5 SIMPLICIALNI KOMPLEKSI Definicija 5.1 Vektorji r 0,..., r k v R n so afino neodvisni, če so vektorji r 1 r 0, r 2 r 0,..., r k r 0 linearno neodvisn

Velikost: px
Začni prikazovanje s strani:

Download "5 SIMPLICIALNI KOMPLEKSI Definicija 5.1 Vektorji r 0,..., r k v R n so afino neodvisni, če so vektorji r 1 r 0, r 2 r 0,..., r k r 0 linearno neodvisn"

Transkripcija

1 5 SIMPLICIALNI KOMPLEKSI Definicija 5.1 Vektorji r 0,..., r k v R n so afino neodvisni, če so vektorji r 1 r 0, r 2 r 0,..., r k r 0 linearno neodvisni. Če so krajevni vektorji do točk a 0,..., a k v R n afino neodvisni, konveksno ogrinjačo teh točk imenujemo k-simpleks in ga označimo a 0 a 1... a k. Simpleks b 0 b 1... b l je lice simpleksa a 0 a 1... a k, če je {b 0,..., b l } podmnožica množice {a 0,..., a l }; pišemo b 0 b 1... b l < a 0 a 1... a n. Opomba 5.2 Naj bo x R n in a 0 a 1... a k simpleks v R n. Točka x a 0 a 1... a k natanko tedaj, ko obstajajo (enolično določena) števila t 0,..., t k I, da je x = k i=0 t ia i in k i=0 t i = 1. Opomba 5.3 Naj bosta a 0 a 1... a k in b 0 b 1... b l simpleksa in ϕ: {a 0,..., a k } {b 0,..., b l } poljubna preslikava. Tedaj obstaja (enolično določena) linearna preslikava f : a 0 a 1... a k b 0 b 1... b l, da je f(a i ) = ϕ(a i ). Definirana je s predpisom f( k i=0 t ia i ) = k i=0 t iϕ(a i ). Definicija 5.4 Množica simpleksov K v evklidskem prosotru R n je simplicialni kompleks, če zadošča spodnjim zahtevam. 1. Če je σ K in je ρ < σ, je ρ K. 2. Če sta σ, τ K, je σ τ bodisi prazna množica bodisi je skupno lice obeh simpleksov. 3. Množica K je lokalno končno pokritje za telo kompleksa K = σ K σ. Opomba 5.5 Množica A K je zaprta natanko tedaj, ko je za vsak simpleks σ K množica A σ zaprta v σ. 1

2 2 1. SIMPLICIALNI KOMPLEKSI Opomba 5.6 Preslikava f : K X je zvezna natanko tedaj, ko je za vsak simpleks σ K zožitev f σ : σ X zvezna. Naloga 5.7 Naj bo K simplicialni kompleks. Pokaži, da je K lokalno kompakten, lokalno povezan in lokalno povezan s potmi. Rešitev. Naj bo x K. Tedaj obstaja okolica U točke x, da U seka le končno mnogo simpleksov iz K; označimo te simplekse s σ 1,..., σ k. Tedaj je U k i=1 σ i. Ker je C = k i=1 σ i končna unija kompaktnih množic, je kompaktna. Ker je x U C in je U okolica za x, je tudi C okolica za x. Torej je K lokalno kompakten. Naj bo x K in U K njena okolica. Naj bodo σ 1,..., σ k vsi simpleksi iz K, ki vsebujejo točko x. (Množica k i=1 σ i je neprazna, saj vsebuje x, zato je simpleks v K; imenujemo ga nosilec točke x.) Naj bo L = K {σ 1,..., σ k }. Če je σ L, potem x σ. Tedaj za vsako lice ρ < σ velja x ρ, torej je ρ L. Se pravi, da je L podkompleks v K. Množica L je zaprta v K in x L, zato je d(x, L ) = d > 0. Naj bo r (0, d) tako število, da je V = K(x, r) K U. Pokažimo, daje V povezana s potmi. Naj bo y V. Ker je d(x, y) < r < d, je y k i=1 σ i. Torej obstaja j, da je y σ j. Ker je σ j konveksna množica, je tudi daljica xy σ j in posledično xy V. Torej je γ : I V definirana s predpisom γ(t) = (1 t)y + tx pot od y do x. Se pravi, da je množica V povezana s potmi. Tako smo pokazali, da je K lokalno povezan s potmi in zato tudi lokalno povezan. Opomba: Pokazali smo celo več; namreč K je lokalno kontraktibilen, kar pomeni, da ima vsaka točka bazo kontraktibilnih okolic. Pri zgornjih oznakah lahko definiramo H : V I V s predpisom H(y, t) = (1 t)y + tx. Tedaj je H homotopija med id V in c x, se pravi, da je V kontraktibilen. Naloga 5.8 Naj bo K simplicialni kompleks. natanko tedaj, ko je povezan s potmi. Tedaj je K povezan Rešitev. Vemo, da iz dejstva, da je K povezan s potmi, sledi, da je K povezan. Vsak povezan prostor, ki je še lokalno povezan s potmi, je povezan s potmi.

3 3 Naloga 5.9 Naj bo K simplicialni kompleks. Pokaži, da je za vsak n N {0} n-ti skelet K (n) = {σ K dim σ n} simplicialni podkompleks. Pokaži, da so naslednje trditve ekvivalentne. 1. Telo 1-skeleta K (1) je povezan. 2. Za vsak n N je K (n) povezan. 3. Telo K je povezan. Rešitev. Naj bo σ K (n) in ρ < σ njegovo lice. Tedaj je dim ρ dim σ in zato ρ K (n). Naj za σ, ρ K (n) K velja σ ρ. Ker je K simplicialni kompleks, je σ ρ skupno lice in zato je v K (n). Ker je K lokalno končno pokritje za K, je tudi K (n) lokalno končno pokritje za K (n). Torej je K (n) simplicialni podkompleks. (1 2) Naj bo K (1) povezan in naj bo n N. Za vsak σ K (n) naj bo X σ = K (1) σ. Ker je K (1) σ, je X σ povezan. Ker je σ K (n)x σ = K (1), je K (n) = σ K (n)x σ povezan. (2 3) Za dovolj velike n je K (n) = K. Če je K(n) povezan za vsak n N, je torej K povezan. (3 1) Naj bo K povezan. Denimo, da K (1) ni povezan. Naj bo U V = K (1) separacija. Naj bo K U = {σ K σ U } in K V = {σ K σ V }. Naj bo σ K. Ker je σ (1) povezan s potmi, je bodisi σ (1) U bodisi σ (1) V, se pravi K U K V =. Brez težav se prepričamo, da sta K U in K V simplicialna podkompleksa. Torej je K U K V separacija za K, kar ni možno. Torej je K (1) povezan. Naloga 5.10 Naj bo K simplicialni kompleks. Pokaži, da so naslednje trditve ekvivalentne. 1. Telo 1-skeleta K (1) je povezan s potmi. 2. Za vsak n N je K (n) povezan s potmi. 3. Telo K je povezan s potmi. Rešitev. Sledi iz prejšnjih dveh nalog.

