O EKSPONENTNI FUNKCIJI Martin Raič Jesen 2013

Velikost: px
Začni prikazovanje s strani:

Download "O EKSPONENTNI FUNKCIJI Martin Raič Jesen 2013"

Transkripcija

1 O EKSPONENTNI FUNKCIJI Mari Raič Jese 203

2 M. RAIČ: O EKSPONENTNI FUNKCIJI Ekspoea fukcija z osovo a > 0 je defiiraa ko fukcija, ki x preslika v a x. Ta fukcija je pomembe sesavi del začeega ečaja aalize. Tipičo se a ečaju kmalu za defiicijo omei, da obsaja določea arava osova, Eulerjevo ševilo: e = lim +.= Nao pa se izpelje raze limie, povezae z e, med drugim udi: + x = e x. lim Dobremu slušaelju se u eizogibo zasavi vprašaje, zakaj mora bii ravo e, isa limia v, arava osova. Zakaj bi bila a osova aravejša od recimo dosi lepšega ševila 2? Odgovor slušaelj izve ajkaseje pri poglavju o odvodu, ko sliši, da je ekspoea fukcija eaka svojemu odvodu aako edaj, ko ima osovo e. Vedar pa mu je možo o a arave ači dopovedai že pri sami defiiciji ekspoee fukcije i ravo o je ame ega prispevka. Dobro izhodišče za ekspoeo fukcijo je obreso-obresi raču. Zamislimo si, da vložimo 000 doarjev amišljee value za eo leo v bako, ki pouja 30-odsoe lee obresi. Dobimo: = = 030 doarjev. Zdaj pa si zamislimo, da vložimo v bako, ki pouja 5-odsoe pollee obresi. Če po pol lea vložimo celoi zesek, z obresmi vred, dobimo: = doarjev. Če pa vlagamo v bako, ki vsake širi mesece pouja 0-odsoe lee obresi, dobimo: = 33 doarjev. Tako lahko adaljujemo: če vložimo zesek a v bako, ki za obdobje -ega dela lea pouja obresi x/ pri čemer je seveda 00% =, po eem leu dobimo zesek: a + x. Če se vremo a začei zesek 000 doarjev i x = 0. 3, za =, 2,... 0 dobimo asledje zaporedje zeskov zaokrožeih a soe dele: , , , , , , , , , Zaporedje je videi, ko da ima limio, kar bomo udi eposredo pokazali. Poleg ajosovejših orodij reala ševila, zaporedja, limia z osovimi lasosmi porebujemo še biomsko formulo v osovi obliki za a, b R i N velja: a + b = a + a b + 2 a 2 b b.

3 M. RAIČ: O EKSPONENTNI FUNKCIJI 2 Defiirajmo: exp x := + x = + x + x 2 2! + 2 x 3 3! x!. To je orej fakor, ki pripada lei obresi meri, ki usreza obresi meri x/ za -i del lea. Če je x 0, je a lea obresa mera večja ali eaka x: 2 exp x + x. 3 Trdiev. Za vsak x R je izraz exp x araščajoč v, brž ko je x. Dokaz. Za x 0 rdiev akoj sledi iz dejsva, da je vsak čle a desi srai formule 2 araščajoča fukcija spremeljivke. Za x 0 pa pišimo x =. Za 0 moramo orej dokazai: +. + Za = je o očio, za < pa ekvivaleo: + + oziroma: exp Iz ocee 3 sledi: exp + + od koder sledi zahevao. + To rdiev lahko še malce okrepimo: = +, + Trdiev 2. Za vsak 0 er poljuba m, N, za kaera je < m, veljajo asledje eeakosi: 0 < exp m exp exp m exp m exp exp m. Dokaz. Prva, čera i pea eeakos so očie. Druga i šesa eeakos sledia iz rdive. Za rejo i sedmo eeakos pa porebujemo: exp exp = 2. Sledi exp exp exp m i exp 2 exp exp m.

4 M. RAIČ: O EKSPONENTNI FUNKCIJI 3 Posledica 3. Brž ko je 0 < i N, velja: exp + + exp. Trdiev 4. Za vsak x R je zaporedje exp x, =, 2, 3,..., kovergeo. Dokaz. Iz rdive sledi, da je zaporedje vsaj od ekod aprej araščajoče, iz rdive 2 pa, da je udi avzgor omejeo. Torej je kovergeo. Defiicija. Narava ekspoea fukcija je fukcija, daa s formulo: expx = lim exp x. Oglejmo si zdaj ekaj lasosi ove fukcije. Iz prve eeakosi v rdivi 2 sledi, da za vsak x R velja: expx > 0. Osredoočimo se zdaj a obašaje ove fukcije v okolici izhodišča. Očio je exp0 =, velja pa še asledje: Trdiev 5. Narava ekspoea fukcija je v izhodišču odvedljiva, je odvod pa je eak med drugim o pomei udi, da je arava ekspoea fukcija v izhodišču zveza. Dokaz. Naj bo 0 < <. Z limiirajem oce v posledici 3 dobimo: Sledi: exp Iz izreka o sedviču dobimo: exp + + exp. lim 0 exp i + exp = lim 0 exp =, kar pomei, da je aša fukcija v 0 odvedljiva, je odvod pa je eak.. Nasledja rdiev am da ključo lasos ove fukcije, ki vsaj deloma pojasi besedo ekspoea v imeu, saj imajo o lasos udi iuiive ekspoee fukcije x a x.

5 M. RAIČ: O EKSPONENTNI FUNKCIJI 4 Trdiev 6. Za poljuba x, y R velja zveza: expx + y = expx expy. 4 Dokaz. Privzemimo ajprej, da je x + y 0. Oceimo: xy + x + y xy 2 + x + y = x + y + xy. Sledi: exp xy exp x exp y exp x + y xy exp. Ker je arava ekspoea fukcija zveza v izhodišču, v limii, ko gre proi eskočo, dobimo želeo zvezo, zaekra za x + y 0. Toda iz je sledi udi, da za poljube x R velja expx exp x =. Kočo še za x + y 0 izpeljemo: expx + y = exp x y = exp x exp y = expx expy. Trdiev 7. Narava ekspoea fukcija je povsod srogo araščajoča, odvedljiva i eaka svojemu odvodu. Dokaz. Naj bo x R. Defiirajmo fukcijo f x = expx +. Očio je arava ekspoea fukcija odvedljiva v x aako edaj, ko je f x odvedljiva v 0, odvoda pa se ujemaa. Toda po prejšji rdivi je f x = expx exp i zao f x0 = expx. Torej je arava ekspoea fukcija res povsod odvedljiva i eaka svojemu odvodu. Ker je le-a srogo poziive, je udi srogo araščajoča. Zdaj lahko dokažemo, da je arava ekspoea fukcija dejasko ea izmed ekspoeih fukcij x a x. Trdiev 8. Za poljuba x, y R velja: expx y = expxy. 5 Dokaz. Iz ključe zveze 4 sledi, da želea zveza 5 velja za primer, ko je y N. Za y = 0 je zveza 5 očia, za y N pa izpeljemo: expx y = expx y = exp xy = expxy, saj je expxy exp xy = exp0 =. Torej 5 velja za vse y Z. Nadalje za m Z i N velja: [ m mx ] expx = expmx = exp.

