Magnetska sila i magnetsko polje Magnet

Velikost: px
Začni prikazovanje s strani:

Download "Magnetska sila i magnetsko polje Magnet"

Transkripcija

1 ELEKTROMAGNETIKA

2 Magnetska sila i magnetsko polje Magnet pojam magneta postojanje dva pola koja se ne mogu azdvojiti magnet je dipol kompas Magnetsko polje stalnog magneta

3 Magnetsko polje magneta

4 Magnetsko polje pavolinijskog povodnika Kompas eaguje u pisustvu povodnika!!! (Ested) Elektična stuja je izvo magnetskog polja!!! Linije sila magnetskog polja su zatvoene linije!!! Ne postoji početna i i zavšna tačka linije sila magnetskog polja

5

6 Indukcija magnetskog polja pavolinijskog povodnika Ekspeimentalno odedio Ampe k' I

7 Indukcija magnetskog polja Fizička veličina koja opisuje silu kojom deluje magnetsko polje (Ampe) Iga ulogu sličnu jačini elektičnog polja Izvo magnetskog polja je (I l) Magnetsko polje deluje na (I l) (I l) iga ulogu magnetskog naboja E F Q el pobno N [ ] T ( Tesla) Am F ( I l) mag pobno

8 3. ELEKTROMAGNETIKA Elektomagnetika je oblast elektotehnike u kojoj se poučavaju jedinstvene elektomagnetne pojave. Magnetne pojave, kao i elektične, uočene su davno. Međutim, tek početkom XIX vijeka otkivena je njihova međuzavisnost. Godine 181. Ested je otkio da magnetna igla (kompas) skeće sa pavca sjeve-jug, ako se u njenoj blizini nalazi povodnik koz koji potiče elektična stuja. Djelovanje elektične stuje nije, dakle, lokalizovano samo u elektičnom kolu (zagijavanje povodnika, hemijske eakcije u bateiji), već se to djelovanje osjeća i van povodnika. Kažemo da elektična stuja u okolnom postou stvaa magnetno polje. Ekspeimenti ukazuju da ovo magnetno polje, stvoeno stujom (elekticitetom u poketu), ima sve osobine magnetnog polja koje potiče od pemanentnog (stalnog) magneta.

9 Čuveni naučnici toga doba, među kojima teba izdvojiti Ampea i Faadeja, na osnovu mnogobojnih ekspeimenata, uspijevaju da shvate zakonitosti elektomagnetnih pojava i dolaze do saznanja da nema elekektične stuje bez magnetskog polja, niti, magnetskog polja bez elektične stuje. Te dvije pojave su djelovi jedne jedinstvene elektomagnetske pojave. Ekspeimentom se lako može uvjeiti da se oko svakog povodnika sa stujom javlja magnetno polje, slično kao kod stalnog magneta. N S k o m p a s I i N komp as S

10 3.1 Magnetno polje Laplasov zakon Magnetno polje je vektosko polje opisano u svakoj tački vektoom jačine magnetnog polja H Laplasov zakon (u liteatui se sijeće i pod nazivom Ampeov zakon) nam omogućava da, u bilo kojoj tački oko povodnika, odedimo elementano polje dh, koje potiče od elementa dl elektičnog kola koz koje teče stuja i. Ukupna jačina polja H u posmatanoj tački dobija se kao zbi elementanih polja svih elemenata dl elektičnih kola koja, učestvuju u stvaanju posmatanog magnetnog polja.