4 4 1. SIMPLICIALNI KOMPLEKSI Naloga 5.11 Naj bo K simplicialni kompleks. 1. Naj bo S K končna podmnožica. Tedaj obstaja končen podkompleks L < K, da je S L. 2. Naj bo A K zaprta. Pokaži, da je A kompaktna natanko tedaj, ko je A L za kak končen podkompleks L < K. 3. Pokaži, da je K kompaktna natanko tedaj, ko je K končna. Rešitev. 1. Naj bo L = ρ S {vsa lica simpleksa ρ}. Po definiciji je L končna množica. Naj bo σ L. Tedaj obstaja ρ S, da je σ < ρ. Tedaj je vsako lice τ < σ tudi lice τ < ρ, torej je τ L. Se pravi, da je L simplicialni kompleks. 2. Naj bo A L za kak končen podkompleks L < K. Tedaj je A = σ L (A σ). Ker je A σ zaprta v σ, ki je zaprta v ambientnem prostoru R n, je kompaktna. Torej je A končna unija kompaktnih množic, zato je kompaktna. Denimo, da A ni vsebovana v nobenem končnem podkompleksu. Po točki (1) obstaja števno mnogo simpleksov σ 1, σ 2,... K, da je A σ n. Za vsak n N izberimo x n A σ n. Tedaj zaporedje (x n ) n N nima stekališča. Vsaka točka x K ima namreč okolico U, ki seka le končno mnogo simpleksov iz K. Taka množica pa lahko vsebuje le končno mnogo členov zaporedja (x n ) n N. Torej A ni kompaktna množica. Implikacijo v desno lahko dokažemo tudi na sledeči način. Za vsak x A obstaja odprta okolica U x točke x, ki seka le končno mnogo simpleksov iz K. Množica {U x x A} je odprto pokritje za kompaktno množico A, zato obstaja končno podpokritje {U x1,..., U xk }. Ker je A k i=1 U x i in unija na desno seka le končno mnogo simpleksov iz K, tudi A seka le končno mnogo simpleksov iz K. Ker je vsaka končna podmnožica v K vsebovana v končnem simplicialnem podkompleksu, je A vsebovana v telesu nekega končnega podkompleksa. 3. Sledi iz točke (2). Definicija 5.12 Topološki prostor X je topološki polieder, če obstaja simplicialni kompleks K, da je X homeomorfen telesu K. Simplicialni kompleks K imenujemo triangulacija poliedra X.

5 5 Naloga 5.13 Pokaži, da so kolobar, Möbiusov trak, torus in sfera topološki poliedri. Rešitev. Triangulacija za kolobar. Tringulacija za Möbiusov trak. a a = a Tringulacija za torus. b a a = b Sfera je homeomorfna robu 3-simpleksa, torej ima simplicaialni kompleks K katerega telo je homeomorfno S 2, štiri 2-simplekse, šest 1-simpleksov in štiri 0-simplekse.

6 6 1. SIMPLICIALNI KOMPLEKSI Opomba 5.14 Videli smo, da so topološki poliedri lokalno lepi prostori. Ali je vsaka n-mnogoterost topološki polieder? 1. Za n = 1 je odgovor očitno da. 2. Za n = 2 je odgovor da, kar je okrog leta 1920 dokazal T. Radó. 3. Za n = 3 je tudi odgovor da, kar sta okrog leta 1950 dokazala E. E. Moise in R. H. Bing. 4. V dimenziji 4 obstaja mnogoterost, ki ni topološki polieder. 5. Za n 5 je vprašanje še vedno brez odgovora. Definicija 5.15 Naj bo K simplicialni kompleks in σ K glavni simpleks; to pomeni, da ni pravo lice nobenega simpleksa. Naj bo ρ lice kodimenzije 1 simpleksa σ, ki ni pravo lice nobenega drugega simpleksa iz K. Tedaj je L = K {σ, ρ} simplicialni kompleks. Operaciji, ki simplicialnemu kompleksu K priredi L, pravimo elementarni kolaps in pišemo K e L. Pravimo, da simplicialni kompleks kolabira na L, pišemo K L, če obstaja zaporedje elementarnih kolapsov K e L 1 e... e L n e L. Naloga 5.16 Naj simplicialni kompleks K kolabira na simplicialni kompleks L. Pokaži, da obstaja krepka deformacijska retrakcija iz K na L. Rešitev. Dovolj je trditev pokazati za primer, ko K e L. Naj bo K = L {σ, τ}, kjer je σ glavni simpleks v K in τ njegovo lice kodimenzije 1, ki ni lice nobenega drugega simpleksa. Naj bo n dimenzija simpleksa σ. Naj bo e 0 = (1,..., 1) R n in e i i-ti enotski vektor v R n. Naj bo σ = e 0 e 1... e n. Definirajmo preslikavo H : σ I σ s predpisom x H(x, t) = (1 t)x + t. x Preslikava H je homotopija med id σ in retrakcijo simpleksa σ na σ Int e 1... e n. Naj bo f : σ σ homeomorfizem, ki τ preslika na e 1... e n. Preslikava H : K I K definirana s predpisom H(x, t) = { (x, t), x L, f 1 ( H(f(x), t)), x σ,

7 7 je krepka deformacijska retrakcija poliedrea K na polieder L. Preslikava H je zvezna, saj je zvezna vsaka zožitev H σ I, množica {σ I σ K} pa je zaprto lokalno končno pokritje za K I. Definicija 5.17 Topološki polieder P je kolapsibilen, če obstaja simplicialni kompleks K, ki kolabira na trivialni kompleks in velja K P. Naloga 5.18 Pokaži, da je Bingova hiša kontraktibilen ni pa kolapsibilen topološki poliender. Rešitev. Spodnja slika prikazuje Bingovo hišo. Bingova hiša Bingova hiša je krepki deformacijski retrakt 3-dimenzionalne krogle, ki je kontraktibilna, zato je kontraktibilna. V poljubni triangulaciji K Bingove hiše je vsako lice kodimenzije ena glavnega simpleksa vsebovano v vsaj dveh simpleksih. Torej ne obstaja elementarni kolaps simplicialnega kompleksa K na noben njegov podkompleks. Torej K ni kolapsibilen.

UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO Oddelek za matematiko in računalništvo DIPLOMSKO DELO Peter Škofič Maribor, 2014

UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO Oddelek za matematiko in računalništvo DIPLOMSKO DELO Peter Škofič Maribor, 2014 UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO Oddelek za matematiko in računalništvo DIPLOMSKO DELO Peter Škofič Maribor, 2014 UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO

Prikaži več

Osnove matematicne analize 2018/19

Osnove matematicne analize  2018/19 Osnove matematične analize 2018/19 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D f R priredi natanko

Prikaži več

Slide 1

Slide 1 Vsak vektor na premici skozi izhodišče lahko zapišemo kot kjer je v smerni vektor premice in a poljubno število. r a v Vsak vektor na ravnini skozi izhodišče lahko zapišemo kot kjer sta v, v vektorja na

Prikaži več

Ravninski grafi Tina Malec 6. februar 2007 Predstavili bomo nekaj osnovnih dejstev o ravninskih grafih, pojem dualnega grafa (k danemu grafu) ter kako

Ravninski grafi Tina Malec 6. februar 2007 Predstavili bomo nekaj osnovnih dejstev o ravninskih grafih, pojem dualnega grafa (k danemu grafu) ter kako Ravninski grafi Tina Malec 6. februar 2007 Predstavili bomo nekaj osnovnih dejstev o ravninskih grafih, pojem dualnega grafa (k danemu grafu) ter kako ugotoviti, ali je nek graf ravninski. 1 Osnovni pojmi

Prikaži več

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5. februar 2018 Navodila Pazljivo preberite

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5. februar 2018 Navodila Pazljivo preberite Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5 februar 018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Nalog je

Prikaži več

Vaje: Matrike 1. Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N 0 1 n ; n N Pokaži, da je množica x 0 y 0 x

Vaje: Matrike 1. Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N 0 1 n ; n N Pokaži, da je množica x 0 y 0 x Vaje: Matrike 1 Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N n 1 1 0 1 ; n N 0 2 Pokaži, da je množica x 0 y 0 x y x + z ; x, y, z R y x z x vektorski podprostor v prostoru matrik

Prikaži več

UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO Oddelek za matematiko in računalništvo MAGISTRSKO DELO Daša Štesl Maribor, 2017

UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO Oddelek za matematiko in računalništvo MAGISTRSKO DELO Daša Štesl Maribor, 2017 UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO Oddelek za matematiko in računalništvo MAGISTRSKO DELO Daša Štesl Maribor, 2017 UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO

Prikaži več

EKVITABILNE PARTICIJE IN TOEPLITZOVE MATRIKE Aleksandar Jurišić Politehnika Nova Gorica in IMFM Vipavska 13, p.p. 301, Nova Gorica Slovenija Štefko Mi

EKVITABILNE PARTICIJE IN TOEPLITZOVE MATRIKE Aleksandar Jurišić Politehnika Nova Gorica in IMFM Vipavska 13, p.p. 301, Nova Gorica Slovenija Štefko Mi EKVITABILNE PARTICIJE IN TOEPLITZOVE MATRIKE Aleksandar Jurišić Politehnika Nova Gorica in IMFM Vipavska 13, p.p. 301, Nova Gorica Slovenija Štefko Miklavič 30. okt. 2003 Math. Subj. Class. (2000): 05E{20,

Prikaži več

6.1 Uvod 6 Igra Chomp Marko Repše, Chomp je nepristranska igra dveh igralcev s popolno informacijo na dvo (ali vec) dimenzionalnem prostoru

6.1 Uvod 6 Igra Chomp Marko Repše, Chomp je nepristranska igra dveh igralcev s popolno informacijo na dvo (ali vec) dimenzionalnem prostoru 6.1 Uvod 6 Igra Chomp Marko Repše, 30.03.2009 Chomp je nepristranska igra dveh igralcev s popolno informacijo na dvo (ali vec) dimenzionalnem prostoru in na končni ali neskončni čokoladi. Igralca si izmenjujeta

Prikaži več

ZveznostFunkcij11.dvi

ZveznostFunkcij11.dvi II. LIMITA IN ZVEZNOST FUNKCIJ. Preslikave med množicami Funkcija ali preslikava med dvema množicama A in B je predpis f, ki vsakemu elementu x množice A priredi natanko določen element y množice B. Važno

Prikaži več

Vrste

Vrste Matematika 1 17. - 24. november 2009 Funkcija, ki ni algebraična, se imenuje transcendentna funkcija. Podrobneje si bomo ogledali naslednje transcendentne funkcije: eksponentno, logaritemsko, kotne, ciklometrične,

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/testi in izpiti/ /IZPITI/FKKT-februar-14.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/testi in izpiti/ /IZPITI/FKKT-februar-14.dvi Kemijska tehnologija, Kemija Bolonjski univerzitetni program Smer: KT K WolframA: DA NE Računski del izpita pri predmetu MATEMATIKA I 6. 2. 2014 Čas reševanja je 75 minut. Navodila: Pripravi osebni dokument.

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-avgust-17.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-avgust-17.dvi Vpisna številka Priimek, ime Smer: K KT WA Izpit pri predmetu MATEMATIKA I Računski del Ugasni in odstrani mobilni telefon. Uporaba knjig in zapiskov ni dovoljena. Dovoljeni pripomočki so: kemični svinčnik,

Prikaži več

Kazalo 1 DVOMESTNE RELACIJE Operacije z dvomestnimi relacijami Predstavitev relacij

Kazalo 1 DVOMESTNE RELACIJE Operacije z dvomestnimi relacijami Predstavitev relacij Kazalo 1 DVOMESTNE RELACIJE 1 1.1 Operacije z dvomestnimi relacijami...................... 2 1.2 Predstavitev relacij............................... 3 1.3 Lastnosti relacij na dani množici (R X X)................

Prikaži več

Linearna algebra - povzetek vsebine Peter Šemrl Jadranska 21, kabinet 4.10 Izpitni režim: Kolokviji in pisni izpiti so vsi s

Linearna algebra - povzetek vsebine Peter Šemrl Jadranska 21, kabinet 4.10 Izpitni režim: Kolokviji in pisni izpiti so vsi s Linearna algebra - povzetek vsebine Peter Šemrl Jadranska 21, kabinet 410 petersemrl@fmfuni-ljsi Izpitni režim: Kolokviji in pisni izpiti so vsi sestavljeni iz dveh delov: v prvem delu se rešujejo naloge,

Prikaži več

FGG13

FGG13 10.8 Metoda zveznega nadaljevanja To je metoda za reševanje nelinearne enačbe f(x) = 0. Če je težko poiskati začetni približek (še posebno pri nelinearnih sistemih), si lahko pomagamo z uvedbo dodatnega

Prikaži več

Domače vaje iz LINEARNE ALGEBRE Marjeta Kramar Fijavž Fakulteta za gradbeništvo in geodezijo Univerze v Ljubljani 2007/08 Kazalo 1 Vektorji 2 2 Analit

Domače vaje iz LINEARNE ALGEBRE Marjeta Kramar Fijavž Fakulteta za gradbeništvo in geodezijo Univerze v Ljubljani 2007/08 Kazalo 1 Vektorji 2 2 Analit Domače vaje iz LINEARNE ALGEBRE Marjeta Kramar Fijavž Fakulteta za gradbeništvo in geodezijo Univerze v Ljubljani 007/08 Kazalo Vektorji Analitična geometrija 7 Linearni prostori 0 4 Evklidski prostori

Prikaži več

CpE & ME 519

CpE & ME 519 2D Transformacije Zakaj potrebujemo transformacije? Animacija Več instanc istega predmeta, variacije istega objekta na sceni Tvorba kompliciranih predmetov iz bolj preprostih Transformacije gledanja Kaj

Prikaži več

Brownova kovariancna razdalja

Brownova kovariancna razdalja Brownova kovariančna razdalja Nace Čebulj Fakulteta za matematiko in fiziko 8. januar 2015 Nova mera odvisnosti Motivacija in definicija S primerno izbiro funkcije uteži w(t, s) lahko definiramo mero odvisnosti