6 M. RAIČ: O EKSPONENTNI FUNKCIJI 5 Po korejeju dobimo: m/ mx expx = exp, kar pomei, da zveza 5 velja za vse y Q. Zaradi zvezosi ako ekspoeih fukcij x a x ko udi arave ekspoee fukcije zveza 5 kočo velja za vse y R. Iz zveze 5 akoj dobimo: kjer je: expx = e x, e = exp = lim +. Torej je zgoraj defiiraa arava eksopea fukcija dejasko ekspoea fukcija, i sicer z osovo e. Čiso za koec izračuajmo še, koliko v limii dobimo, če ivesiramo zesek 000 doarjev v bako, ki v -em delu lea obračua obresi v višii 30%/, ko gre proi eskočo. Dobljei zesek, zaokrože a soe dele, je: doarjev. 000 exp0. 3 = 000 e 0.3. =

Četrta vaja iz matematike 1 Andrej Perne Ljubljana, 2006/07 zaporedja Zaporedje je predpis, ki vsakemu n N priredi a n R. Monotonost zaporedij: Zapore

Četrta vaja iz matematike 1 Andrej Perne Ljubljana, 2006/07 zaporedja Zaporedje je predpis, ki vsakemu n N priredi a n R. Monotonost zaporedij: Zapore Četrta vaja iz matematike Adrej Pere Ljubljaa, 2006/07 zaporedja Zaporedje je predpis, ki vsakemu N priredi R. Mootoost zaporedij: Zaporedje { } je araščajoče, če je za vsak. Zaporedje { } je strogo araščajoče,

Prikaži več

vaja4.dvi

vaja4.dvi Laboraorijske vaje Račuališka simulacija /3. laboraorijska vaja deifikacija diamičih sisemov Pri ej vaji bomo uporabili eosavo meodo ideifikacijo diamičega sisema. Srejceva meoda emelji a odzivu procesa

Prikaži več

MATEMATIKA – IZPITNA POLA 1 – OSNOVNA IN VIŠJA RAVEN

MATEMATIKA – IZPITNA POLA 1 – OSNOVNA IN VIŠJA RAVEN Državi izpiti ceter *M840* Osova i višja rave MATEMATIKA JESENSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Poedeljek, 7. avgust 08 SPLOŠNA MATURA Državi izpiti ceter Vse pravice pridržae. M8-40-- IZPITNA POLA

Prikaži več

Slide 1

Slide 1 Primer modeliranja z DE MODEIANJE Tripsin je encim rebušne slinavke, ki nasane iz ripsinogena. V reakciji nasopa ripsin ko kaalizaor, zao je hiros nasajanja ripsina sorazmerna z njegovo koncenracijo....

Prikaži več

Bivariatna analiza

Bivariatna analiza 11 Bivariata aaliza V tem poglavju obravavamo statističo aalizo slučajega vektorja dveh slučajih spremeljivk Iz vzorca i z uporabo ustrezih statističih metod lahko ugotovimo, ali sta dve slučaji spremeljivki

Prikaži več

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6. julij 2018 Navodila Pazljivo preberite be

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6. julij 2018 Navodila Pazljivo preberite be Ime in priimek: Vpisna št: FAKULEA ZA MAEMAIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6 julij 2018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Za pozitiven rezultat

Prikaži več

FORMULE 1. Pravokotni koordinatni sistem v ravnini, linearna funkcija 2 2 Razdalja dveh točk v ravnini: d( A, B) ( x2 x1) ( y2 y1) y2 y1 Linearna funk

FORMULE 1. Pravokotni koordinatni sistem v ravnini, linearna funkcija 2 2 Razdalja dveh točk v ravnini: d( A, B) ( x2 x1) ( y2 y1) y2 y1 Linearna funk FORMULE. Pravokoti koordiati sistem v ravii, lieara fukcija Razdalja dveh točk v ravii: d( A, B) ( ) ( ) Lieara fukcija: f ( ) k Smeri koeficiet: k k k Nakloski kot premice: k ta Kot med premicama: ta

Prikaži več

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5. februar 2018 Navodila Pazljivo preberite

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5. februar 2018 Navodila Pazljivo preberite Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5 februar 018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Nalog je

Prikaži več

Del 1 Limite

Del 1 Limite Del 1 Limite POGLAVJE 1 Zaporedja realnih števil 1. Osnovne lastnosti realnih števil Naravna števila označujemo z N, cela z Z, racionalna z Q in realna z R. Naravna števila so nastala iz potrebe po preštevanju.

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 3. februar Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Veljale bodo samo rešitve na papirju, kjer

Prikaži več

Vrste

Vrste Matematika 1 17. - 24. november 2009 Funkcija, ki ni algebraična, se imenuje transcendentna funkcija. Podrobneje si bomo ogledali naslednje transcendentne funkcije: eksponentno, logaritemsko, kotne, ciklometrične,

Prikaži več

Osnove matematicne analize 2018/19

Osnove matematicne analize  2018/19 Osnove matematične analize 2018/19 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D f R priredi natanko

Prikaži več

Jerneja Čučnik Merjenje in uporaba kondenzatorja Gimnazija Celje Center LABORATORIJSKA VAJA Merjenje in uporaba kondenzatorja Ime in priimek:

Jerneja Čučnik Merjenje in uporaba kondenzatorja Gimnazija Celje Center LABORATORIJSKA VAJA Merjenje in uporaba kondenzatorja Ime in priimek: 1. LABOATOJSKA VAJA Merjenje in uporaba me in priimek: azred: 4. b Šola: Gimnazija elje ener Menor: Boru Namesnik, prof. Daum izvedbe vaje: 17.12.29 1 VOD in POTEK DELA 1.a Polnjenje Kondenzaor priključimo