11 Na slici je pikazan je dio povodnika koz koji teče stuja i. Elementana jačina magnetnog polja u tački M, koje potiče od djelića povodnika dl, po Laplasovom zakonu je: i dl θ M dh i dh ( dl ) 4 π 3 dh i dl 4π sin θ dh H i dh x dh + jdh y H () A/m + kdh z

12 3.1. Ampeov zakon ukupne stuje Zakon ukupne stuje opisuje značajnu osobinu magnetnog polja, pema kojem je, bez obzia na poijeklo magnetnog polja i okolnu sedinu, u piodi uvijek zadovoljena sljedeća jednakost: Hdl JdS koja pedstavlja matematičku fomu Ampeovog zakona ukupne stuje (ili, kako se ponekad naziva, zakon o cikulaciji vektoa H). Intepetacija ovog zakona je da je cikulacija vektoa jačine polja po poizvoljnoj zatvoenoj liniji l jednaka ukupnoj stuji koja polazi koz povšinu koja se oslanja na tu kontuu.

13 Za paktičnu pimjenu, ipak, značajniji je oblik ovog zakona: Hdl koji je saglasan sa slikom: i i i 1 3 i 4 i povšina povšina H kontua Σ ii 1 -i -i 3 +i 4

14 3.1.3 Pimjei odeđivanja magnetnog polja Polje u okolini dugog pavolinijskog povodnika I dl I α D dα α P dl α dα dα α a) b) π I H cos αdα 4πD π I πd

15 Magnetsko polje stujne kontue Nijedno stujno kolo ne može da se pedstavi pavolinijskim povodnikom Svako kolo je zatvoena stujna kontua Kužna stujna kontua π k' I ( na osi kontue)

16 Magnetno polje kompaktnog namotaja Neka je dat kompaktni namotaj, sačinjen od N navojaka tanke izolovane povodne žice, kužnog oblika polupečnika koz koji potiče stuja I, kao onaj pedstavljen na slici. Neka se zahtijeva da se odedi jačina polja H u tački P u centu namotaja. i N i dl P dh H π i i( π) H dh dl 4π 4π 0 i H N i

17 Magnetno polje tousa Za ealizaciju jakih magnetnih polja koisti se, obično, namotaj velikog boja N navojaka namotanih na magnetno kolo oblika tousa, kao na slici a d b Η N I I R S H c c l H dl H ( πr) NI H NI πr

18 3. Magnetna indukcija Vidjeli smo da jačina magnetnog polja zavisi od geometijskih oblika stujnih kola i jačina stuje I koje koz ta kola potiču i azumije se, od položaja tačke u kojoj se polje posmata. Međutim, u manifestacijama magnetnog polja, od kojih su najvažnije pojava mehaničke sile na elekticitet u poketu (elektomagnetna (mehanička) sila) i pojava indukovane elektomotone sile pi pomjeni magnetnog polja, uviđa se da i sedina, posto u kome se pojave odvijaju, iga bitnu ulogu. Da bi bili u stanju da dalje izučavamo pojave u vezi sa magnetskim poljem, neophodno je da damo definiciju nove fizičke veličine kojaće voditi ačuna o sedini oko tačke u kojoj se posmata magnetno polje. Ta veličina se naziva magnetna indukcija i definisana je kao: µ H

19 Magnetna indukcija je vektoska veličina, kolinena sa vektoom jačine magnetnog polja, što znači da su joj pavac i smje isti kao i pavac i smje vektoa magnetnog polja. Koeficijent sazmjenosti µ naziva se magnetna pemeabilnost sedine (magnetna popustljivost sedine). Uobičajeno je da se magnetna pemeabilnost paznog postoa (vakuma) obilježava sa µ 0. Pema čuvenoj Maksvelovoj fomuli, poizašloj iz teoije elektomagnetnih talasa, bzina postianja svjetlosti koz neku sedinu odeđena je izazom: c 1 εµ

20 1 c 0 ε µ 0 0 gdje je: c 0 - bzina svjetlosti u vakumu (c m/s ) ε 0 - dielektična konstanta vakuma (ε 0 8, F/m) µ 0 - magnetna pemeabilnost vakuma ( µ 0 4π 10-7 H/m) Kako je jedinica za magnetno polje ampe po metu H()A/m, a za magnetnu pemeabilnost heni po metu, to će jedinica za magnetnu indukciju biti: N A N µ H ( ) A m Am T

