Strojniški vestnik (43) št. 9-10, str , 1997 Journal o f Mechanical Engineering (43) No. 9-10, pp , 1997 Tiskano v Sloveniji. Vse prav

Podobni dokumenti
Športno društvo Jesenice, Ledarska 4, 4270 Jesenice, Tel.: (04) , Fax: (04) , Drsalni klub Jesenice in Zv

Društvo za elektronske športe - spid.si Vaneča 69a 9201 Puconci Pravila tekmovanja na EPICENTER LAN 12 Hearthstone Na dogodku izvaja: Blaž Oršoš Datum

PRESENT SIMPLE TENSE The sun gives us light. The sun does not give us light. Does It give us light? Raba: Za splošno znane resnice. I watch TV sometim

Resonance v Osončju Resonanca 1:2 Druge orbitalne resonance: 2:3 Pluto Neptune 2:4 Tethys Mimas (Saturnovi luni) 1:2 Dione Enceladus (Saturnovi luni)

Univerza v Novi Gorici Fakulteta za aplikativno naravoslovje Fizika (I. stopnja) Mehanika 2014/2015 VAJE Gravitacija - ohranitveni zakoni

Preštudirati je potrebno: Floyd, Principles of Electric Circuits Pri posameznih poglavjih so označene naloge, ki bi jih bilo smiselno rešiti. Bolj pom

Uradni list RS - 32/2004, Uredbeni del

Microsoft Word - A-3-Dezelak-SLO.doc

Microsoft Word - ARRS-MS-BR-07-A-2009.doc

Microsoft Word - M docx

1. TERENSKA VAJA V DOMAČEM KRAJU ŠTETJE PROMETA Datum izvedbe vaje: UVOD

REŠEVANJE DIFERENCIALNIH ENAČB Z MEHANSKIMI RAČUNSKIMI STROJI Pino Koc Seminar za učitelje matematike FMF, Ljubljana, 25. september 2015 Vir: [1] 1

UDK Modeliranje in optimiranje vzmetenja vozil Modelling and Optimizing of Vehicle Suspension FRANCI PADEŽNIK - CHEN SHI NING - MA

Microsoft Word - RAZISKAVA_II._del.doc

2

ARRS-BI-FR-PROTEUS-JR-Prijava/2011 Stran 1 od 7 Oznaka prijave: Javni razpis za sofinanciranje znanstvenoraziskovalnega sodelovanja med Republiko Slov

P183A22112

Microsoft Word - Osnovni podatki FACOST november 2018.docx

VISOKA ZDRAVSTVENA ŠOLA V CELJU DIPLOMSKO DELO VLOGA MEDICINSKE SESTRE PRI OBRAVNAVI OTROKA Z EPILEPSIJO HEALTH EDUCATION OF A NURSE WHEN TREATING A C

(Microsoft Word - 3. Pogre\232ki in negotovost-c.doc)

Microsoft PowerPoint - DV_Predavanja_Menjalniki_Slo_ ppt [Compatibility Mode]

Microsoft Word - SI_vaja5.doc

katalog PONATIS.indd

GEOLOGIJA 2312, (1980), Ljubljana UDK (083.58)=863 Nova grafična izvedba števne mreže A new graphical technique to record the observed d

UNIVERZA V LJUBLJANI Fakulteta za strojništvo Razvoj priprave za določanje konstrukcijskih značilnosti pritrditve velikih transformatorjev pri transpo

Schöck Isokorb tip W Schöck Isokorb tip W W Schöck Isokorb tip W Primeren je za konzolne stenske plošče. Prenaša negativne momente in pozitivne prečne

Microsoft Word - P101-A doc

ZAHTEVA ZA VZDRŽEVANJE LEI (sklad) REQUEST FOR A MAINTENANCE OF LEI (fund) 1. PODATKI O SKLADU / FUND DATA: LEI: Ime / Legal Name: Druga imena sklada

Workhealth II

Prevodnik_v_polju_14_

ROSEE_projekt_Kolesarji

Microsoft PowerPoint _12_15-11_predavanje(1_00)-IR-pdf

Osnove statistike v fizični geografiji 2

Strojniški vestnik (43) št. 7-8, str , 1997 Journal o f Mechanical Engineering (43) No. 7-8, pp , 1997 Tiskano v Sloveniji. Vse pravic

Microsoft Word - ARRS-MS-CEA-03-A-2009.doc

Uradni list Republike Slovenije Št. 44 / / Stran 6325 PRILOGA II Del A NAJVEČJE MERE IN MASE VOZIL 1 NAJVEČJE DOVOLJENE MERE 1.1 Največja

Slide 1

resitve.dvi

Strojniški vestnik (43) št. 3-4, str , 1997 Tiskano v Sloveniji. Vse pravice pridržane. UDK : Journal o f Mechanical Engineeri

Delavnica Načrtovanje digitalnih vezij

Ime in priimek

Vpliv razvoja varnostnih sistemov v vozilih na varnost v cestnem prometu v Sloveniji

Strojni{ki vestnik 47(2001)10, Journal of Mechanical Engineering 47(2001)10, ISSN ISSN UDK : UDC 620.