Prikaži več

11. Navadne diferencialne enačbe Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogo

11. Navadne diferencialne enačbe Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogo 11. Navadne diferencialne enačbe 11.1. Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogoju y(x 0 ) = y 0, kjer je f dana dovolj gladka funkcija

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-avgust-17.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-avgust-17.dvi Vpisna številka Priimek, ime Smer: K KT WA Izpit pri predmetu MATEMATIKA I Računski del Ugasni in odstrani mobilni telefon. Uporaba knjig in zapiskov ni dovoljena. Dovoljeni pripomočki so: kemični svinčnik,

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNISTVO Matematika 2. kolokvij. december 2 Ime in priimek: Vpisna st: Navodila Pazljivo preberite besedilo naloge, preden se lotite resevanja. Veljale bodo samo resitve na papirju, kjer

Prikaži več

Informativni test

Informativni test 9. Z-trasformacia Uvod Z-trasformacia: Ivera Z-trasformacia x[ ] X = (9..) = = π d (9..) [ ] X ( ) x Osova pravila: Premik: Kovolucia: x [ ] X( ) m [ ] x m X [ ]* [ ] = [ ] [ ] x y x i y i i= [ ]* [ ]

Prikaži več

6.6 Simetrični problem lastnih vrednosti Če je A = A T, potem so lastne vrednosti realne, matrika pa se da diagonalizirati. Schurova forma za simetrič

6.6 Simetrični problem lastnih vrednosti Če je A = A T, potem so lastne vrednosti realne, matrika pa se da diagonalizirati. Schurova forma za simetrič 6.6 Simetriči problem lastih vredosti Če je A = A T, potem so laste vredosti reale, matrika pa se da diagoalizirati. Schurova forma za simetričo matriko je diagoala matrika. Laste vredosti ozačimo tako,

Prikaži več

Vsebinska struktura predmetnih izpitnih katalogov za splošno maturo

Vsebinska struktura predmetnih izpitnih katalogov za splošno maturo Ljubljaa 09 MATEMATIKA Predmeti izpiti katalog za splošo maturo Predmeti izpiti katalog se uporablja od spomladaskega izpitega roka 0, dokler i določe ovi Veljavost kataloga za leto, v katerem bo kadidat

Prikaži več

Microsoft PowerPoint _SPO-UPES_05_Racunovodsko-financna_funkcija.ppt

Microsoft PowerPoint _SPO-UPES_05_Racunovodsko-financna_funkcija.ppt Staska za poslovo odločaje SPO v račuovodsko-fiači fukciji prof. dr. Lea Bregar 7. predavaje Vsebia. Staska i fiačo-račuovodska fukcija. 2. Fiace: borza staska i borzi ideksi. 3. Račuovodstvo i staska.

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNISTVO Matematika Pisni izpit. junij 22 Ime in priimek Vpisna st Navodila Pazljivo preberite besedilo naloge, preden se lotite resevanja. Veljale bodo samo resitve na papirju, kjer so

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNIŠTVO Matematika 4 Pini izpit 2. januar 22 Ime in priimek: Vpina št: Navodila Pazljivo preberite beedilo naloge, preden e lotite reševanja. Veljale bodo amo rešitve na papirju, kjer

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-junij-17.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-junij-17.dvi Vpisna številka Priimek, ime Smer: K KT WA Izpit pri predmetu MATEMATIKA I Računski del Ugasni in odstrani mobilni telefon. Uporaba knjig in zapiskov ni dovoljena. Dovoljeni pripomočki so: kemični svinčnik,

Prikaži več

Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t

Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t 0.5 1.5 2.0 t a.) Nari²ite tri grafe: graf (klasi ne)

Prikaži več

Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y

Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y 2 ). Rešitev: Diferencialna enačba ima ločljive spremenljivke,

Prikaži več

FGG13

FGG13 10.8 Metoda zveznega nadaljevanja To je metoda za reševanje nelinearne enačbe f(x) = 0. Če je težko poiskati začetni približek (še posebno pri nelinearnih sistemih), si lahko pomagamo z uvedbo dodatnega

Prikaži več

Učinkovita izvedba algoritma Goldberg-Tarjan Teja Peklaj 26. februar Definicije Definicija 1 Naj bo (G, u, s, t) omrežje, f : E(G) R, za katero v

Učinkovita izvedba algoritma Goldberg-Tarjan Teja Peklaj 26. februar Definicije Definicija 1 Naj bo (G, u, s, t) omrežje, f : E(G) R, za katero v Učinkovita izvedba algoritma Goldberg-Tarjan Teja Peklaj 26. februar 2009 1 Definicije Definicija 1 Naj bo (G, u, s, t) omrežje, f : E(G) R, za katero velja 0 f(e) u(e) za e E(G). Za v V (G) definiramo presežek

Prikaži več

Integrali odvisni od parametra Naj bo f : D = [a; b] [c; d]! R integrabilna na [a; b]. Deniramo funkcijo F : [c; d]! R z Z b F (y) = f (x; y) dx in im

Integrali odvisni od parametra Naj bo f : D = [a; b] [c; d]! R integrabilna na [a; b]. Deniramo funkcijo F : [c; d]! R z Z b F (y) = f (x; y) dx in im Integrli odvisni od prmetr Nj o f : D = [; ] [c; d]! R integriln n [; ]. Denirmo funkcijo F : [c; d]! R z F () = f (; ) d in imenujemo F integrl odvisen od prmetr. Izreki: Ce je f zvezn n D, je F zvezn

Prikaži več

2. izbirni test za MMO 2017 Ljubljana, 17. februar Naj bosta k 1 in k 2 dve krožnici s središčema O 1 in O 2, ki se sekata v dveh točkah, ter

2. izbirni test za MMO 2017 Ljubljana, 17. februar Naj bosta k 1 in k 2 dve krožnici s središčema O 1 in O 2, ki se sekata v dveh točkah, ter 2. izbirni test za MMO 2017 Ljubljana, 17. februar 2017 1. Naj bosta k 1 in k 2 dve krožnici s središčema O 1 in O 2, ki se sekata v dveh točkah, ter naj bo A eno od njunih presečišč. Ena od njunih skupnih

Prikaži več

predstavitev fakultete za matematiko 2017 A

predstavitev fakultete za matematiko 2017 A ZAKAJ ŠTUDIJ MATEMATIKE? Ker vam je všeč in vam gre dobro od rok! lepa, eksaktna veda, ki ne zastara matematičnoanalitično sklepanje je uporabno povsod matematiki so zaposljivi ZAKAJ V LJUBLJANI? najdaljša

Prikaži več

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 31. avgust 2018 Navodila Pazljivo preberite

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 31. avgust 2018 Navodila Pazljivo preberite Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 31 avgust 018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Za pozitiven

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/testi in izpiti/ /IZPITI/FKKT-februar-14.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/testi in izpiti/ /IZPITI/FKKT-februar-14.dvi Kemijska tehnologija, Kemija Bolonjski univerzitetni program Smer: KT K WolframA: DA NE Računski del izpita pri predmetu MATEMATIKA I 6. 2. 2014 Čas reševanja je 75 minut. Navodila: Pripravi osebni dokument.