21 3..1 Magnetna svojstva mateijala Odnos magnetne pemeabilnosti neke sedine i magnetne pemeabilnosti vakuma naziva se elativna magnetna pemeabilnost mateijalne sedine: µ µ µ 0 Relativna magnetna pemeabilnost je neimenovan boj. Svi piodni elementi, izuzev željeza, nikla i kobalta, imaju elativnu magnetnu pemeabilnost veoma blisku jedinici. Kod nekih ona je nešto veća od jedinice. Takve mateijale nazivamo paamagnetici, a kod nekih je nešto manja od jedinice; takve mateijale nazivamo diamagnetici. Pi ješavanju inženjeskih poblema za sve ove "nemagnetne" mateijale može se uzeti da je µ µ 4π 10 N / A 0 7

22 Magnetski mateijali Dijamagnetici un >0,9999 sp Paamagnetici un <1,0001 sp Feomagnetici un >10000 sp

23 Feomagnetici odakle feomagnetizam? elekton u atomu je mala stujna kontua svaki elekton stvaa magnetsko polje kod gotovo svih atoma, magnetska polja aznih elektona se meñusobno poništavaju (elektoni se keću u supotnim smeovima) samo kod nekih atoma (gvožñe, nikal, kobalt,...), više elektona se okeće na jednu stanu nego na dugu atomi tih elemenata su mali magneti van mag. polja u mag. polju magnet

24 Feomagnetizam uk sp + un ( stuja) + ( magnet) + + uk dl sp dl un dl µ 0 I un dl c c c c c ( ) ( ) uk un uk un dl µ 0 I dl I H dl I c c µ c 0 c c c uk sp + un µ 0 H + µ 0M sp µ 0H un µ 0M un µ 0 M χh χ magnetska susceptibilnost uk ( µ 0 + χ ) H µ 0µ H µ elativna magnetska popustljivost uk µ sp µ > 0, 9999 dijamagnetici µ < 1, 0001 paamagnetici µ > feomagnetici

25 Mateijal μ/(h m -1 ) μ Pimjena Feit U E-05 8 UHF jezga Feit M33 Nikal (čistoća 99%) 9.4E E Jezga među-fekvencijskih tansfomatoa u adio pijemnicima - Feit N E Sklopovi mežnog napajanja Željezo (čistoća 99.8%) 6.8E Feit T38 1.6E Šiokopojasni tansfomatoi Silikatno GO Željezo 5.03E Dinama, mežni tansfomatoi Supemalloy Glave za snimanje

26 Feomagnetici jačina magnetskog polja H opisuje uticaj stuja elektičnih povodnika magnetizacija M opisuje uticaj mateijala -magneta indukcija magnetskog polja opisuje ukupne magnetske efekte namagnećivanje emanentna H c koecitivno magnetizacija polje H c H veliko tvdi magnetski mateijali (za magnete) malo meki magnetski mateijali (za elektomagnete)

27 Kod željeza, nikla, kobalta i nekih njihovih legua, koji se nazivaju feomagnetici (feomagnetni mateijali), dolazi do veoma složenih pojava pod dejstvom magnetnog polja. Magnetna pemeabilnost kod ovih mateijala nije konstantan, već zavisi od jačine magnetnog polja i pedistoije anijeg magnećenja µ ( feomagnet ika) f ( H, poslosti) [ T ] b a 1 m -H m c H c 0 f H m H [ A/m ] - m d e

28 [ T ] b a 1 m -H m c H c 0 f H m H [ A/m ] - m d e Pomjena indukcije u funkciji jačine polja H