Prikaži več

Matematika 2

Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 23. april 2014 Soda in liha Fourierjeva vrsta Opomba Pri razvoju sode periodične funkcije f v Fourierjevo vrsto v razvoju nastopajo

Prikaži več

glava.dvi

glava.dvi Lastnosti verjetnosti 1. Za dogodka A in B velja: P(A B) = P(A) + P(B) P(A B) 2. Za dogodke A, B in C velja: P(A B C) = P(A) + P(B) + P(C) P(A B) P(A C) P(B C) + P(A B C) Kako lahko to pravilo posplošimo

Prikaži več

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6. julij 2018 Navodila Pazljivo preberite be

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6. julij 2018 Navodila Pazljivo preberite be Ime in priimek: Vpisna št: FAKULEA ZA MAEMAIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6 julij 2018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Za pozitiven rezultat

Prikaži več

Turingov stroj in programiranje Barbara Strniša Opis in definicija Definirajmo nekaj oznak: Σ abeceda... končna neprazna množica simbolo

Turingov stroj in programiranje Barbara Strniša Opis in definicija Definirajmo nekaj oznak: Σ abeceda... končna neprazna množica simbolo Turingov stroj in programiranje Barbara Strniša 12. 4. 2010 1 Opis in definicija Definirajmo nekaj oznak: Σ abeceda... končna neprazna množica simbolov (običajno Σ 2) Σ n = {s 1 s 2... s n ; s i Σ, i =

Prikaži več

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Katja Ciglar Analiza občutljivosti v Excel-u Seminarska naloga pri predmetu Optimizacija v fina

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Katja Ciglar Analiza občutljivosti v Excel-u Seminarska naloga pri predmetu Optimizacija v fina UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Katja Ciglar Analiza občutljivosti v Excel-u Seminarska naloga pri predmetu Optimizacija v financah Ljubljana, 2010 1. Klasični pristop k analizi

Prikaži več

NEKAJ VPRAŠANJ IZ MATEMATIKE 2 1. Katero točko evklidskega prostora R n imenujemo notranjo (zunanjo, robno) točko množice M R n? 2. Za poljubno množic

NEKAJ VPRAŠANJ IZ MATEMATIKE 2 1. Katero točko evklidskega prostora R n imenujemo notranjo (zunanjo, robno) točko množice M R n? 2. Za poljubno množic NEKAJ VPRAŠANJ IZ MATEMATIKE 2 1. Katero točko evklidskega prostora R n imenujemo notranjo (zunanjo, robno) točko množice M R n? 2. Za poljubno množico M R n evklidskega prostora R n definirajte množice

Prikaži več

11. Navadne diferencialne enačbe Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogo

11. Navadne diferencialne enačbe Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogo 11. Navadne diferencialne enačbe 11.1. Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogoju y(x 0 ) = y 0, kjer je f dana dovolj gladka funkcija

Prikaži več

FGG14

FGG14 Iterativne metode podprostorov Iterativne metode podprostorov uporabljamo za numerično reševanje linearnih sistemov ali računanje lastnih vrednosti problemov z velikimi razpršenimi matrikami, ki so prevelike,

Prikaži več

3. Metode, ki temeljijo na minimalnem ostanku Denimo, da smo z Arnoldijevim algoritmom zgenerirali ON bazo podprostora Krilova K k (A, r 0 ) in velja

3. Metode, ki temeljijo na minimalnem ostanku Denimo, da smo z Arnoldijevim algoritmom zgenerirali ON bazo podprostora Krilova K k (A, r 0 ) in velja 3. Metode, ki temeljijo na minimalnem ostanku Denimo, da smo z Arnoldijevim algoritmom zgenerirali ON bazo podprostora Krilova K k (A, r 0 ) in velja AV k = V k H k + h k+1,k v k+1 e T k = V kh k+1,k.

Prikaži več

RAM stroj Nataša Naglič 4. junij RAM RAM - random access machine Bralno pisalni, eno akumulatorski računalnik. Sestavljajo ga bralni in pisalni

RAM stroj Nataša Naglič 4. junij RAM RAM - random access machine Bralno pisalni, eno akumulatorski računalnik. Sestavljajo ga bralni in pisalni RAM stroj Nataša Naglič 4. junij 2009 1 RAM RAM - random access machine Bralno pisalni, eno akumulatorski računalnik. Sestavljajo ga bralni in pisalni trak, pomnilnik ter program. Bralni trak- zaporedje

Prikaži več

Urejevalna razdalja Avtorji: Nino Cajnkar, Gregor Kikelj Mentorica: Anja Petković 1 Motivacija Tajnica v posadki MARS - a je pridna delavka, ampak se

Urejevalna razdalja Avtorji: Nino Cajnkar, Gregor Kikelj Mentorica: Anja Petković 1 Motivacija Tajnica v posadki MARS - a je pridna delavka, ampak se Urejevalna razdalja Avtorji: Nino Cajnkar, Gregor Kikelj Mentorica: Anja Petković 1 Motivacija Tajnica v posadki MARS - a je pridna delavka, ampak se velikokrat zmoti. Na srečo piše v programu Microsoft

Prikaži več

'Kombinatoricna optimizacija / Lokalna optimizacija'

'Kombinatoricna optimizacija / Lokalna optimizacija' Kombinatorična optimizacija 3. Lokalna optimizacija Vladimir Batagelj FMF, matematika na vrhu različica: 15. november 2006 / 23 : 17 V. Batagelj: Kombinatorična optimizacija / 3. Lokalna optimizacija 1

Prikaži več

RAČUNALNIŠKA ORODJA V MATEMATIKI

RAČUNALNIŠKA ORODJA V MATEMATIKI DEFINICIJA V PARAVOKOTNEM TRIKOTNIKU DEFINICIJA NA ENOTSKI KROŢNICI GRAFI IN LASTNOSTI SINUSA IN KOSINUSA POMEMBNEJŠE FORMULE Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z

Prikaži več

1. izbirni test za MMO 2018 Ljubljana, 16. december Naj bo n naravno število. Na mizi imamo n 2 okraskov n različnih barv in ni nujno, da imam

1. izbirni test za MMO 2018 Ljubljana, 16. december Naj bo n naravno število. Na mizi imamo n 2 okraskov n različnih barv in ni nujno, da imam 1. izbirni test za MMO 018 Ljubljana, 16. december 017 1. Naj bo n naravno število. Na mizi imamo n okraskov n različnih barv in ni nujno, da imamo enako število okraskov vsake barve. Dokaži, da se okraske

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-junij-17.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-junij-17.dvi Vpisna številka Priimek, ime Smer: K KT WA Izpit pri predmetu MATEMATIKA I Računski del Ugasni in odstrani mobilni telefon. Uporaba knjig in zapiskov ni dovoljena. Dovoljeni pripomočki so: kemični svinčnik,

Prikaži več

Vektorji - naloge za test Naloga 1 Ali so točke A(1, 2, 3), B(0, 3, 7), C(3, 5, 11) b) A(0, 3, 5), B(1, 2, 2), C(3, 0, 4) kolinearne? Naloga 2 Ali toč