Prikaži več

C:/Users/Matevz/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-januar-februar-15.dvi

C:/Users/Matevz/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-januar-februar-15.dvi Kemijska tehnologija, Kemija Bolonjski univerzitetni program Smer: KT K WolframA: DA NE Čas reševanja je 75 minut. Navodila: Računski del izpita pri predmetu MATEMATIKA I Ugasni in odstrani mobilni telefon.

Prikaži več

Ravninski grafi Tina Malec 6. februar 2007 Predstavili bomo nekaj osnovnih dejstev o ravninskih grafih, pojem dualnega grafa (k danemu grafu) ter kako

Ravninski grafi Tina Malec 6. februar 2007 Predstavili bomo nekaj osnovnih dejstev o ravninskih grafih, pojem dualnega grafa (k danemu grafu) ter kako Ravninski grafi Tina Malec 6. februar 2007 Predstavili bomo nekaj osnovnih dejstev o ravninskih grafih, pojem dualnega grafa (k danemu grafu) ter kako ugotoviti, ali je nek graf ravninski. 1 Osnovni pojmi

Prikaži več

5 SIMPLICIALNI KOMPLEKSI Definicija 5.1 Vektorji r 0,..., r k v R n so afino neodvisni, če so vektorji r 1 r 0, r 2 r 0,..., r k r 0 linearno neodvisn

5 SIMPLICIALNI KOMPLEKSI Definicija 5.1 Vektorji r 0,..., r k v R n so afino neodvisni, če so vektorji r 1 r 0, r 2 r 0,..., r k r 0 linearno neodvisn 5 SIMPLICIALNI KOMPLEKSI Definicija 5.1 Vektorji r 0,..., r k v R n so afino neodvisni, če so vektorji r 1 r 0, r 2 r 0,..., r k r 0 linearno neodvisni. Če so krajevni vektorji do točk a 0,..., a k v R

Prikaži več

Kinematika

Kinematika /1/6 1. Uavljaje V aalizi ereč e uporabljaa dva odela. Prvi je kieaiči odel, ki eelji a predpoavki poeka pojeka, drugi je diiči odel, ki oogoča izraču pojeka a oovi pozavaja zavorih il..1 Faze uavljaja

Prikaži več

Kazalo 1 DVOMESTNE RELACIJE Operacije z dvomestnimi relacijami Predstavitev relacij

Kazalo 1 DVOMESTNE RELACIJE Operacije z dvomestnimi relacijami Predstavitev relacij Kazalo 1 DVOMESTNE RELACIJE 1 1.1 Operacije z dvomestnimi relacijami...................... 2 1.2 Predstavitev relacij............................... 3 1.3 Lastnosti relacij na dani množici (R X X)................

Prikaži več

1. izbirni test za MMO 2018 Ljubljana, 16. december Naj bo n naravno število. Na mizi imamo n 2 okraskov n različnih barv in ni nujno, da imam

1. izbirni test za MMO 2018 Ljubljana, 16. december Naj bo n naravno število. Na mizi imamo n 2 okraskov n različnih barv in ni nujno, da imam 1. izbirni test za MMO 018 Ljubljana, 16. december 017 1. Naj bo n naravno število. Na mizi imamo n okraskov n različnih barv in ni nujno, da imamo enako število okraskov vsake barve. Dokaži, da se okraske

Prikaži več

UM FKKT, Bolonjski visoko²olski program Kemijska tehnologija Vpisna ²tevilka Priimek, ime 3. test pri predmetu MATEMATIKA II Ra unski del

UM FKKT, Bolonjski visoko²olski program Kemijska tehnologija Vpisna ²tevilka Priimek, ime 3. test pri predmetu MATEMATIKA II Ra unski del UM FKKT, Bolonjski visoko²olski program Kemijska tehnologija Vpisna ²tevilka Priimek, ime 3. test pri predmetu MATEMATIKA II Ra unski del 13. 6. 2016 Navodila: Pripravi osebni dokument. Ugasni in odstrani

Prikaži več

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 2017

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 2017 UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 217 ii Kazalo Diferencialni račun vektorskih funkcij 1 1.1 Skalarne funkcije...........................

Prikaži več

Slide 1

Slide 1 SLUČAJNE SPREMENLJIVKE Povezave med verjetnostjo P, porazdelitveno funcijo F in gostoto porazdelitve p. P F (x) =P( x) P(a b)=f (b)-f (a) F p Slučajna spremenljiva ima gostoto p. Kašno gostoto ima Y=+l?

Prikaži več

ZveznostFunkcij11.dvi

ZveznostFunkcij11.dvi II. LIMITA IN ZVEZNOST FUNKCIJ. Preslikave med množicami Funkcija ali preslikava med dvema množicama A in B je predpis f, ki vsakemu elementu x množice A priredi natanko določen element y množice B. Važno

Prikaži več

EKONOMETRIČNA ANALIZA IN NAPOVEDOVANJE TURISTIČNEGA POVPRAŠEVANJA, USMERJENEGA V SLOVENIJO

EKONOMETRIČNA ANALIZA IN NAPOVEDOVANJE TURISTIČNEGA POVPRAŠEVANJA, USMERJENEGA V SLOVENIJO UNIVERZA V LJUBLJANI EKONOMSKA FAKULTETA MAGISTRSKO DELO EKONOMETRIČNA ANALIZA IN NAPOVEDOVANJE TURISTIČNEGA POVPRAŠEVANJA, USMERJENEGA V SLOVENIJO Ljubljana, februar 26 KATJA MULIČ IZJAVA Šudenka KATJA

Prikaži več

Organizacija, letnik 43 Razprave številka 4, julij-avgust 2010 Vpliv pro jekt ne zre lo sti or ga ni za ci je na us pe šnost pri pra ve evrop skih pro