29 3.3 Magnetni fluks Genealno, fluks je pojam vezan za povšinu i može se definisati u svakom vektoskom polju. Zamislimo u magnetnom polju (vektosko polje) poizvoljnu povšinu S, podijeljenu na beskonačno elementanih povšina ds. U svakoj tački ove povšine magnetno polje je odeđeno vektoom magnetne indukcije, koji je, u opštem slučaju, funkcija položaja ( x, y, z). Element povšine ds, takođe možemo okaakteisati pomoću vektoa ds, čiji je intenzitet jednak povšini ds, pavac nomalan na tu povšinu, a smje od negativne ka pozitivnoj stani povšine. Elementani magnetni fluks dφ koz povšinu ds, definisan je kao skalani poizvod: dφ ( ds) ds cos(, ds)

30 ds dφ Ukupni magnetni fluks posmatane povšine S, dobije se kao: Φ ds cos(, ds) dφ ds Jedinica za magnetni fluks je vebe (1Wb). Iz definicije fluksa je očigledno; 1Wb 1Tm

31

32 Φ S S cosα S cos( ωt) Φ max cos( ωt) zakon o konzevaciji magnetnog fluksa ds 1 ds ds 0 1

33 3.4 Elektomagnetna sila Nije teško ekspeimentalno utvditi da na povodnik koz koji teče stuja i koji se nalazi u stanom magnetnom polju djeluje sila koja se naziva elektomagnetna sila. To je sila koja pokeće otoe svih elektičnih motoa, sila koja pokeće kazaljke mnogih mjenih instumenata, i sila koja se koisti kod mnogih dugihčovjeku koisnih ueđaja. U opštem slučaju, povodnik ima poizvoljan oblik, a vekto magnetne indukcije je funkcija položaja f ( ) (polje nije homogeno). U takvom slučaju sila koja djeluje na povodnik može se odediti sabianjem elementanih sila koje djeluju na povodnik: df I ( dl )

34 Elektomagnetska sila Na povodnik, kao na izvo magnetskog polja, moa da deluje bilo kakvo dugo magnetsko polje (Ampe) nazvana elektomagnetska, ustvai je ono što je do sada nazivano magnetska sila F ( I l) F ( I l ) Elektomagnetska sila ne deluje na povodnik postavljen u pavcu magnetskog polja

35 Elektomehaničko djelovanje silom na element povodnika sa stujom. F I l gdje je: F - elektomagnetna sila na povodnik, N (njutn) I - jačina elektične stuje koz povodnik, A (ampe); l - aktivna dužina povodnika, m (meta); - magnetna indukcija stanog magnetnog polja, T (tesla); Smje sile odeđuje se pavilom desnog zavtnja.

36 Loencova sila Loencova sila Naelektisana čestica koja se keće je elementana elektična stuja Magnetska sila koja deluje na naelektisanu česticu se naziva Loencova sila q v l q v q t v t q l I F ) ( ) ( ) ( v q F ) ( Naelektisana čestica u ketanju je elementani magnetski naboj Za magnetizam je (qv) ono što je za elekticitet q Magnetska sila ne ubzava naelektisanje i ne mijenja mu enegiju

37 3.5 Elektomagnetna indukcija Godine 1831., Faadej je ekspeimentalno otkio pojavu elektomagnetne indukcije. To je pojava na bazi koje se u svim elektičnim geneatoima mehanička enegija petvaa u elektičnu, na osnovu koje su izađeni mnogi mjeni instumenti i dugičovjeku koisni ueđaji. Fomulacija Faadejevog zakona: U elektično povodnoj kontui će se indukovati elektomotona sila i kao posljedica te ems-e u zatvoenom koluće se pojaviti stuja, ako se, iz bilo kog azloga, mijenja magnetni fluks koz tu kontuu (kolo). e dφ dt

38 Faadejev zakon Pomjena magnetskog fluksa koz neku povodnu kontuu izaziva elektičnu stuju u toj kontui Elektičnu stuju u povodnoj kontui pokeće elektomotona sila koja nastaje u toj kontui usled pomjene magnetskog fluksa Elektomagnetska indukcija je pojava nastajanja elektomotone sile u pomjenljivom magnetskom polju e dφ dt