EVROPSKA KOMISIJA Bruselj, C(2019) 3561 final ANNEX 4 PRILOGA k IZVEDBENI UREDBI KOMISIJE (EU) /... o spremembi uredb Komisije (EU) št. 321/

Dolgoročna zanesljivost.

Microsoft Word - Delovni list.doc

Microsoft Word - avd_vaje_ars1_1.doc

Sedite in se pripnite! Tivoli je pripravljen, da vas odpelje v nove kraje Vznemirljiv na videz in enostaven za vožnjo Tivoli nudi izjemen slog, najsod

Srednja poklicna in strokovna šola Bežigrad - Ljubljana Ptujska ulica 6, 1000 Ljubljana STATISTIKA REGISTRIRANIH VOZIL V REPUBLIKI SLOVENIJI PROJEKTNA

untitled

Microsoft Word - SI_vaja1.doc

PRILOGA 1: SODELOVANJE NA JAVNEM NAROČILU - ENOSTAVNI POSTOPEK ANNEX 1: PARTICIPATION IN THE TENDER SIMPLIFIED PROCEDURE 1. OPIS PREDMETA JAVNEGA NARO

PH in NEH - dobra praksa

Microsoft Word - M docx

PROFILNA TEHNIKA / OPREMA DELOVNIH MEST PROFILE TECHNIC / WORKSTATION ACCESSORIES INFO ELEMENTI / INFO ELEMENTS INFO TABLA A4 / INFO BOARD A4 U8L U8 U

FIZIKA IN ARHITEKTURA SKOZI NAŠA UŠESA

24. državno prvenstvo iz gradbene mehanike za 3. letnike 16. maj naloga Med dve enakostranični prizmi s stranico a postavimo valj s polmerom r

DES

Microsoft Word - ARRS-MS-FI-06-A-2010.doc

EVROPSKA KOMISIJA Bruselj, C(2019) 1294 final UREDBA KOMISIJE (EU) / z dne o spremembi Uredbe (EU) 2017/2400 in Direktive 2007/46/

ŠKODA SUPERB INFORMATIVNI CENIK ZA MODELSKO LETO 2020 Cene Motorne različice Serijska oprema

2_Novosti na področju zakonodaje

EVROPSKA KOMISIJA Bruselj, C(2018) 1391 final ANNEXES 1 to 5 PRILOGE k DELEGIRANI UREDBI KOMISIJE (EU) /... o spremembi Priloge I k Uredbi (E

UDK 534.1:519.61/.64 Računalniško simuliranje torzijskih nihanj razvejanih sistemov Computer Simulation of Torsional Vibrations of Branched Chain Topo

Prof.dr. Tomaž Tollazzi Vzdržnost in izboljšanje cestne infrastrukture - primeri ukrepov in novosti Obdobno strokovno usposabljanje za presojevalce va

Microsoft PowerPoint - CIGER - SK 3-15 Izkusnje nadzora distribucijskih transformatorjev s pomo... [Read-Only]

APERION TECH RIDER (ionosfera) ODER page 2 VARNOST, DOSTOP, PARKING page 2 ELEKTRIKA page 2 OZVOČENJE page 2 REŽIJA page 2 MONITORING page 2 TONSKA VA

EKVITABILNE PARTICIJE IN TOEPLITZOVE MATRIKE Aleksandar Jurišić Politehnika Nova Gorica in IMFM Vipavska 13, p.p. 301, Nova Gorica Slovenija Štefko Mi

Microsoft Word - 9.vaja_metoda porusnih linij.docx

U D K 531.3:62-25:519.61/.64 Računalniško simuliranje dinamike rotorjev Computer Simulation of the Dynamics of Rotors ROBERT COKAN - MIHA BOLTEŽAR - A

NOVA H Y BR I D

2017 TT-R125LW/E

Slovenska predloga za KE

Naloge 1. Dva električna grelnika z ohmskima upornostma 60 Ω in 30 Ω vežemo vzporedno in priključimo na idealni enosmerni tokovni vir s tokom 10 A. Tr

Slovenska predloga za KE 2001

EVROPSKA KOMISIJA Bruselj, XXX [ ](2013) XXX draft DIREKTIVA KOMISIJE.../ /EU z dne XXX o spremembi prilog I, II in III k Direktivi 2000/25/ES Evropsk

Požarna odpornost konstrukcij

Strojni{ki vestnik 46(2000)8, Journal of Mechanical Engineering 46(2000)8, ISSN ISSN UDK 536.3:536.2: UDC 536.