Organizacija, letnik 43 Razprave številka 4, julij-avgust 2010 Vpliv pro jekt ne zre lo sti or ga ni za ci je na us pe šnost pri pra ve evrop skih pro Vpliv pro jekt e zre lo sti or ga i za ci je a us pe šost pri pra ve evrop skih pro jek tov Mar ja Kraj ik 1, Mir ko Mar kič 2 1 Ku rir ska pot 2c, Slo ve ski Ja vor ik, 4270 Je se i ce, marjakrajik@yahoo.com

Prikaži več

6.1 Uvod 6 Igra Chomp Marko Repše, Chomp je nepristranska igra dveh igralcev s popolno informacijo na dvo (ali vec) dimenzionalnem prostoru

6.1 Uvod 6 Igra Chomp Marko Repše, Chomp je nepristranska igra dveh igralcev s popolno informacijo na dvo (ali vec) dimenzionalnem prostoru 6.1 Uvod 6 Igra Chomp Marko Repše, 30.03.2009 Chomp je nepristranska igra dveh igralcev s popolno informacijo na dvo (ali vec) dimenzionalnem prostoru in na končni ali neskončni čokoladi. Igralca si izmenjujeta

Prikaži več

2.1 Osnovni pojmi 2 Nim Ga²per Ko²mrlj, Denicija 2.1 P-poloºaj je poloºaj, ki je izgubljen za igralca na potezi. N- poloºaj je poloºaj, ki

2.1 Osnovni pojmi 2 Nim Ga²per Ko²mrlj, Denicija 2.1 P-poloºaj je poloºaj, ki je izgubljen za igralca na potezi. N- poloºaj je poloºaj, ki 2.1 Osnovni pojmi 2 Nim Ga²per Ko²mrlj, 2. 3. 2009 Denicija 2.1 P-poloºaj je poloºaj, ki je izgubljen za igralca na potezi. N- poloºaj je poloºaj, ki je dobljen za igralca na potezi. Poloºaj je kon en,

Prikaži več

Študij AHITEKTURE IN URBANIZMA, šol. l. 2016/17 Vaje iz MATEMATIKE 9. Integral Določeni integral: Določeni integral: Naj bo f : [a, b] R funkcija. Int

Študij AHITEKTURE IN URBANIZMA, šol. l. 2016/17 Vaje iz MATEMATIKE 9. Integral Določeni integral: Določeni integral: Naj bo f : [a, b] R funkcija. Int Študij AHITEKTURE IN URBANIZMA, šol. l. 6/7 Vje iz MATEMATIKE 9. Integrl Določeni integrl: Določeni integrl: Nj bo f : [, b] R funkcij. Intervl [, b] rzdelimo n n podintervlov z delilnimi točkmi: = x

Prikaži več

REŠENE NALOGE IZ VERJETNOSTI IN STATISTIKE Martin Raič Datum zadnje spremembe: 11. junij 2019

REŠENE NALOGE IZ VERJETNOSTI IN STATISTIKE Martin Raič Datum zadnje spremembe: 11. junij 2019 REŠENE NALOGE IZ VERJETNOSTI IN STATISTIKE Martin Raič Datum zadnje spremembe: junij 209 Kazalo Osnove kombinatorike 3 2 Elementarna verjetnost 5 3 Pogojna verjetnost 0 4 Slučajne spremenljivke 7 5 Slučajni

Prikaži več

Poglavje 3 Reševanje nelinearnih enačb Na iskanje rešitve enačbe oblike f(x) = 0 (3.1) zelo pogosto naletimo pri reševanju tehničnih problemov. Pri te

Poglavje 3 Reševanje nelinearnih enačb Na iskanje rešitve enačbe oblike f(x) = 0 (3.1) zelo pogosto naletimo pri reševanju tehničnih problemov. Pri te Poglavje 3 Reševanje nelinearnih enačb Na iskanje rešitve enačbe oblike f(x) = 0 (3.1) zelo pogosto naletimo pri reševanju tehničnih problemov. Pri tem je lahko nelinearna funkcija f podana eksplicitno,

Prikaži več

NEKAJ VPRAŠANJ IZ MATEMATIKE 2 1. Katero točko evklidskega prostora R n imenujemo notranjo (zunanjo, robno) točko množice M R n? 2. Za poljubno množic

NEKAJ VPRAŠANJ IZ MATEMATIKE 2 1. Katero točko evklidskega prostora R n imenujemo notranjo (zunanjo, robno) točko množice M R n? 2. Za poljubno množic NEKAJ VPRAŠANJ IZ MATEMATIKE 2 1. Katero točko evklidskega prostora R n imenujemo notranjo (zunanjo, robno) točko množice M R n? 2. Za poljubno množico M R n evklidskega prostora R n definirajte množice

Prikaži več

SENCOMER

SENCOMER List za mlade matematike, fizike, astronome in računalnikarje ISSN 0351-6652 Letnik 25 (1997/1998) Številka 1 Strani 16 19, IV Marijan Prosen: SENCOMER Ključne besede: astronomija, senca, višina sonca.

Prikaži več

OdvodFunkcijEne11.dvi

OdvodFunkcijEne11.dvi III. ODVODI FUNKCIJ ENE REALNE SPREMENLJIVKE 1. Odvajanje funkcij ene spremenljivke Odvajanje je ena najpomembnejši operacij na funkcija. Z uporabo odvoda, kadar le-ta obstaja, lako veliko bolje spoznamo

Prikaži več

Matematika 1 Rešitve 9. sklopa nalog Nedoločeni integral (4) Izračunaj integrale trigonometričnih funkcij: 1 (a) cos x dx, 1 (b) sin 2 x + 2 cos

Matematika 1 Rešitve 9. sklopa nalog Nedoločeni integral (4) Izračunaj integrale trigonometričnih funkcij: 1 (a) cos x dx, 1 (b) sin 2 x + 2 cos Mtemtik Rešitve 9. sklop log Nedoločei itegrl (4) Izrčuj itegrle trigoometričih fukcij: 5 + 4 cos, si + cos, cos (c) + si. Rešitev: Pri itegrlih tip R(cos, si ), kjer je R rciol fukcij, si pomgmo z uiverzlo

Prikaži več

Brownova kovariancna razdalja

Brownova kovariancna razdalja Brownova kovariančna razdalja Nace Čebulj Fakulteta za matematiko in fiziko 8. januar 2015 Nova mera odvisnosti Motivacija in definicija S primerno izbiro funkcije uteži w(t, s) lahko definiramo mero odvisnosti