39 Φ C to Φ+ dφ Φ- dφ e e0 R R R a) b) c) i0 + i - - i + e Znak "-" u izazu za e uveden je saglasno Lencovom pavilu. e N d Φ dt dψ dt

40 Lencovo pavilo Indukovana elektomotona sila teži da svojim dejstvom poništi uzok svoga nastanka Odeñuje sme indukovane elektomotone sile Izaz inecije piode, odnosno zakona o odžanju enegije Kontua eaguje na pomenu magnetskog polja stvaanjem spostvenog magnetskog polja (indukovane stuje) Ako se spoljašnji fluks uvećava, indukovani fluks teži da to povećanje anulia (odmaže spoljašnjem polju) Ako se spoljašnji fluks umanjuje, indukovani fluks teži da to umanjenje anulia (pomaže spoljašnjem polju)

41 Razmotimo sada slučaj indukovanja elektomotone sile u povodniku koji se keće u magnetnom polju. e v dx x l S, ) cos(180 ), cos( 0 S S S S S Φ d ds l dx Φ, v l dt dx l dt d e Φ

42 Genealno, međusobni položaj vektoa može biti poizvoljan v i l, v dl e dl v v dl v dl de ) ( ) ( ) (

43 Statička i dinamička indukcija dφ d e dt dt Pomjena Pomjena S Pomena ugla i S ds S d dt ds cos S (, ds ) Statička indukcija Dinamička indukcija Pi statičkoj indukciji se kontua u kojoj se indukuje ems ne keće

44 Statička i dinamička indukcija Dinamička indukcija s l e dφ dt d( S) dt d( ls) dt l ds dt lv U povodniku koji se keće u magnetskom polju (siječe linije magnetskih sila) indukuje se elektomotona sila

45 3.6 Samoindukcija i međusobna indukcija Naglasimo još jednom da svaka povodna kontua koz koju potiče stuja stvaa magnetno polje, koje se zatvaa i koz povšinu koja naliježe na tu kontuu. Magnetni fluks kola, koji potiče od stuje tog kola, nazivamo sopstveni fluks. Vijednost magnetnog fluksa koz kontuu zavisi od konfiguacije kontue, i mnogo je veća ako je kontua izvedena u obliku kalema sa većim bojem navojaka. Takvi kalemi nalaze šioku pimjenu kod elektičnih mašina i mnogih dugih elektotehničkih ueđaja, kod kojih se zahtijevaju jača magnetna polja. Ako u blizini kalema (kontue) nema feomagnetnih mateijala (koji unose nelineanost), tada je sopstveni magnetni fluks kola, u bilo kojem tenutku vemena, popocionalan stuji i koja potiče koz kolo, je je jačina magnetnog polja H sazmjena stuji (Laplasov zakon), magnetna indukcija uzima u obzi sedinu µh, a fluks koz kontuu je ΦS.

46 Očigledno, da je sopstveni fluks sazmjean stuji koja ga je izazvala, pa možemo pisati: Φ L i U jednačini L je koeficijent samoindukcije (ili sopstvena induktivnost kola), koji zavisi od geometije kola i magnetne pemeabilnosti sedine u kojoj se kolo nalazi. Za kolo u kome se opaža pojava samoindukcije kaže se da je induktivno kolo. I Φ I I kontua Φ kontua Φ

47 Svaka pomjena stuje i u kolu povlači za sobom pomjenu magnetnog fluksa To izaziva u kolu pojavu ems-e. Koisteći Faadejev zakon elektomagnetne indukcije za elektomotonu silu samoindukcije dobijamo: e L dφ dt L di dt Jedinica za induktivitet L je jedan heni (1H). L () H Wb/s

48 Meñusobna indukcija i samoindukcija Magnetsko polje koje stvaa fluks koz neku kontuu može poticati od dugih kontua, ali može poticati i od stuje same kontue meñusobna indukcija samoindukcija Φ 1 Φ11 + Φ1 I I 1 ukupni fluks Φ 1 Φ1 I ) ( Φ spoljašnji fluks 1 Φ 1 Φ1 I1) ( Φ sopstveni fluks 11