Vektorji - naloge za test Naloga 1 Ali so točke A(1, 2, 3), B(0, 3, 7), C(3, 5, 11) b) A(0, 3, 5), B(1, 2, 2), C(3, 0, 4) kolinearne? Naloga 2 Ali toč Vektorji - naloge za test Naloga 1 li so točke (1, 2, 3), (0, 3, 7), C(3, 5, 11) b) (0, 3, 5), (1, 2, 2), C(3, 0, 4) kolinearne? Naloga 2 li točke a) (6, 0, 2), (2, 0, 4), C(6, 6, 1) in D(2, 6, 3), b)

Prikaži več

Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y

Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y 2 ). Rešitev: Diferencialna enačba ima ločljive spremenljivke,

Prikaži več

2. izbirni test za MMO 2017 Ljubljana, 17. februar Naj bosta k 1 in k 2 dve krožnici s središčema O 1 in O 2, ki se sekata v dveh točkah, ter

2. izbirni test za MMO 2017 Ljubljana, 17. februar Naj bosta k 1 in k 2 dve krožnici s središčema O 1 in O 2, ki se sekata v dveh točkah, ter 2. izbirni test za MMO 2017 Ljubljana, 17. februar 2017 1. Naj bosta k 1 in k 2 dve krožnici s središčema O 1 in O 2, ki se sekata v dveh točkah, ter naj bo A eno od njunih presečišč. Ena od njunih skupnih

Prikaži več

Teme za zaključne naloge Jaka Smrekar 23. julij 2016 Kazalo 1 Topologija Dugundjijev razširitveni izrek Izrek

Teme za zaključne naloge Jaka Smrekar 23. julij 2016 Kazalo 1 Topologija Dugundjijev razširitveni izrek Izrek Teme za zaključne naloge Jaka Smrekar 23. julij 2016 Kazalo 1 Topologija 2 1.1 Dugundjijev razširitveni izrek............................. 2 1.2 Izrek o invarianci odprtih množic...........................

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNISTVO Matematika Pisni izpit. junij 22 Ime in priimek Vpisna st Navodila Pazljivo preberite besedilo naloge, preden se lotite resevanja. Veljale bodo samo resitve na papirju, kjer so

Prikaži več

Učinkovita izvedba algoritma Goldberg-Tarjan Teja Peklaj 26. februar Definicije Definicija 1 Naj bo (G, u, s, t) omrežje, f : E(G) R, za katero v

Učinkovita izvedba algoritma Goldberg-Tarjan Teja Peklaj 26. februar Definicije Definicija 1 Naj bo (G, u, s, t) omrežje, f : E(G) R, za katero v Učinkovita izvedba algoritma Goldberg-Tarjan Teja Peklaj 26. februar 2009 1 Definicije Definicija 1 Naj bo (G, u, s, t) omrežje, f : E(G) R, za katero velja 0 f(e) u(e) za e E(G). Za v V (G) definiramo presežek

Prikaži več

GeomInterp.dvi

GeomInterp.dvi Univerza v Ljubljani Fakulteta za matematiko in fiziko Seminar za Numerično analizo Geometrijska interpolacija z ravninskimi parametričnimi polinomskimi krivuljami Gašper Jaklič, Jernej Kozak, Marjeta

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNISTVO Matematika 2. kolokvij. december 2 Ime in priimek: Vpisna st: Navodila Pazljivo preberite besedilo naloge, preden se lotite resevanja. Veljale bodo samo resitve na papirju, kjer

Prikaži več

Osnove verjetnosti in statistika

Osnove verjetnosti in statistika Osnove verjetnosti in statistika Gašper Fijavž Fakulteta za računalništvo in informatiko Univerza v Ljubljani Ljubljana, 26. februar 2010 Poskus in dogodek Kaj je poskus? Vržemo kovanec. Petkrat vržemo

Prikaži več

Wienerjevemu indeksu podobni indeksi na grafih

Wienerjevemu indeksu podobni indeksi na grafih UNIVERZA NA PRIMORSKEM FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN INFORMACIJSKE TENOLOGIJE Matematične znanosti, stopnja Daliborko Šabić Wienerjevemu indeksu podobni indeksi na grafih Magistrsko delo Mentor:

Prikaži več

UM FKKT, Bolonjski visoko²olski program Kemijska tehnologija Vpisna ²tevilka Priimek, ime 3. test pri predmetu MATEMATIKA II Ra unski del

UM FKKT, Bolonjski visoko²olski program Kemijska tehnologija Vpisna ²tevilka Priimek, ime 3. test pri predmetu MATEMATIKA II Ra unski del UM FKKT, Bolonjski visoko²olski program Kemijska tehnologija Vpisna ²tevilka Priimek, ime 3. test pri predmetu MATEMATIKA II Ra unski del 13. 6. 2016 Navodila: Pripravi osebni dokument. Ugasni in odstrani

Prikaži več

Namesto (x,y)R uporabljamo xRy

Namesto (x,y)R uporabljamo xRy RELACIJE Namesto (x,y) R uporabljamo xry Def.: Naj bo R AxA D R = { x; y A: xry } je domena ali definicijsko obmocje relacije R Z R = { y; x A: xry } je zaloga vrednosti relacije R Za zgled od zadnjič:

Prikaži več

Osnove teorije kopul in maksmin kopule

Osnove teorije kopul in maksmin kopule Fakulteta za matematiko in fiziko Univerze v Ljubljani Seminar Inštituta za biostatistiko in medicinsko informatiko 26. maj 25 Osnove teorije kopul Definicija kopule Definicija Funkcija C : A A 2 [, ],

Prikaži več

Microsoft PowerPoint - IPPU-V2.ppt

Microsoft PowerPoint - IPPU-V2.ppt Informatizacija poslovnih procesov v upravi VAJA 2 Procesni pogled Diagram aktivnosti IPPU vaja 2; stran: 1 Fakulteta za upravo, 2006/07 Procesni pogled Je osnova za razvoj programov Prikazuje algoritme

Prikaži več

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 2017

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 2017 UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 217 ii Kazalo Diferencialni račun vektorskih funkcij 1 1.1 Skalarne funkcije...........................