Microsoft Word - 9.vaja_metoda porusnih linij_17-18

DIGITALNE STRUKTURE Zapiski predavanj Branko Šter, Ljubo Pipan 2 Razdeljevalniki Razdeljevalnik (demultipleksor) opravlja funkcijo, ki je obratna funk

LABORATORIJSKE VAJE IZ FIZIKE

Microsoft Word - Diplomsko delo - Matjaz Selic 31 s sklepom.doc

2. Model multiple regresije

00ABILHAND-Kids_Slovenian_Slovenia

ŠTEVCI PROMETA IN NJIHOVA UPORABA ZA NAMENE STATISTIK ČRT GRAHONJA

Osnovna šola dr. Jožeta Pučnika Osnovna Črešnjevec 47, 2130 Slovenska Bistrica Tel:(02) ; Fax: (02) www.

Diploma_2012

FAKULTETA ZA STROJNIŠTVO Matematika 2 Pisni izpit 9. junij 2005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite bese

Vaje: Matrike 1. Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N 0 1 n ; n N Pokaži, da je množica x 0 y 0 x

2. izbirni test za MMO 2017 Ljubljana, 17. februar Naj bosta k 1 in k 2 dve krožnici s središčema O 1 in O 2, ki se sekata v dveh točkah, ter

Transkripcija:

Strojniški vestnik (43) št. 9-10, str. 405-414, 1997 Journal o f Mechanical Engineering (43) No. 9-10, pp. 405-414, 1997 Tiskano v Sloveniji. Vse pravice pridržane. Printed in Slovenia. All rights reserved. UDK 656.08:519.68 SV:0039-2480(97)5-R4 UDC 656.08:519.68 Računalniško podprta analiza cestnoprometne nezgode Computer Supported Analysis of a Traffic Accident IVAN PREBIL Na temelju posnetega stanja prometne nezgode je predstavljen računalniško podprt potek vrednotenja trka dveh vozil. Pri izračunu v fazi trka sproščene deformacijske energije sta upoštevani energijsko ekvivalentni hitrosti. Ekvivalentni hitrosti rabita za oceno kinetičnih energij, ki dejansko ustrezata med fazo trka nastali deformacijski energiji. Ključne besede: vozila cestna, nezgode cestnoprometne, analiza trka, vrednotenje poteka nezgode Recorded data o f a traffic accident are used to simulate on a computer the course o f an accident involving two vehicles. The computation o f the deformation energy released during the crash considers both energy equivalent speeds. The equivalent speeds are used to estimate the kinetic energy corresponding to the deformation energy during the crash. Keywords: vehicle, traffic accidents, crash analysis, accident evaluation 0 UVOD Za rekonstrukcijo poteka cestnoprometne nezgode imajo računalniško podprte metode, ki upoštevejo deform acijsko energijo - energijsko ekvivalentni hitrosti (EES), velik pomen, saj omogočajo zanesljivejše rešitve tudi v primeru centričnih trkov in trkov pod majhnim kotom nasproti vozečih vozil, ko postane čista teorija sunka manj zanesljiva. Določanje izgube hitrosti vozil v fazi trka dejansko temelji na zakonu o spremembi kinetične energije. Razlika kinetične energije sistema pred procesom trka in po njem naj bi bila enaka izgubi kinetične energije sistema v procesu trka. Izguba kinetične energije pomeni pretežno deformacijsko delo, zato smemo druge oblike energij (toplota, vibracije itn.) zanemariti. Deformacijsko delo je za različne oblike trkov (centrični, čelno-centrični, čelno-ekscentrični, čelnobočni itn.) in vrsto vozil v toge ovire eksperimentalno določeno (testi CRASH) in kataloško urejeno [1 ]. Na vozilih so testi o zanesljivosti izvedeni s testno hitrostjo (ETS), ki se pri dejanskih centričnih trkih od energijsko ekvivalentne hitrosti EES nekoliko razlikuje. Ocenjena izguba hitrosti v fazi trka ima odločilen vpliv na izračunano hitrost vozila v fazi pred trkom ali po njem, zato je čim bolj natančna določitev te za rekonstrukcijo cestnoprometne nezgode zelo pomembna. 0 INTRODUCTION Computer supported methods using deformation energy (Energy Equivalent Speed - EES) for the reconstruction of traffic accidents are gaining in importance, because their results are reliable even in cases of centric collisions, and collisions with a small angle between the vehicles, where the pure impulse theory proves to be less reliable. Determination of speed loss during the crash is based on the law of kinetic energy loss. The difference between the kinetic energy of the system before and after the crash should equal the loss o f the system's kinetic energy during the crash. The kinetic energy loss consists mainly of deformation work, therefore we can omit the other energy forms (heat, vibration, etc.). Deformation work during the collision of a vehicle with a stiff obstacle is determined experimentally (crash tests), for various types o f vehicles, and collision configurations (head-on, head-on-centric, head-on-skewed, head-on-side, etc.) and can be obtained from catalogues [1]. Reliability tests on vehicles are done at Energy Test Speed (ETS), which differs slightly from the Energy Equivalent Speed (EES). Computed speed before and after the crash depends directly on the estimated speed loss during the crash. Therefore the speed loss should be determined very accurately in order to correctly reconstruct the accident.