49 Meñusobna indukcija i samoindukcija dφ dt dφ dt dφ dt e1 ems međusobne indukcije Samoindukcija je elektična inecija Ukoliko se pokuša smanjenje jačine stuje u nekoj kontui, kontua će sama indukovati ems koja će spečavati umanjenje Ukoliko se pokuša povećanje jačine stuje u nekoj kontui, kontua će sama indukovati ems koja će spečavati povećanje Lencovo pavilo ems samoindukcije

50 Induktivnost Intenzitet magnetskog polja je popocionalan stuji koja ga izaziva Fluks magnetskog polja koz bilo koju kontuu u polju je popocionalan intenzitetu magnetskog polja Fluks magnetskog polja koz bilo koju kontuu u polju je popocionalan jačini stuje koja stvaa magnetsko polje Sopstveni fluks koz neku kontuu popocionalan je jačini stuje koja potiče koz tu kontuu Induktivnost (ili koeficijent samoindukcije) je količnik sopstvenog fluksa neke kontue i jačine stuje koja potiče koz kontuu L 1 Φ i 11 1 [ ] [ Φ] [ i] Wb L A H dφ11 d( L1i 1) di1 e11 L1 dt dt dt Induktivnost kontue zavisi od njenog oblika i osobina sedine unuta kontue

51 Enegija magnetskog polja stujne kontue Pi povećanju stuje u stujnoj kontui stvaa se magnetsko polje, supotstavljajući se ems samoindukcije Za stvaanje magnetskog polja moa da se uloži ad, odnosno moa se odeñena količina enegije izvoa elektične stuje petvoiti u enegiju magnetskog polja Magnetsko polje stujne kontue ima enegiju W 1 Li

52 Magnetno polje kalema. e L dφ N dt d( NΦ) dt dψ dt N k Ψ Ψ ΦkNk - NΦ NS Nµ HS Nµ Ni S l Li Φ k + i Ψ Li

53 Kalem Elektična stuktua koja služi nakupljanju magnetske enegije u elektičnom kolu Inecijalni element elektičnih kola uspoivač pocesa nazivaju ga i pigušnica Elektična masa l S µ petpostavke dug kalem gusto motan N L µ 0 µ N S l

54 Stujno naponska zavisnost kalema i + u i + e + u u L e L di dt Ako je stuja jednosmjena stacionana, napon na kalemu je jednak nuli, on je katak spoj

55 Vezivanje kalemova Fizički veliki element izbjegava se njegova pimjena manja seijska poizvodnja Povezivanje edno paalelno L e L 1 + L L e L 1 1 L

56 M Meñusobna induktivnost Intenzitet magnetskog polja je popocionalan stuji koja ga izaziva Fluks magnetskog polja koz bilo koju kontuu u polju je popocionalan intenzitetu magnetskog polja Fluks magnetskog polja koz bilo koju kontuu u polju je popocionalan jačini stuje koja stvaa magnetsko polje I spoljašnji fluks koz neku kontuu popocionalan je jačini stuje koja stvaa taj fluks 1 Φ i 1 [ ] [ Φ] [ i] Wb M A Međusobna induktivnost dve kontue zavisi od oblika kontua H 1 M 1 M k L1 L sedine u kojoj se kontue nalaze međusobnog položaja kontua dφ1 d( M1i) di e1 M1 dt dt dt M k koeficijent spege

57 Spezanje kalemova Meñusobni fluks utiče na ukupan fluks, a time i na indukovanu ems u kalemu Spoljašnji fluks može da se sabia ili poništava (0 k 1) sa sopstvenim fluksom k k M k M k L 1 L L 1 L k > 0 di di di u 1 L 1 + M ( L 1 + M ) dt dt dt di di di u L + M ( L + M ) dt dt dt di di di u 1 L 1 M ( L 1 M ) dt dt dt di di di u L M ( L M ) dt dt dt L e L + L M 1 + L e L + L M 1