Prikaži več

Topoloegingroup let elax elax endgroup [PleaseinsertPrerenderUnicode{Å¡}intopreamble]ki pristopi k analizi bioloegingroup let elax elax endgroup

Topoloegingroup let 
elax 
elax endgroup [PleaseinsertPrerenderUnicode{Å¡}intopreamble]ki pristopi k analizi bioloegingroup let 
elax 
elax endgroup fl 1 Univerza v Ljubljani Fakulteta za računalništvo in informatiko Marija Durdević Topološki pristopi k analizi bioloških podatkov MAGISTRSKO DELO ŠTUDIJSKI PROGRAM DRUGE STOPNJE RAČUNALNIŠTVO IN INFORMATIKA

Prikaži več

Optimizacija z roji delcev - Seminarska naloga pri predmetu Izbrana poglavja iz optimizacije

Optimizacija z roji delcev - Seminarska naloga pri predmetu Izbrana poglavja iz optimizacije Univerza v Ljubljani Fakulteta za matematiko in fiziko Seminarska naloga pri predmetu Izbrana poglavja iz optimizacije 2. junij 2011 Koncept PSO Motivacija: vedenje organizmov v naravi Ideja: koordinirano

Prikaži več

UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO Oddelek za matematiko in računalništvo DIPLOMSKO DELO Denis Kolarič Maribor, 2010

UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO Oddelek za matematiko in računalništvo DIPLOMSKO DELO Denis Kolarič Maribor, 2010 UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO Oddelek za matematiko in računalništvo DIPLOMSKO DELO Denis Kolarič Maribor, 2010 UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO

Prikaži več

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 31. avgust 2018 Navodila Pazljivo preberite

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 31. avgust 2018 Navodila Pazljivo preberite Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 31 avgust 018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Za pozitiven

Prikaži več

Rešene naloge iz Linearne Algebre

Rešene naloge iz Linearne Algebre UNIVERZA V LJUBLJANI FAKULTETA ZA RAČUNALNIŠTVO IN INFORMATIKO LABORATORIJ ZA MATEMATIČNE METODE V RAČUNALNIŠTVU IN INFORMATIKI Aleksandra Franc REŠENE NALOGE IZ LINEARNE ALGEBRE Študijsko gradivo Ljubljana

Prikaži več

PowerPoint Presentation

PowerPoint Presentation I&R: P-X/1/15 operatorji, ki jih uporabljamo za delo z vektorskimi veličinami vektorski oklepaj [ ] ločnica med elementi vrstičnega vektorja je vejica, ali presledek ločnica med elementi stolpčnega vektorja

Prikaži več

H-Razcvet

H-Razcvet Univerza v Ljubljani Fakulteta za računalništvo in informatiko Fakulteta za matematiko in fiziko Gregor Šulgaj H-Razcvet DIPLOMSKO DELO INTERDISCIPLINARNI ŠTUDIJSKI PROGRAM PRVE STOPNJE RAČUNALNIŠTVA IN

Prikaži več

Podatkovni model ER

Podatkovni model ER Podatkovni model Entiteta- Razmerje Iztok Savnik, FAMNIT 2018/19 Pregled: Načrtovanje podatkovnih baz Konceptualno načtrovanje: (ER Model) Kaj so entite in razmerja v aplikacijskem okolju? Katere podatke

Prikaži več

Matematika II (UN) 1. kolokvij (13. april 2012) RE ITVE Naloga 1 (25 to k) Dana je linearna preslikava s predpisom τ( x) = A x A 1 x, kjer je A

Matematika II (UN) 1. kolokvij (13. april 2012) RE ITVE Naloga 1 (25 to k) Dana je linearna preslikava s predpisom τ( x) = A x A 1 x, kjer je A Matematika II (UN) 1 kolokvij (13 april 01) RE ITVE Naloga 1 (5 to k) Dana je linearna preslikava s predpisom τ( x) = A x A 1 x, kjer je 0 1 1 A = 1, 1 A 1 pa je inverzna matrika matrike A a) Poi² ite

Prikaži več

Microsoft PowerPoint _12_15-11_predavanje(1_00)-IR-pdf

Microsoft PowerPoint _12_15-11_predavanje(1_00)-IR-pdf uporaba for zanke i iz korak > 0 oblika zanke: for i iz : korak : ik NE i ik DA stavek1 stavek2 stavekn stavek1 stavek2 stavekn end i i + korak I&: P-XI/1/17 uporaba for zanke i iz korak < 0 oblika zanke:

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNIŠTVO Matematika 4 Pini izpit 2. januar 22 Ime in priimek: Vpina št: Navodila Pazljivo preberite beedilo naloge, preden e lotite reševanja. Veljale bodo amo rešitve na papirju, kjer

Prikaži več

MONADE V FUNKCIJSKEM PROGRAMIRANJU MITJA ROZMAN Fakulteta za matematiko in fiziko Univerza v Ljubljani Članek predstavi monado, eno pomembnejših struk

MONADE V FUNKCIJSKEM PROGRAMIRANJU MITJA ROZMAN Fakulteta za matematiko in fiziko Univerza v Ljubljani Članek predstavi monado, eno pomembnejših struk MONADE V FUNKCIJSKEM PROGRAMIRANJU MITJA ROZMAN Fakulteta za matematiko in fiziko Univerza v Ljubljani Članek predstavi monado, eno pomembnejših struktur v programskem jeziku Haskell Monada je za programski

Prikaži več

Četrta vaja iz matematike 1 Andrej Perne Ljubljana, 2006/07 zaporedja Zaporedje je predpis, ki vsakemu n N priredi a n R. Monotonost zaporedij: Zapore

Četrta vaja iz matematike 1 Andrej Perne Ljubljana, 2006/07 zaporedja Zaporedje je predpis, ki vsakemu n N priredi a n R. Monotonost zaporedij: Zapore Četrta vaja iz matematike Adrej Pere Ljubljaa, 2006/07 zaporedja Zaporedje je predpis, ki vsakemu N priredi R. Mootoost zaporedij: Zaporedje { } je araščajoče, če je za vsak. Zaporedje { } je strogo araščajoče,

Prikaži več

Lehmerjev algoritem za racunanje najvecjega skupnega delitelja

Lehmerjev algoritem za racunanje najvecjega skupnega delitelja Univerza v Ljubljani Fakulteta za računalništvo in informatiko ter Fakulteta za Matematiko in Fiziko Mirjam Kolar Lehmerjev algoritem za računanje največjega skupnega delitelja DIPLOMSKO DELO NA INTERDISCIPLINARNEM

Prikaži več

Numeri na analiza - podiplomski ²tudij FGG doma e naloge - 1. skupina V prvem delu morate re²iti toliko nalog, da bo njihova skupna vsota vsaj 10 to k

Numeri na analiza - podiplomski ²tudij FGG doma e naloge - 1. skupina V prvem delu morate re²iti toliko nalog, da bo njihova skupna vsota vsaj 10 to k Numeri na analiza - podiplomski ²tudij FGG doma e naloge -. skupina V prvem delu morate re²iti toliko nalog, da bo njihova skupna vsota vsaj 0 to k in da bo vsaj ena izmed njih vredna vsaj 4 to ke. Za

Prikaži več

Microsoft PowerPoint - Java-rekurzija.ppt

Microsoft PowerPoint - Java-rekurzija.ppt Pesmica Živel je mož, imel je psa, lepo ga je učil. Nekoč ukradel mu je kos mesa, zato ga je ubil. Postavil mu je spomenik in nanj napisal: Živel je mož, imel je psa, lepo ga je učil. Nekoč ukradel mu

Prikaži več

Del 1 Limite

Del 1 Limite Del 1 Limite POGLAVJE 1 Zaporedja realnih števil 1. Osnovne lastnosti realnih števil Naravna števila označujemo z N, cela z Z, racionalna z Q in realna z R. Naravna števila so nastala iz potrebe po preštevanju.

