Strojniški vestnik (43) št. 1-2, str , 1997 Tiskano v Sloveniji. Vse pravice pridržane. Journal of Mechanical Engineering (43) No. 1-2, pp. 33-4

Podobni dokumenti
Microsoft Word - A-3-Dezelak-SLO.doc

Preštudirati je potrebno: Floyd, Principles of Electric Circuits Pri posameznih poglavjih so označene naloge, ki bi jih bilo smiselno rešiti. Bolj pom

2

HIDRAVLIČNI VENTILI Eksperimentalno preverjanje tokovnih sil v hidravličnih ventilih Blaž Bobnar, Anže Čelik, Franc Majdič Izvleček: Tokovna sila je e

Dinamika, laboratorijske vaje

Microsoft Word - ARRS-MS-BR-07-A-2009.doc

ARRS-BI-FR-PROTEUS-JR-Prijava/2011 Stran 1 od 7 Oznaka prijave: Javni razpis za sofinanciranje znanstvenoraziskovalnega sodelovanja med Republiko Slov

Strojni{ki vestnik 50(2004)10, Journal of Mechanical Engineering 50(2004)10, ISSN ISSN UDK : UDC 621.

REŠEVANJE DIFERENCIALNIH ENAČB Z MEHANSKIMI RAČUNSKIMI STROJI Pino Koc Seminar za učitelje matematike FMF, Ljubljana, 25. september 2015 Vir: [1] 1

UDK : : Termohidravlične razmere laminarnega toka tekočine y ozkih kanalih Thermo-Hydraulic Conditions of Laminar Fluid Flow in

EV_Svete

UČNI NAČRT PREDMETA / COURSE SYLLABUS Predmet: Matematična fizika II Course title: Mathematical Physics II Študijski program in stopnja Study programm

Microsoft Word - ARRS-MS-CEA-03-A-2009.doc

Slovenska predloga za KE

Microsoft Word - M docx

PRESENT SIMPLE TENSE The sun gives us light. The sun does not give us light. Does It give us light? Raba: Za splošno znane resnice. I watch TV sometim

Društvo za elektronske športe - spid.si Vaneča 69a 9201 Puconci Pravila tekmovanja na EPICENTER LAN 12 Hearthstone Na dogodku izvaja: Blaž Oršoš Datum

(Microsoft Word - 3. Pogre\232ki in negotovost-c.doc)

Microsoft Word - CelotniPraktikum_2011_verZaTisk.doc

Predmet: Course title: UČNI NAČRT PREDMETA/COURSE SYLLABUS Matematična fizika II Mathematical Physics II Študijski programi in stopnja Študijska smer

Avtomatizirano modeliranje pri celostnem upravljanju z vodnimi viri

Naloge 1. Dva električna grelnika z ohmskima upornostma 60 Ω in 30 Ω vežemo vzporedno in priključimo na idealni enosmerni tokovni vir s tokom 10 A. Tr

UDK :539.41: Vzporedna analiza toplotnih napetosti v vrtečih sc diskih z enakomerno trdnostjo Simultaneous Analysis of Thermal Stres

M-Tel

Microsoft Word - ARRS-MS-FI-06-A-2010.doc

Univerza v Novi Gorici Fakulteta za aplikativno naravoslovje Fizika (I. stopnja) Mehanika 2014/2015 VAJE Gravitacija - ohranitveni zakoni

Microsoft Word - M

Uvodno predavanje

Strojniški vestnik (44) št. 3-4, str , 1998 Tiskano v Sloveniji. Vse pravice pridržane. UDK /.644:532:697.3:519.61/.64 Strokovni članek

Gospodarjenje z energijo

resitve.dvi

HIDRAVLIČNI VENTILI Razvoj dvopotnega tokovnega ventila s tlačnim kompenzatorjem - 2. del Jaka Čadež, Anže Čelik Izvleček: Dvopotni tokovni ventil s t

Predmet: Course title: UČNI NAČRT PREDMETA / COURSE SYLLABUS (leto / year 2016/17) Dinamično modeliranje Dynamical modelling Študijski program in stop

Microsoft PowerPoint - OVT_4_IzolacijskiMat_v1.pptx

Športno društvo Jesenice, Ledarska 4, 4270 Jesenice, Tel.: (04) , Fax: (04) , Drsalni klub Jesenice in Zv