58 Spezanje kalemova Kalemovi mogu da se nalaze u azličitim ganama kola Kalemovi mogu da se nalaze u azličitim kolima (spegnuta kola) M k L 1 L k > 0 E L L di dt di dt di dt 1 1 M di dt M Ri 0 di dt 1 1 di ( E M L dt M di ME ( L ) + Ri L dt L 1 1 ) 0

59 R-L kolo Kolo sa izvoom, otponikom i kalemom e u R + u L + i u R + di e L + dt Ri u L di dt R e + i R L s + 0 τ vemenska konstanta kola L L L R nehomogena lineana DJ pvog eda

60 RL kolo sa jednosmenim izvoom punjenje kalema magnetnim poljem i/i 0 [ %] stuja kalema i L i kajnje ( i t/τ kajnje i poc ) t /τ ( 1 e ) u L /E [ %] napon kalema u L t/τ E e t /τ

61 i I i 1 II Φ I Φ 11 + Φ 1 L i M 1 i Φ II Φ + Φ 1 L i + M 1 i 1 e e I II e e si sii + + e MI e MII L 1 L di dt 1 di dt M 1 M di 1 dt di 1 dt

62 3.7 Magnetna kola Zahvaljujući činjenici da je elektična povodnost povodnih mateijala mnogo puta veća od elektične povodnosti izolacionih mateijala, bilo je moguće uvesti pojam elektičnog kola, koje obezbjeđuje podužno ketanje elekticiteta duž povodnika kola. Na analogan način možemo govoiti o magnetnom kolu, zahvaljujući činjenici da je magnetna povodnost (pemeabilnost) feomagnetnih mateijala mnogo veća od 4 µ ( ) µ magnetne povodnosti ostalih sedina [ ] Dakle, moguće je fomiati magnetno kolo od feomagnetnih mateijala, kojeće obezbijediti da se koz njega zatvaa većina linija magnetnog polja. I zaista, većina elektičnih ueđaja i apaata sadže gvozdena jezga, kao što su jezga tansfomatoa, jaam i kotva elektomagneta, statoski i otoski limovi elektičnih mašina, koji obezbjeđuju podužno "ketanje" magnetnog fluksa. Apoksimacija "podužnog ketanja" ovdje nije tako doba kao kod elektičnih kola Fe 0

63 Pethodno je azmatano magnetno kolo posebne (tousne) izvedbe kod kojeg su navojci bili aspoeđeni avnomjeno duž obima tousa. U paksi se, ipak, najčešće sijeću magnetna kola azličite geometije na koja je namotan jedan ili više namotaja, pi čemu njihovi navoji nisu avnomjeno aspoeđeni duž magnetnog kola već su skoncentisani na oganičenim njegovim djelovima. Jedan pimje takvog magnetnog kola pikazan je na slici + - I Φσ Φ asuti fluks

64 3.7.1 Omov zakon za magnetna kola Pimje tousnog namotaja može se iskoistiti da se ukaže na jedan paktični pistup analizi postih magnetnih kola, koji je analogan pistupu analizi elektičnih kola. Uz petpostavku da je <<R, može se smatati da je jednako u svim tačkama pesjeka S tousnog jezga (homogeno polje). Smatamo da se paktično sav fluks od namotaja na tousu zatvaa koz jezgo (feomagnetno), pa se magnetni fluks koz tousno jezgo pesjeka S može izačunati pomoću izaza

65 a d b Η N I I H c c R S l Φ S µ NI πr ( π) Ako se Rπ označi kao sednja dužina tousnog jezga l, a NI kao M Φ S M M µ M R l l R m µ S n l m M Nk I µ S k 1 R m k lk µk S k

66 3.7. Kihofovi zakoni za magnetna kola n gana Φ 1 Φ Φ i i 1 0 zatvoena povšina n H l N I i i i i i 1 i 1 n n Φ R i mi i i 1 i 1 n M l µ i i i S i S Φ R i i mi

67 3.8 Poačunavanje magnetnih kola + - I H 1 b l 1 N l S 1 H δ a c H S δ 1. Zadate su geometijske dimenzije magnetnog kola, kaakteistike feomagnetnih mateijala i magnetni fluksфkoji teba ealizovati u magnetnom kolu, a teba naći mps namotaja MNI, potebnu za ealizaciju zadatog fluksa.