Prikaži več

Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku β a c γ b α sin = a c cos = b c tan = a b cot = b a Sinus kota je razmerje kotu naspr

Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku β a c γ b α sin = a c cos = b c tan = a b cot = b a Sinus kota je razmerje kotu naspr Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete in hipotenuze. Kosinus kota je razmerje

Prikaži več

Lehmerjev algoritem za racunanje najvecjega skupnega delitelja

Lehmerjev algoritem za racunanje najvecjega skupnega delitelja Univerza v Ljubljani Fakulteta za računalništvo in informatiko ter Fakulteta za Matematiko in Fiziko Mirjam Kolar Lehmerjev algoritem za računanje največjega skupnega delitelja DIPLOMSKO DELO NA INTERDISCIPLINARNEM

Prikaži več

Velika logična pošast Eulerjeva metoda reševanja diofantskih enačb Dana je diofantska enačba ax+by=c. Enačbo rešujemo samo v primeru, če sta a in b me

Velika logična pošast Eulerjeva metoda reševanja diofantskih enačb Dana je diofantska enačba ax+by=c. Enačbo rešujemo samo v primeru, če sta a in b me Velika logična pošast Eulerjeva metoda reševanja diofantskih enačb Dana je diofantska enačba ax+by=c. Enačbo rešujemo samo v primeru, če sta a in b medseboj tuji naravni števili.. 0x+y=4 2 Eulerjeva metoda

Prikaži več

glava.dvi

glava.dvi Lastnosti verjetnosti 1. Za dogodka A in B velja: P(A B) = P(A) + P(B) P(A B) 2. Za dogodke A, B in C velja: P(A B C) = P(A) + P(B) + P(C) P(A B) P(A C) P(B C) + P(A B C) Kako lahko to pravilo posplošimo

Prikaži več

LaTeX slides

LaTeX slides Linearni in nelinearni modeli Milena Kovač 22. december 2006 Biometrija 2006/2007 1 Linearni, pogojno linearni in nelinearni modeli Kriteriji za razdelitev: prvi parcialni odvodi po parametrih Linearni

Prikaži več

Naloge iz kolokvijev Analize 1 (z rešitvami) E-UNI, GING, TK-UNI FERI dr. Iztok Peterin Maribor 2009 V tej datoteki so zbrane naloge iz kolokvijev za

Naloge iz kolokvijev Analize 1 (z rešitvami) E-UNI, GING, TK-UNI FERI dr. Iztok Peterin Maribor 2009 V tej datoteki so zbrane naloge iz kolokvijev za Naloge iz kolokvijev Analize (z rešitvami) E-UNI, GING, TK-UNI FERI dr. Iztok Peterin Maribor 2009 V tej datoteki so zbrane naloge iz kolokvijev za predmet Analiza na smereh E-UNI, GING in TK-UNI na Fakulteti

Prikaži več

Podatkovni model ER

Podatkovni model ER Podatkovni model Entiteta- Razmerje Iztok Savnik, FAMNIT 2018/19 Pregled: Načrtovanje podatkovnih baz Konceptualno načtrovanje: (ER Model) Kaj so entite in razmerja v aplikacijskem okolju? Katere podatke

Prikaži več

Matematika Uporaba integrala (1) Izračunaj ploščine likov pod grafi danih funkcij: (a) f(x) = x 2 na [0, 2], (b) f(x) = e x na [0, 1], (c) f(x) = x si

Matematika Uporaba integrala (1) Izračunaj ploščine likov pod grafi danih funkcij: (a) f(x) = x 2 na [0, 2], (b) f(x) = e x na [0, 1], (c) f(x) = x si Mtemtik Uporb integrl () Izrčunj ploščine likov pod grfi dnih funkcij: () f() n [ ] (b) f() e n [ ] (c) f() sin n [ π]. Rešitev: Nj bo f zvezn pozitivn funkcij n intervlu [ b]. Ploščin lik ki leži pod

Prikaži več

Srednja šola za oblikovanje

Srednja šola za oblikovanje Srednja šola za oblikovanje Park mladih 8 2000 Maribor POKLICNA MATURA MATEMATIKA SEZNAM VPRAŠANJ ZA USTNI DEL NARAVNA IN CELA ŠTEVILA Opišite vrstni red računskih operacij v množici naravnih števil. Kakšen

Prikaži več

Matematika 2

Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 23. april 2014 Soda in liha Fourierjeva vrsta Opomba Pri razvoju sode periodične funkcije f v Fourierjevo vrsto v razvoju nastopajo

Prikaži več

P181C10111

P181C10111 Š i f r a k a n d i d a t a : Državni izpitni center *P181C10111* SPOMLADANSKI IZPITNI ROK MATEMATIKA Izpitna pola Sobota, 9. junij 018 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno

Prikaži več

P182C10111

P182C10111 Š i f r a k a n d i d a t a : Državni izpitni center *P18C10111* JESENSKI IZPITNI ROK MATEMATIKA Izpitna pola Ponedeljek, 7. avgust 018 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno

Prikaži več

MAGISTERSKA NALOGA

MAGISTERSKA NALOGA UNIVERZA V LJUBLJANI EONOMSA FAULTETA MAGISTRSO DELO VPLIV GOSPODARSEGA OOLJA V SLOVENIJI NA INVESTICIJSO OBNAŠANJE PODJETIJ V OBDOBJU MED LETOMA 2006 IN 2009 Ljubljana, sepember 202 EDINA VELIĆ IZJAVA

Prikaži več

Posebne funkcije

Posebne funkcije 10 Posebne funkcije Posebne funkcije Geometrijska vrsta Binomska vrsta Eksponentna funkcija Logaritemska funkcija Kotne funkcije Kotne tabele Grafi kotnih funkcij Obratne kotne funkcije 10.1 Posebne funkcije

Prikaži več

ANALITIČNA GEOMETRIJA V RAVNINI

ANALITIČNA GEOMETRIJA V RAVNINI 3. Analitična geometrija v ravnini Osnovna ideja analitične geometrije je v tem, da vaskemu geometrijskemu objektu (točki, premici,...) pridružimo števila oz koordinate, ki ta objekt popolnoma popisujejo.