Prikaži več

Microsoft Word - M docx

Microsoft Word - M docx Š i f r a k a n d i d a t a : Državni izpitni center *M17178111* SPOMLADANSKI IZPITNI ROK Izpitna pola 1 Četrtek, 1. junij 2017 / 90 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero

Prikaži več

Diapozitiv 1

Diapozitiv 1 9. Funkcije 1 9. 1. F U N K C I J A m a i n () 9.2. D E F I N I C I J A F U N K C I J E 9.3. S T A V E K r e t u r n 9.4. K L I C F U N K C I J E I N P R E N O S P A R A M E T R O V 9.5. P R E K R I V

Prikaži več

Univerza v Ljubljani Fakulteta za elektrotehniko Fakulteta za računalništvo in informatiko MATEMATIKA I Gabrijel Tomšič Bojan Orel Neža Mramor Kosta L

Univerza v Ljubljani Fakulteta za elektrotehniko Fakulteta za računalništvo in informatiko MATEMATIKA I Gabrijel Tomšič Bojan Orel Neža Mramor Kosta L Univerza v Ljubljani Fakulteta za elektrotehniko Fakulteta za računalništvo in informatiko MATEMATIKA I Gabrijel Tomšič Bojan Orel Neža Mramor Kosta Ljubljana, 2004 Poglavje 3 Funkcije 3.1 Osnovni pojmi

Prikaži več

C:/Users/Matevz/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-januar-februar-15.dvi

C:/Users/Matevz/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-januar-februar-15.dvi Kemijska tehnologija, Kemija Bolonjski univerzitetni program Smer: KT K WolframA: DA NE Čas reševanja je 75 minut. Navodila: Računski del izpita pri predmetu MATEMATIKA I Ugasni in odstrani mobilni telefon.

Prikaži več

MAGIČNI KVADRATI DIMENZIJE 4n+2

MAGIČNI KVADRATI DIMENZIJE 4n+2 List za mlade matematike, fizike, astronome in računalnikarje ISSN 0351-6652 Letnik 18 (1990/1991) Številka 6 Strani 322 327 Borut Zalar: MAGIČNI KVADRATI DIMENZIJE 4n + 2 Ključne besede: matematika, aritmetika,

Prikaži več

OSNOVE UMETNE INTELIGENCE

OSNOVE UMETNE INTELIGENCE OSNOVE UMETNE INTELIGENCE 2017/18 regresijska drevesa ocenjevanje učenja linearni modeli k-nn Zoran Bosnić del gradiva povzet po: Bratko: Prolog programming for AI, Pearson (2011) in Russell, Norvig: AI:

Prikaži več

Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku β a c γ b α sin = a c cos = b c tan = a b cot = b a Sinus kota je razmerje kotu naspr

Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku β a c γ b α sin = a c cos = b c tan = a b cot = b a Sinus kota je razmerje kotu naspr Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete in hipotenuze. Kosinus kota je razmerje

Prikaži več

2.1 Osnovni pojmi 2 Nim Ga²per Ko²mrlj, Denicija 2.1 P-poloºaj je poloºaj, ki je izgubljen za igralca na potezi. N- poloºaj je poloºaj, ki

2.1 Osnovni pojmi 2 Nim Ga²per Ko²mrlj, Denicija 2.1 P-poloºaj je poloºaj, ki je izgubljen za igralca na potezi. N- poloºaj je poloºaj, ki 2.1 Osnovni pojmi 2 Nim Ga²per Ko²mrlj, 2. 3. 2009 Denicija 2.1 P-poloºaj je poloºaj, ki je izgubljen za igralca na potezi. N- poloºaj je poloºaj, ki je dobljen za igralca na potezi. Poloºaj je kon en,

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 3. februar Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Veljale bodo samo rešitve na papirju, kjer

Prikaži več

Strokovni izobraževalni center Ljubljana, Srednja poklicna in strokovna šola Bežigrad PRIPRAVE NA PISNI DEL IZPITA IZ MATEMATIKE 2. letnik nižjega pok

Strokovni izobraževalni center Ljubljana, Srednja poklicna in strokovna šola Bežigrad PRIPRAVE NA PISNI DEL IZPITA IZ MATEMATIKE 2. letnik nižjega pok Strokovni izobraževalni center Ljubljana, Srednja poklicna in strokovna šola Bežigrad PRIPRAVE NA PISNI DEL IZPITA IZ MATEMATIKE 2. letnik nižjega poklicnega izobraževanja NAVODILA: Izpit iz matematike

Prikaži več

MergedFile

MergedFile UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA POUČEVANJE, PREDMETNO POUČEVANJE DEJAN KREJIĆ HAMILTONSKOST VOZLIŠČNO TRANZITIVNIH GRAFOV MAGISTRSKO DELO Ljubljana, 2018 UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA

Prikaži več

ACAD-BAU-Analiza-prostorov

ACAD-BAU-Analiza-prostorov ANALIZA PROSTOROV Ko obdelujemo večje projekte, je analiza prostorov zelo pomembna v vseh fazah projektiranja. Pri idejnem snovanju moramo npr. za določeno površino trgovske namembnosti zagotoviti primerno

Prikaži več

POPOLNI KVADER

POPOLNI KVADER List za mlade matematike, fizike, astronome in računalnikarje ISSN 031-662 Letnik 18 (1990/1991) Številka 3 Strani 134 139 Edvard Kramar: POPOLNI KVADER Ključne besede: matematika, geometrija, kvader,

Prikaži več

Mrežni modeli polimernih verig Boštjan Jenčič 22. maj 2013 Eden preprostejših opisov polimerne verige je mrežni model, kjer lahko posamezni segmenti p

Mrežni modeli polimernih verig Boštjan Jenčič 22. maj 2013 Eden preprostejših opisov polimerne verige je mrežni model, kjer lahko posamezni segmenti p Mrežni modeli polimernih verig Boštjan Jenčič. maj 013 Eden preprostejših opisov polimerne verige je mrežni model, kjer lahko posameni segmenti polimera asedejo golj ogljišča v kvadratni (ali kubični v

Prikaži več

UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO Oddelek za matematiko in računalništvo DIPLOMSKO DELO Vika Koban Maribor, 2012

UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO Oddelek za matematiko in računalništvo DIPLOMSKO DELO Vika Koban Maribor, 2012 UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO Oddelek za matematiko in računalništvo DIPLOMSKO DELO Vika Koban Maribor, 2012 UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO Oddelek

Prikaži več

Predtest iz za 1. kontrolno nalogo- 2K Teme za kontrolno nalogo: Podobni trikotniki. Izreki v pravokotnem trikotniku. Kotne funkcije poljubnega kota.