Osnovni pogoj testa CRASH, da se pri trku v togo oviro s hitrostjo približno 50 km/h pojavi pojemek okoli 80 g, v praksi pogosto ni izpolnjen. Zato se v zadnjem času vedno pogosteje preverjajo trki med vozili (katalog EVU). Na podlagi analize nastale poškodbe (oblika in velikost deformacij na vozilu - fotografije) lahko za enak tip vozila razberemo eksperimentalno določeno vrednost EES [3]. Druga možnost je vrednotenje ekvivalentne hitrosti po energijskem zakonu [2 ], Izračun izgube hitrosti v fazi trka je po metodi EES manj primeren za vozila, ki glede trdnosti konstrukcije ne ustrezajo novim predpisom. Za tovrstna vozila je za enako stopnjo deformacije treba vložiti manj deformacijske energije. Ekvivalentna hitrost EES ne doseže dejanskih vrednosti, če v času trka prihaja do večjega relativnega drsenja med vozili. Med stičnima površinama - pločevinama - se pojavi trenje, ki pri izgubi sproščene energije ni upoštevano. 1 IZHODIŠČA Pri analizi trka vozil obravnavamo tri splošne faze prometne nezgode: začetno fazo tik pred trkom, fazo trka ter sklepno fazo po trku (sl. 1 ). Gibanje vozila v začetni in sklepni fazi trka je odvisno od tangencialnih, bočnih in normalnih reakcij vozišča na posamezna kolesa. Reakcije se pojavijo zaradi konstrukcijskih parametrov vozila, načina zaviranja, nagiba in stanja vozišča, vzpona itn. Potek omenjenih faz je razmeroma preprosto določljiv. V fazi trka prevladujejo predvsem učinki deformacijskih energij, ki so posledica lokalnih togosti vozila in velikosti nastalih deformacij. In praxis the basic requirement of a CRASH test (i.e. collision of a vehicle with a stiff obstacle at approximately 50 kph gives a deceleration of approximately 80g) is seldom fulfilled. Therefore the crash tests done lately are usually of the vehicle - to - vehicle type (EVU Catalogue). The analysis of the damage (shape and size of deformations on the vehicle - photographs) gives the experimentally derived EES speed value [3] that can be used on all vehicles of the same type. Another possibility is the evaluation of the equivalent speed, based on the energy law. The computation of speed loss during the crash, according to the EES method, is less suitable for vehicles that structurally do not correspond to the new regulations. In these vehicles less deformation energy is required to reach the same deformation. Equivalent speed does not reach realistic values if there is a large amount of relative slip between the vehicles during the crash. In this case some energy, that is not accounted for in the calculations, is used in friction between the contact surfaces - metal sheets. 1 BASICS For the purpose of collision analysis we can define three phases: initial phase (just before the crash), actual crash, and final phase (just after the crash) (Fig. 1). The vehicle motion in the initial and final phase is determined by the tangential, side, and normal forces - reactions of the driving surface on each wheel. These forces depend on vehicle design parameters, braking, state and inclination of driving surface, etc. The reconstruction of these two phases is relatively simple. During the actual crash the prevailing factors are the effects o f the deformation energy, depending mainly on local stiffness, and the magnitude o f the deformations. FAZA TIK PRED TRKOM JUST BEFORE THE CRASH FAZATRKA CRASH FAZA PO TRKU JUST AFTER THE CRASH * Upravljanje / Steering * Drsenje / Sliding * Zaviranje / Braking Deformacije / Deformations * Zaviranje / Braking * Drsenje / Sliding * Kotaljenje / Rolling k ii " ~ ir - - i Hitrost pred trkom Speed before crash v,, v Hitrost na začetku trka Speed at the beginning of crash Hitrost na koncu trka Speed at the end of crash Končni položaj Final position v = 0 20 Sl. 1. Splošne faze trka Fig. 1. Collision phases

