesto, veljavnim

Prikaži več