Predtest iz za 1. kontrolno nalogo- 2K Teme za kontrolno nalogo: Podobni trikotniki. Izreki v pravokotnem trikotniku. Kotne funkcije poljubnega kota. Predtest iz za 1. kontrolno nalogo- K Teme za kontrolno nalogo: Podobni trikotniki. Izreki v pravokotnem trikotniku. Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih

Prikaži več

Document ID / Revision : 0519/1.3 ID Issuer System (sistem izdajatelja identifikacijskih oznak) Navodila za registracijo gospodarskih subjektov

Document ID / Revision : 0519/1.3 ID Issuer System (sistem izdajatelja identifikacijskih oznak) Navodila za registracijo gospodarskih subjektov ID Issuer System (sistem izdajatelja identifikacijskih oznak) Navodila za registracijo gospodarskih subjektov Gospodarski subjekti Definicija: V skladu z 2. členom Izvedbene uredbe Komisije (EU) 2018/574

Prikaži več

Teorija kodiranja in kriptografija 2013/ AES

Teorija kodiranja in kriptografija 2013/ AES Teorija kodiranja in kriptografija 23/24 AES Arjana Žitnik Univerza v Ljubljani, Fakulteta za matematiko in fiziko Ljubljana, 8. 3. 24 AES - zgodovina Septembra 997 je NIST objavil natečaj za izbor nove

Prikaži več

M

M Š i f r a k a n d i d a t a : Državni izpitni center *M16140111* Osnovna raven MATEMATIKA Izpitna pola 1 SPOMLADANSKI IZPITNI ROK Sobota, 4. junij 016 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat

Prikaži več

FAKULTETA ZA STROJNIŠTVO Matematika 2 Pisni izpit 9. junij 2005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite bese

FAKULTETA ZA STROJNIŠTVO Matematika 2 Pisni izpit 9. junij 2005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite bese FAKULTETA ZA STROJNIŠTVO Matematika Pisni izpit 9. junij 005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Veljale bodo

Prikaži več

Prevodnik_v_polju_14_

Prevodnik_v_polju_14_ 14. Prevodnik v električnem polju Vsebina poglavja: prevodnik v zunanjem električnem polju, površina prevodnika je ekvipotencialna ploskev, elektrostatična indukcija (influenca), polje znotraj votline

Prikaži več

Delavnica Načrtovanje digitalnih vezij

Delavnica Načrtovanje digitalnih vezij Laboratorij za načrtovanje integriranih vezij Univerza v Ljubljani Fakulteta za elektrotehniko Digitalni Elektronski Sistemi Osnove jezika VHDL Strukturno načrtovanje in testiranje Struktura vezja s komponentami

Prikaži več

UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA NEŽKA RUGELJ SHOROV ALGORITEM DIPLOMSKO DELO LJUBLJANA, 2017

UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA NEŽKA RUGELJ SHOROV ALGORITEM DIPLOMSKO DELO LJUBLJANA, 2017 UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA NEŽKA RUGELJ SHOROV ALGORITEM DIPLOMSKO DELO LJUBLJANA, 017 UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA DVOPREDMETNI UČITELJ: matematika - računalništvo NEŽKA RUGELJ

Prikaži več

Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t

Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t 0.5 1.5 2.0 t a.) Nari²ite tri grafe: graf (klasi ne)

Prikaži več

Poglavje 1 Kinematika in dinamika 1.1 Premočrtno gibanje Rešene naloge 1. Točka se giblje premočrtno po osi x. V času od 0 do t 1 se giblje s ko

Poglavje 1 Kinematika in dinamika 1.1 Premočrtno gibanje Rešene naloge 1. Točka se giblje premočrtno po osi x. V času od 0 do t 1 se giblje s ko Poglavje 1 Kinematika in dinamika 1.1 Premočrtno gibanje 1.1.1 Rešene naloge 1. Točka se giblje premočrtno po osi x. V času od 0 do t 1 se giblje s konstantno brzino v 1, v času od t 1 do t 2 enakomerno

Prikaži več

DOMACA NALOGA - LABORATORIJSKE VAJE NALOGA 1 Dani sta kompleksni stevili z in z Kompleksno stevilo je definirano kot : z = a + b, a p

DOMACA NALOGA - LABORATORIJSKE VAJE NALOGA 1 Dani sta kompleksni stevili z in z Kompleksno stevilo je definirano kot : z = a + b, a p DOMACA NALOGA - LABORATORIJSKE VAJE NALOGA 1 Dani sta kompleksni stevili z 1 5 2 3 in z 2 3 8 5. Kompleksno stevilo je definirano kot : z = a + b, a predstavlja realno, b pa imaginarno komponento. z 1

Prikaži več

DS2.dvi

DS2.dvi Diskretne strukture II zapiski predavanj - prezentacija doc. dr. R. Škrekovski 1 Osnovno o grafih Če odnose med določenimi objekti opišemo z dvomestno relacijo, lahko to relacijo tudi narišemo (oz. grafično

Prikaži več

ANALITIČNA GEOMETRIJA V RAVNINI

ANALITIČNA GEOMETRIJA V RAVNINI 3. Analitična geometrija v ravnini Osnovna ideja analitične geometrije je v tem, da vaskemu geometrijskemu objektu (točki, premici,...) pridružimo števila oz koordinate, ki ta objekt popolnoma popisujejo.

Prikaži več

Popravki nalog: Numerična analiza - podiplomski študij FGG : popravljena naloga : popravljena naloga 14 domače naloge - 2. skupina

Popravki nalog: Numerična analiza - podiplomski študij FGG : popravljena naloga : popravljena naloga 14 domače naloge - 2. skupina Popravki nalog: Numerična analiza - podiplomski študij FGG 9.8.24: popravljena naloga 4 3..25: popravljena naloga 4 domače naloge - 2. skupina V drugem delu morate rešiti toliko nalog, da bo njihova skupna

Prikaži več

Univerza v Mariboru Fakulteta za naravoslovje in matematiko Oddelek za matematiko in računalništvo Enopredmetna matematika IZPIT IZ VERJETNOSTI IN STA

Univerza v Mariboru Fakulteta za naravoslovje in matematiko Oddelek za matematiko in računalništvo Enopredmetna matematika IZPIT IZ VERJETNOSTI IN STA Enopredmetna matematika IN STATISTIKE Maribor, 31. 01. 2012 1. Na voljo imamo kovanca tipa K 1 in K 2, katerih verjetnost, da pade grb, je p 1 in p 2. (a) Istočasno vržemo oba kovanca. Verjetnost, da je

Prikaži več

7. VAJA A. ENAČBA ZBIRALNE LEČE

7. VAJA A. ENAČBA ZBIRALNE LEČE 7. VAJA A. ENAČBA ZBIRALNE LEČE 1. UVOD Enačbo leče dobimo navadno s pomočjo geometrijskih konstrukcij. V našem primeru bomo do te enačbe prišli eksperimentalno, z merjenjem razdalj a in b. 2. NALOGA Izračunaj

Prikaži več

Osnove verjetnostne metode doc. dr. R. Škrekovski Oddelek za Matematiko Fakulteta za Matematiko in Fiziko Univerza v Ljubljani

Osnove verjetnostne metode doc. dr. R. Škrekovski Oddelek za Matematiko Fakulteta za Matematiko in Fiziko Univerza v Ljubljani Osnove verjetnostne metode doc. dr. R. Škrekovski Oddelek za Matematiko Fakulteta za Matematiko in Fiziko Univerza v Ljubljani naslov: Osnove verjetnostne metode avtorske pravice: dr. Riste Škrekovski

Prikaži več