Pri računalniško podprti analizi prometne nezgode potrebujemo zanesljivo podatkovno bazo. Posam ezni podatki so vezani na vrsto vozila (dimenzije, masa, lega težišča, zavorni sistem, moč motorja itn.), število in maso potnikov, tovor, mesto trčenja, točko stika udeležencev trka, smer vožnje - vstop v trk in izstop iz trka - vsaj za eno vozilo, končni legi vozil, stanje vozišča itn. Pri rekonstrukciji cestnoprometne nezgode moramo upoštevati ustrezen vrstni red dogodkov (sl. 2 ), ne glede, ali izberemo modul za računanje nazaj (faza po trku - faza trka - faza pred trkom) ali naprej (faza pred trkom - faza trka - faza po trku). 2 ZAKONITOSTI FIZIKALNIH METOD Pri rekonstrukciji poteka cestnoprometne nezgode lahko uporabimo metodo sunka, zasuka ali energijsko metodo. Pravilno oceno realnega stanja dobimo z nadzornimi veličinami: udarno število k, tomi koeficient p, razmerje spremembe hitrosti Fin razlika hitrosti stičišč AvB. Zanimajo nas predvsem izračunane vrednosti za ekvivalentni hitrosti, zato se omejimo na energijsko metodo. For the computer analysis o f a traffic accident, we need a reliable data base. The data contained in it describe the vehicle (dimensions, weight, position of the centre of gravity, braking system, motor power, etc.), number and weight o f passengers, freight, location of collision, contact point o f the parties in collision, initial and final direction of movement (at least for one vehicle), final positions of vehicles, state of driving surface, etc. For the reconstruction of a traffic accident we must take into account the appropriate sequence of events (Fig. 2), regardless o f the computing module (computation forward: initial phase - crash - final phase, or computation backward: final phase - crash - initial phase). 2 PHYSICAL LAW APPLICATION In the reconstruction of a traffic accident we can use the method o f impulse, spin, or the energy method. The correct estimate o f the actual state is derived through control values: Shock coefficient k, friction coefficient p, speed change ratio F, and speed difference o f contact points AvR. The most interesting are the computed values for equivalent speeds, therefore we are concentrating only on the energy method. Pravi centrični trk True centric collision Pravi ekscentrični trk True off-center collision Poševni Poševni Poševni topokotni trk pravokotni trk ostrokotni trk Oblique Oblique Oblique collision collision collision angle > 90 angle = 90 angle < 90 Začetni pogoji Initial conditions Vhod v trk Crash entrv Hitrost pred trkom Speed before the crash Sprememba hitrosti zaradi trka Speed change due to crash Hitrost pred trkom Speed before the crash TRK CRASH Izhod iz trka Crash exit Hitrost po trku Določanje izhodnih energij Determination of exit energy Umirjanje vozil po trku in < Stopping poškodbe of vehicles after the crash, and damages... - Sledi zaviranja Braking tracks Sledi drsenja Sliding tracks Premočrtno gibanje Linear motion Gibanje z zanašanjem Motion with direction changes Sile na kolesih Wheel forces SI. 2. Potek vrednotenja prometne nezgode Fig. 2. Evaluation o f a traffic accident