68 + - I H 1 b l 1 N l H δ S 1 c a H S H l + H l + H NI 1 1 δδ δ Magnetno kolo se azbija na ed djelova jednakog popečnog pesjeka S ealizovanih od homogenih mateijala. Označava se kontua koja polazi sednjom magnetnom linijom. Kako fluks u svim djelovima kola moa biti isti, to je uvijek i Ф/S i za svaki dio kola. Ovo omogućava jednostavno odeđivanje vijednosti H dl za kontuu koju obazuje sednja linija magnetnog polja, pa je jednostavno naći i taženu mps NI

69 + I b l H - H 1 l 1 N S 1 H δ a c S δ H δ Φ / S µ o δ Vijednosti H 1 i H odeđuju se na osnovu izačunatih 1 i sa zadatih kivih magnećenja mateijala od kojih su ealizovani odgovaajući djelovi magnetnog kola.

70 3.9 Enegija magnetnog polja + u i N navojaka R l dužina sednje linije S d H dw m a) Kada se tous piključi na pomjenljivi napon u, pod uticajem tog napona, koz namotajće poteći stuja i, koja stvaa magnetno polječiji je fluks Φ takođe pomjenljiv, pa se može pisati jednačina dinamičke avnoteže elektičnih sila: dφ u Ri 0 /( idt ) uidt Ri dt idφ 0 dt b) i dφ dw M H

71 Φ Li W M dwm i Lidi 1 1 Li i 0 Φi U gonjim azmatanjima elektičnog kola fluks Φ je fluks elektičnog kola, dakle fluks koji polazi koz povšine koje se naslanjaju na elektično kolo, a fluks magnetnog kola Φ Fe je fluks koji polazi koz pesjek magnetnog kola. U posmatanom slučaju fluks elektičnog kola je N puta veći (N je boj navojaka elektičnog kola) od fluksa magnetnog kola: Φ NΦ Fe

72 Pimjenjujući zakon ukupne stuje na posmatano kolo imamo: i N l H pa se, imajući u vidu da je S Fe Φ magnetna enegija kola može izaziti: HV SlH N l H N i N W Fe Fe M Φ Φ µ µ H H V W w M M zapeminska gustina enegije magnetnog polja

73 3.10 Gubici enegije u magnetnom kolu Vidjeli smo da je za magnećenje magnetnog kola potebna odeđena enegija. Kada se magnećenje feomagnetnih mateijala vši naizmjenično, a to je slučaj kod tansfomatoa, elektičnih mašina i svih dugih ueđaja koji koiste naizmjeničnu stuju, nastaju gubici enegije uslijed pojave histeezisa i pojave vtložnih stuja. Ovi gubici jednim imenom zovu se gubici u gvožđu.

74 Gubici usljed histeezisa ' 3 Štajnmec ov obazac P ηf 1,6 H m H 1 4 4' P ηf H m

75 3.10. Gubici usljed vtložnih stuja vekto magnetne indukcije a) b) F m P σf gdje je koeficijent snage gubitaka usljed vtložnih stuja, koji kaakteiše svojstva mateijala feomagnetnog kola. U katalozima poizvođača, navodi se podatak o gubicima usljed vtložnih stuja po jedinici mase, za standadnu učestanost i konstantnu maksimalnu indukciju.

76 l j 3.11 Elektomagnet N U R S j i uidt Ri dt + dw + M Fdx dφ u Ri 0 dt idφ dwm + Fdx δ F dx F HS µ H j S j lk S k