Prikaži več

PODJETJE ZA PROJEKTIRANJE, NAROČNIK / INVEST1 ror LEGENDAi otonočje DPPN - del 1051/21-del, 1051/22-del AS-TEPROM k Savska cesta 5 t OBJEKT / LOKACIJA

PODJETJE ZA PROJEKTIRANJE, NAROČNIK / INVEST1 ror LEGENDAi otonočje DPPN - del 1051/21-del, 1051/22-del AS-TEPROM k Savska cesta 5 t OBJEKT / LOKACIJA PODJETJE ZA PROJEKTIRANJE, NAROČNIK / INVEST ror LEGENDAi otonočje DPPN - del 05/2-del, 05/22-del AS-TEPROM k t OBJEKT / LOKACIJA TENfS in DRUGE STORITVE SAVSKA CESTA 5 ID. ŠT. PRI IZS IW s NASLOV RlSbt

Prikaži več

Uradni list RS - 102/2015, Uredbeni del

Uradni list RS - 102/2015, Uredbeni del PRILOGA 6 NAPOVED ZA ODMERO DOHODNINE OD OBRESTI ZA LETO (razen od obresti na denarne depozite pri bankah in hranilnicah, ustanovljenih v Republiki Sloveniji ter v drugih državah članicah EU) OZNAKA STATUSA

Prikaži več

Urejevalna razdalja Avtorji: Nino Cajnkar, Gregor Kikelj Mentorica: Anja Petković 1 Motivacija Tajnica v posadki MARS - a je pridna delavka, ampak se

Urejevalna razdalja Avtorji: Nino Cajnkar, Gregor Kikelj Mentorica: Anja Petković 1 Motivacija Tajnica v posadki MARS - a je pridna delavka, ampak se Urejevalna razdalja Avtorji: Nino Cajnkar, Gregor Kikelj Mentorica: Anja Petković 1 Motivacija Tajnica v posadki MARS - a je pridna delavka, ampak se velikokrat zmoti. Na srečo piše v programu Microsoft

Prikaži več

Microsoft Word - 9.vaja_metoda porusnih linij_17-18

Microsoft Word - 9.vaja_metoda porusnih linij_17-18 9. vaja: RAČUN EJNE NOSILNOSTI AB PLOŠČ PO ETODI PORUŠNIH LINIJ S pomočjo analize plošč po metodi porušnih linij določite mejno obtežbo plošče, za katero poznate geometrijo, robne pogoje ter razporeditev

Prikaži več

Slide 1

Slide 1 Vsak vektor na premici skozi izhodišče lahko zapišemo kot kjer je v smerni vektor premice in a poljubno število. r a v Vsak vektor na ravnini skozi izhodišče lahko zapišemo kot kjer sta v, v vektorja na

Prikaži več

DN4(eks7).dvi

DN4(eks7).dvi DN#4 lnsk DN#7) - mrec 09) B Potence s celimi eksponenti Potenc je izrz oblike n, kjer je poljubno število R), n p poljubno nrvno li celo število n N li n Z). Število imenujemo osnov, n je stopnj li eksponent.

Prikaži več

Organizacija, letnik 41 Predlogi za prakso številka 6, november-december 2008 Predlog prenove informacijskega sistema za spremljanje prekrškov Anita F

Organizacija, letnik 41 Predlogi za prakso številka 6, november-december 2008 Predlog prenove informacijskega sistema za spremljanje prekrškov Anita F Predlog preove iformacijskega sistema za spremljaje prekrškov Aita Flogie 1, Mirko Gradišar 2 1 Šetilj pod Turjakom 72/a, 2382 Mislija, aita.flogie@gmail.com 2 Uiverza v Ljubljai, Ekoomska fakulteta, Kardeljeva

Prikaži več

Mladi za napredek Maribora srečanje DOLŽINA»SPIRALE«Matematika Raziskovalna naloga Februar 2015

Mladi za napredek Maribora srečanje DOLŽINA»SPIRALE«Matematika Raziskovalna naloga Februar 2015 Mladi za napredek Maribora 015 3. srečanje DOLŽINA»SPIRALE«Matematika Raziskovalna naloga Februar 015 Kazalo 1. Povzetek...3. Uvod...4 3. Spirala 1...5 4. Spirala...6 5. Spirala 3...8 6. Pitagorejsko drevo...10

Prikaži več

Predmetnik programa Družboslovna informatika, smer Digitalne tehnologije in družba (DI-DTID) 1. letnik Zimski semester Poletni semester # Naziv predme

Predmetnik programa Družboslovna informatika, smer Digitalne tehnologije in družba (DI-DTID) 1. letnik Zimski semester Poletni semester # Naziv predme Predmetnik programa Družboslovna informatika, smer Digitalne tehnologije in družba (DI-DTID) 1. letnik 1 Statistika 60 6 6 Uvod v metode družboslovnega raziskovanja 60 6 2 Uvod v družboslovno informatiko

Prikaži več

GeomInterp.dvi

GeomInterp.dvi Univerza v Ljubljani Fakulteta za matematiko in fiziko Seminar za Numerično analizo Geometrijska interpolacija z ravninskimi parametričnimi polinomskimi krivuljami Gašper Jaklič, Jernej Kozak, Marjeta

Prikaži več

4. tema pri predmetu Računalniška orodja v fiziki Ljubljana, Grafi II Jure Senčar

4. tema pri predmetu Računalniška orodja v fiziki Ljubljana, Grafi II Jure Senčar 4. tema pri predmetu Računalniška orodja v fiziki Ljubljana, 6.4.29 Grafi II Jure Senčar Relativna sila krčenja - F/Fmax [%]. Naloga Nalogo sem delal v Excelu. Ta ima vgrajeno funkcijo, ki nam vrne logaritemsko

Prikaži več

UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO Oddelek za matematiko in računalništvo MAGISTRSKO DELO Daša Štesl Maribor, 2017

UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO Oddelek za matematiko in računalništvo MAGISTRSKO DELO Daša Štesl Maribor, 2017 UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO Oddelek za matematiko in računalništvo MAGISTRSKO DELO Daša Štesl Maribor, 2017 UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO

Prikaži več

PRIPOROČILO KOMISIJE - z dne novembra o postopku za dokazovanje ravni skladnosti obstoječih železniških prog s temeljnim

PRIPOROČILO  KOMISIJE  -  z  dne novembra o  postopku  za  dokazovanje  ravni  skladnosti  obstoječih  železniških  prog  s  temeljnim L 356/520 PRIPOROČILA PRIPOROČILO KOMISIJE z dne 18. novembra 2014 o postopku za dokazovanje ravni skladnosti obstoječih železniških prog s temeljnimi parametri tehničnih specifikacij za interoperabilnost

Prikaži več

NAVADNA (BIVARIATNA) LINEARNA REGRESIJA O regresijski analizi govorimo, kadar želimo opisati povezanost dveh numeričnih spremenljivk. Opravka imamo to

NAVADNA (BIVARIATNA) LINEARNA REGRESIJA O regresijski analizi govorimo, kadar želimo opisati povezanost dveh numeričnih spremenljivk. Opravka imamo to NAVADNA (BIVARIATNA) LINEARNA REGRESIJA O regresijski analizi govorimo, kadar želimo opisati povezanost dveh numeričnih spremenljivk. Opravka imamo torej s pari podatkov (x i,y i ), kjer so x i vrednosti

Prikaži več

Varstvo naravne dediščine

Varstvo naravne dediščine www.mmko.gov.si, e-pošta: gp.mko@gov.si Dunajska cesta 22, 1000 Ljubljana t: 01 478 7475, f: 01 478 7425 Avber, 12. 9. 2013 Problemi ter predlogi rešitev pojavljanja škod ter izplačevanja odškodnin dr.