2.1 E nergijska m etoda Ekvivalentni hitrosti EES definiramo kot hitrosti, s katerimi izračunamo kinetični energiji, ki naj bi dejansko ustrezali med trkom nastali deformacijski energiji [1 ] in [2 ]: 2.1 Energy method Both equivalent speeds (EES) are defined as speeds used to compute the kinetic energies, that correspond to the actual deformation energy during the crash [ 1 ] and [2 ]: " E ml + E def + E osl (1), /h, v,2 + m2v 2 + J\(o\ + J2o \ = mxv 2 +m2v 2 + J, o 2 + J 2a> E E S 2 + m2ees2 ) (2 ). Eostje v splošnem zanemarljivo majhna in Eost is, generally, very small. It consists of the obsega trenuten dvig vozila zaradi trka, drsenje koles energy used for vehicle lift due to collision, sliding of tyres at the end of crash, and rotation energy of pri izstopu iz trka ter zasučno energijo koles in wheels and power transmission. pogonskega prenosa. By rearranging the energy law equations and S preoblikovanjem energijskega zakona by in use of approximation equations [2 ] we obtain the upoštevanjem približnih enačb [2 ] dobimo za izračun following equations for the computation o f equivalent ekvivalentnih hitrosti naslednja izraza: speeds: EES, = 1 + ^ ^Dl 0 «/v, 2 -v'2) + (m2(vj-v'2) + Jx( o ] - o '2) + J2(o 2- o '2)) (3)) EES2 = EESx V 2 S D2 (4), kjer Sm in sd2 pomeni dejansko deformacijo karoserij. Sdì and sd2 designate the actual deformation of the body. 2.2 Razmerje spremembe hitrosti V 2.2 Speed change ratio V Av EES* EES * EES 2 Pri centričnem trku je Av = EES*. Za trke s trenjem je Av < EES*. V praksi ne dosegamo natančnih teoretičnih vrednosti, zato se zadovoljimo s priporočenimi območji (sl. 3) [3]: - brez trenja V= 0,9 do 1,1, - minimalno trenje V = 0,9 do 0,75, - poudarjeno trenje V < 0,75. m2 mx ' EES2 = 22TF, d e f m. + m, (5). I I m \ For a centric collision Av = EES*, for collisions with friction however Av < EES*. In practice the exact values are usually not met, therefore we use the approximations (Fig. 3) [3]: - no friction V = 0.9 to 1.1, - minimal friction V = 0.9 to 0.75, - high friction V< 0.75.

a) collisions with friction SI. 3. Sprememba hitrosti v odvisnosti od EES Fig. 3. Speed change as a function o f EES 2.3 Razlika hitrosti v stični točki 2.3 Speed difference at contact point A vb = V i-fivil-v j-flyi (6). V primerih, ko se trenje med vozili ne pojavi, imajo hitrosti v stični točki (B) enako smer (sl. 4). Vrednosti se običajno gibljejo med 2 in 7 km/h. Tisto vozilo, ki se zaleti, ima v stični točki vedno manjšo hitrost kakor udarjeno vozilo. V nasprotnem primeru bi vozili drseli skupaj, kar v splošnem ne velja. Pri trku s trenjem se smeri vektorjev hitrosti v stični točki When there is no friction between vehicles during a crash, the speeds at contact point (B) have the same direction (Fig. 4). The magnitudes are usually between 2 and 7 kph. The vehicle that is crashing into another one has always a lower speed at the contact point than the vehicle being hit. If this were not true, the vehicles would have slid together, which is, generally, not the case. During the crash with fric-

medsebojno spreminjata, v ekstremnih primerih sta usmerjeni celo v nasprotnih smereh. V tem primeru razlika hitrosti Av ne daje pomembnega sporočila. 2.4 Torni koeficient Pri trku vozil je v območju stika torni koeficient definiran kot razmerje med tangencialno in normalno deformacijsko silo: tion the directions of speed vectors move relative to each other, in extreme cases they even occur in opposite directions. In such a case the speed difference Av is not relevant. 2.4 Friction coefficient In a vehicle crash the friction coefficient in the contact region is defined as tangential to the normal deformation force ratio: (7 ). Vrednost tornega koeficienta je odvisna od kakovosti površin in konfiguracije pločevin v območju stika. Za lego točke skupnega prijemališča sil (B) so pom em bne predvsem razlike lokalne togosti, hrapavost površin in dejanska smer vozila neposredno pred trkom. Pri centričnih trkih s sprednje ali z zadnje strani so tangencialne komponente deformacijske sile minimalne, pri drugih oblikah trkov (slika 2 ) pa se povečujejo. Velikost tornega koeficienta pove tudi, ali sta se vozili med trkom spojili v skupno celoto ali sta drugo ob drugem zdrseli. Izkustvene vrednosti so v področju: -trk brez zatikanja vozil j i < 0,6, - trk z zatikanjem vozil j i > 0,6. The magnitude of the friction coefficient depends on the surface quality, and the configuration of steel sheets in the contact region. The position of the common force origin is determined mainly by changes in local stiffness, surface roughness, and the actual direction of the vehicle movement just before the crash. In front or rear centric collisions the tangential components of the deformation forces are minimal, but they increase (Fig. 2) in other types of collisions. The magnitude of friction coefficient tells us also whether the vehicles jammed together during the crash, and than collided together, or whether they slid into one another. The values derived from experience are: - crash without jamming j i < 0.6, - crash with jamming j i > 0.6. 2.5 Udarno število k 2.5 Shock coefficient k Skupno prijemališče sile je določeno na podlagi ocene stanja na fotografijah (sl. 5). Na velikost udarnega števila vplivata lega stične tangente (sl. 4), ki jo določi izvedenec, in lastnost materialov v stiku. Odločilna je tudi stična hitrost, ki pomeni vektorsko vsoto preme in vrtilne frekvence vozila: The estimation of the overall state (from the photographs) gives the common origin of forces (Fig. 5). The size of the shock coefficient depends on the position of the contact tangent (Fig. 4), determined by the expert, and the properties o f the materials in contact. A decisive factor is also the speed, i.e. the vector sum of the translational and rotational speed of the vehicle: V B2 = V; + a>2r2 (8). Za izračun udarnega števila so pomembne le tiste komponente hitrosti pred trkom in po njem, ki so usmerjene v normalni smeri, zato jih v stični točki projiciramo na stično normalo (sl. 4). Udarno število doseže za različne razlike hitrosti pred trkom in po njem vrednosti med 0 in 1 : The computation of the shock coefficient considers only those components of the speed (before and after the crash) that are in the normal direction, therefore the speeds are projected on the contact normal at the contact point (Fig. 4). The shock coefficient ranges from 0 to 1 for various speeds before and after the crash: k = A v" VB2,n VB\,n A V B.n V Hi,n V IS2.il

Sl. 4. Projekcija stičnih hitrosti na stično normalo Fig. 4. Projection o f contact speeds on the contact normal 3 IZRAČUN VREDNOSTI PRI TRKU Pri trčenju sta bila neposredno udeležena osebna avtomobila Opel omega 2.6 caravan (tri osebe) in VW golf CL (štiri osebe). Vzrok nesreče: med prehitevanjem tovornjaka je Opel omega z neprilagojeno hitrostjo trčil v nasproti vozeči VW golf CL. Hitrosti vozil in njuni smeri pri izstopu iz trka smo analizirali z uporabo programskega paketa za vozno dinamiko (CARAT). Pri izvajanju analize smo upoštevali podatke o vozilih (geometrijska oblika, moč motorja), začetno stanje vozil (lega trka; sl. 4), relativno stično točko vozil pri trku (sl. 5), končno stanje vozil (sl. 6a) itn. Potrebni so tudi podatki o smeri izstopa vozil iz trka, stanju vozišča, vrsti in učinkovitosti zavornega sistema, nosilnosti pnevmatik in prenosu sile na vozišče. Velikost deformacij smo ocenili na temelju poškodbe vozil (sl. 5), preostali parametri so bili določeni iz skice, izpovedi navzočih ali dokumentacije o nesreči. 3 COMPUTATION OF VALUES IN THE COLLISION There were two vehicles in the collision: Opel omega 2.6 Caravan (three persons), and VW golf CL (four persons). Cause of accident: When overtaking a trailer truck, the Opel omega hit with excessive speed the VW golf driving in the opposite direction. The vehicle speeds and directions just after the crash have been analyzed using the CARAT (Computer Aided Reconstruction o f Accidents in Traffic) software for driving dynamics computation. We considered the vehicle data (geometry, motor power), initial vehicle position (crash position, Fig. 4), relative contact point of vehicles in the crash (Fig. 5), final position of vehicles (Fig. 6a), etc. We also needed the data on vehicle direction just after the crash, state o f driving surface, brake efficiency, carrying capacity of tyres, and force transfer from the tyres to the driving surface. The magnitude of deformations was determined from the vehicle damage (Fig. 5), the remaining parameters were determined from the sketch, witness statements, or accident documentation.

a) Opel omega b) VW golf SI. 5. Poškodbe vozil Fig. 5. Vehicle damage Poglavitni namen vrednotenja poteka nesreče je doseči čim večjo usklajenost gibanja vozil pri vstopu in izstopu iz trka in stanje vozil ob mirovanju z dejanskim stanjem, ki je bilo dokum entirano neposredno po nesreči. Tu mislimo predvsem na popolnost prekrivanja zavornih oziroma drsnih sledi (translatomo in rotacijsko gibanje) ter dejansko končno lego vozil in ne samo oddaljenost od predpostavljene točke trka (sl. 6). Med računalniško podprto analizo poteka prometne nezgode lahko kot funkcijo časa ali poti zvezno spremljamo obremenitve koles, porazdelitev zavornih sil, bočne in obodne sile, hitrosti, pospeške, zasuke okoli vodoravne in pokončne osi itn., kar omogoča dodatno preverjanje ustreznosti končnega rezultata. The basic goal of the accident evaluation is to reach the greatest possible accordance between vehicle movement before and after the crash, their position after the crash, and the actual state, documented just after the accident. The braking or sliding tracks (translational and rotational movement), and actual final position of vehicles (not only the distance from the assumed crash point (Fig. 6), should coincide. During the computer supported analysis of an accident, we can record continuously the wheel forces, distribution o f breaking forces, side and tangential forces, accelerations and rotation around the horizontal and vertical axes, etc. These data are used for additional checking o f the final result.