Prikaži več

UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO Oddelek za matematiko in računalništvo DIPLOMSKO DELO Peter Škofič Maribor, 2014

UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO Oddelek za matematiko in računalništvo DIPLOMSKO DELO Peter Škofič Maribor, 2014 UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO Oddelek za matematiko in računalništvo DIPLOMSKO DELO Peter Škofič Maribor, 2014 UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO

Prikaži več

3. Metode, ki temeljijo na minimalnem ostanku Denimo, da smo z Arnoldijevim algoritmom zgenerirali ON bazo podprostora Krilova K k (A, r 0 ) in velja

3. Metode, ki temeljijo na minimalnem ostanku Denimo, da smo z Arnoldijevim algoritmom zgenerirali ON bazo podprostora Krilova K k (A, r 0 ) in velja 3. Metode, ki temeljijo na minimalnem ostanku Denimo, da smo z Arnoldijevim algoritmom zgenerirali ON bazo podprostora Krilova K k (A, r 0 ) in velja AV k = V k H k + h k+1,k v k+1 e T k = V kh k+1,k.

Prikaži več

RAČUNALNIŠKA ORODJA V MATEMATIKI

RAČUNALNIŠKA ORODJA V MATEMATIKI DEFINICIJA V PARAVOKOTNEM TRIKOTNIKU DEFINICIJA NA ENOTSKI KROŢNICI GRAFI IN LASTNOSTI SINUSA IN KOSINUSA POMEMBNEJŠE FORMULE Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z

Prikaži več

Univerza na Primorskem FAMNIT, MFI Vrednotenje zavarovalnih produktov Seminarska naloga Naloge so sestavni del preverjanja znanja pri predmetu Vrednot

Univerza na Primorskem FAMNIT, MFI Vrednotenje zavarovalnih produktov Seminarska naloga Naloge so sestavni del preverjanja znanja pri predmetu Vrednot Univerza na Primorskem FAMNIT, MFI Vrednotenje zavarovalnih produktov Seminarska naloga Naloge so sestavni del preverjanja znanja pri predmetu Vrednotenje zavarovalnih produktov. Vsaka naloga je vredna

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNIŠTVO Matematika 2. kolokvij 4. januar 212 Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Veljale bodo samo rešitve na papirju, kjer

Prikaži več

PowerPoint Presentation

PowerPoint Presentation Integral rešujemo nalogo: Dana je funkcija f. Najdimo funkcijo F, katere odvod je enak f. Če je F ()=f() pravimo, da je F() primitivna funkcija za funkcijo f(). Primeri: f ( ) = cos f ( ) = sin f () =

Prikaži več

KAKO BRATI IN UPORABITI REZULTATE PRIMERJALNE ANALIZE PRIMERI ZA ODVAJANJE IN ČIŠČENJE ODPADNE VODE ag. Sta ka Cerkve ik, I štitut za jav e služ e

KAKO BRATI IN UPORABITI REZULTATE PRIMERJALNE ANALIZE PRIMERI ZA ODVAJANJE IN ČIŠČENJE ODPADNE VODE ag. Sta ka Cerkve ik, I štitut za jav e služ e KAKO BRATI IN UPORABITI REZULTATE PRIMERJALNE ANALIZE PRIMERI ZA ODVAJANJE IN ČIŠČENJE ODPADNE VODE ag. Sta ka Cerkve ik, I štitut za jav e služ e KAJ JE PRIMERJALNA ANALIZA? Primerjalna analiza je sklop

Prikaži več

Matematika 2 - ustna vprašanja 1) Determinanta, poddeterminanta (1,3)...3 2) Lastnosti determinante (5)...3 3) Cramerjevo pravilo (9)...3 4) Računanje

Matematika 2 - ustna vprašanja 1) Determinanta, poddeterminanta (1,3)...3 2) Lastnosti determinante (5)...3 3) Cramerjevo pravilo (9)...3 4) Računanje Matematika 2 - ustna vprašanja 1) Determinanta, poddeterminanta (1,3)...3 2) Lastnosti determinante (5)...3 3) Cramerjevo pravilo (9)...3 4) Računanje z vektorji, kot med vektorij (11)...3 5) Skalarni

Prikaži več

Osnove teorije kopul in maksmin kopule

Osnove teorije kopul in maksmin kopule Fakulteta za matematiko in fiziko Univerze v Ljubljani Seminar Inštituta za biostatistiko in medicinsko informatiko 26. maj 25 Osnove teorije kopul Definicija kopule Definicija Funkcija C : A A 2 [, ],

Prikaži več

Statistika, Prakticna matematika, , izrocki

Statistika, Prakticna matematika, , izrocki Srednje vrednosti Srednja vrednost...... številske spremenljivke X je tako število, s katerim skušamo kar najbolje naenkrat povzeti vrednosti na posameznih enotah: Polovica zaposlenih oseb ima bruto osebni

Prikaži več

Poslovilno predavanje

Poslovilno predavanje Poslovilno predavanje Matematične teme z didaktiko Marko Razpet, Pedagoška fakulteta Ljubljana, 20. november 2014 1 / 32 Naše skupne ure Matematične tehnologije 2011/12 Funkcije več spremenljivk 2011/12

Prikaži več

Vaje: Matrike 1. Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N 0 1 n ; n N Pokaži, da je množica x 0 y 0 x

Vaje: Matrike 1. Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N 0 1 n ; n N Pokaži, da je množica x 0 y 0 x Vaje: Matrike 1 Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N n 1 1 0 1 ; n N 0 2 Pokaži, da je množica x 0 y 0 x y x + z ; x, y, z R y x z x vektorski podprostor v prostoru matrik

Prikaži več