a) posnetek stanja takoj po trku a) actual state, just after the accident b) rekonstrukcija trka b) crash reconstruction SI. 6. Primerjava lege vozil pri izstopu iz trka Fig. 6. Comparison o f the vehicle positions just after the crash Preglednica 1. Rezultati računalniško podprte analize Table 1 : Results o f the computer supported analysis Vozilo 1 Vehicle 1 Vozilo 2 Vehicle 2 Faza pred trkom / Just before the crash: Hitrost trka / Crash speed km/h 106,5 129,6 Smerni kot / Direction angle O 175,0 0,0 Smerni kot vozila / Vehicle direction angle O -5,0-5,0 Hitrost zasuka / Turning velocity /s 0,0 0,0 Faza Trka / Crash: Sprememba hitrosti / Speed change km/h 87,0 113,8 Deformacija vozila/ Vehicle deformation m 1,50 1,30 Srednji pojemek / Mean deceleration m/s2 194,5 384,0 Trajanje trka / Crash duration s 0,1 2 0,1 2 Udarno pehanje / Shock N s 39814 39814 EES vrednost / EES value km/h 106 113 Togost vzmeti / Spring stiffness kn/m 373 482 Ročica sil pri trku / Force lever m 1,46 1,23 Smerni kot / Direction angle 0 23,3 2 2,2 Faza po trku / Just after the crash: Hitrost na izteku / Speed after the crash km/h 37,5 45,0 Smerni kot / Direction angle 0 150,9-55,4 Hitrost zasuka / Turning velocity /s 408,1 394,2 Nadzorne vrednosti / Checking values: Številka udara / Crash number - -0,03 Razlika hitrosti / Speed difference km/h 7,1 Torni koeficient / Friction coefficient - 0,25 Kot tangente stičišča / Angle o f contact point tangent O 90,2 Razmerje spremembe hitrosti V /Speed change ratio V - 0,91

4 SKLEP Po prim erjavi dejanske končne lege posameznega vozila (sl. 6a in 6b) in izračunanimi parametri pri izhodu vozil iz trka (hitrosti, smerni koti, vrednosti EES itn., preglednica 1) lahko sklepamo, da so bili podatki pri rekonstrukciji trka neposredno po trku pravilno izračunani. V nasprotnem primeru moramo vrednosti, določene na podlagi izkustvenih enačb ali izbranih iz zapisa o nesreči in fotografij, prilagajati v okviru logičnih odstopkov (nadzorne vrednosti), da dosežemo gibanje posameznega vozila, ki ustreza dejanskemu stanju. Bistveni podatek za korekten izračun končne lege vozil, ki so sodelovala pri trku, je pravilna ocena dejanske lege vozil v trenutku trka in točka prvega stika. Poškodbe na vozilih moramo natančno oceniti in pri tem upoštevati čim bolj stvarno smer gibanja vozil pred trkom. 4 CONCLUSION On the basis of comparison of the final positions of both vehicles (Fig. 6a and 6b) with the computed parameters of the vehicles just after the crash (speeds, direction angles, EES valuse, etc., Tab. 1) we can see that the reconstruction of the crash has been correctly computed. When this is not the case, we must change the values derived from experience, accident reports, and photographs within logical limits (checking values), until the computed movement of the vehicles corresponds to the actual state. For correct determination o f the final position of the vehicles involved in the accident, provides a correct estimation of the relative position of the vehicles at the moment of crash, and the point of first contact. The damage to the vehicles must be evaluated precisely, taking into account the most probable direction o f vehicle movement before the crash. 5 LITERATURA 5 REFERENCES [1] Zeidler, F.: Die Bedeutung der Energy Equivalent Speed (EES) fur die Unfallrekonstruktion und die Verletzungsmechanik. Entwicklung PKW-Au Merceders-Benz AG, Sindelfmgen 1992. [2] Burg, H. : Rechnerunterstützte Rekonstruktion von Pkw/Pkw- Unfällen. Dissertation TU Berlin 1984. [3] EVU: EES-Katalogen, Allgemeine Unterlagen. Avtorjev naslov: prof. dr. Ivan Prebil, dipl. inž. Fakulteta za strojništvo Univerze v Ljubljani Aškerčeva 6 1000 Ljubljana Author s Address: Prof. Dr. Ivan Prebil, Dipl. Ing. Faculty of Mechanical Engineering University of Ljubljana Aškerčeva 6 1000 Ljubljana, Slovenia Prejeto: Received: 17.4.1997 Sprejeto: Accepted: 30.10.1997