Strojniški vestnik (43) št. 3-4, str , 1997 Tiskano v Sloveniji. Vse pravice pridržane. UDK : Journal o f Mechanical Engineeri

LABORATORIJSKE VAJE IZ FIZIKE

UDK Modeliranje in optimiranje vzmetenja vozil Modelling and Optimizing of Vehicle Suspension FRANCI PADEŽNIK - CHEN SHI NING - MA

PowerPoint Presentation

FAKULTETA ZA STROJNIŠTVO Matematika 2 Pisni izpit 9. junij 2005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite bese

Microsoft PowerPoint - cigre_c2_15.ppt [Compatibility Mode]

Strojni{ki vestnik 46(2000)8, Journal of Mechanical Engineering 46(2000)8, ISSN ISSN UDK 536.3:536.2: UDC 536.

VrtecLaporjePZI

VPRAŠANJA ZA USTNI IZPIT PRI PREDMETU OSNOVE ELEKTROTEHNIKE II PREDAVATELJ PROF. DR. DEJAN KRIŽAJ Vprašanja so v osnovi sestavljena iz naslovov poglav

Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y

FGG13

Člen 11(1): Frekvenčna območja Frekvenčna območja Časovna perioda obratovanja 47,0 Hz-47,5 Hz Najmanj 60 sekund 47,5 Hz-48,5 Hz Neomejeno 48,5 Hz-49,0

Microsoft Word - ELEKTROTEHNIKA2_ junij 2013_pola1 in 2

DOLŽNIK: MARJAN KOLAR - osebni steč aj Opr. št. St 3673/ 2014 OSNOVNI SEZNAM PREIZKUŠENIH TERJATEV prij ava terjatve zap. št. št. prij. matič na števi

UDK 539.3/.4:519.61/.64 Napetosti v vzdolžno prerezanem rotirajočem votlem valju Stresses in Hollow Rotating Cylinder with Longitudinal Split MILAN BA

Microsoft PowerPoint - CIGER - SK 3-15 Izkusnje nadzora distribucijskih transformatorjev s pomo... [Read-Only]

SKUPNE EU PRIJAVE PROJEKTOV RAZISKOVALNE SFERE IN GOSPODARSTVA Maribor, Inovacije v MSP Innovation in SMEs dr. Igor Milek, SME NKO SPIRIT S

1 Tekmovanje gradbenih tehnikov v izdelavi mostu iz špagetov 1.1 Ekipa Ekipa sestoji iz treh članov, ki jih mentor po predhodni izbiri prijavi na tekm

Microsoft PowerPoint - DV_Predavanja_Menjalniki_Slo_ ppt [Compatibility Mode]

Microsoft Word - SI_vaja1.doc

Strojniški vestnik (43) št. 9-10, str , 1997 Journal o f Mechanical Engineering (43) No. 9-10, pp , 1997 Tiskano v Sloveniji. Vse prav

Microsoft Word - P101-A doc

Strojni{ki vestnik 50(2004)7/8, Journal of Mechanical Engineering 50(2004)7/8, ISSN ISSN UDK :534-8 UDC 681.1

ELEKTRIČNI NIHAJNI KROG TEORIJA Električni nihajni krog je električno vezje, ki služi za generacijo visokofrekvenče izmenične napetosti. V osnovi je "

UDK : Analiza kakovosti Izdelka pri postopku frezanja z uporabo kibernetskega modela Analysis of Product Quality In Milling Procedure by

Osnove statistike v fizični geografiji 2

(Microsoft PowerPoint - vorsic ET 9.2 OES matri\350ne metode 2011.ppt [Compatibility Mode])

Priprava prispevka za Elektrotehniški vestnik

Strojniški vestnik - Journal of Mechanical Engineering 52(2006)7-8, UDK - UDC Strojniški vestnik - Journal of Mechanical Engineering

Inducirana_napetost(11)

'Kombinatoricna optimizacija / Lokalna optimizacija'

Strojniški vestnik - Journal of Mechanical Engineering 53(2007)1, UDK - UDC 62-23: Strokovni članek - Speciality paper (1.04) Teoretična

PROFILNA TEHNIKA / OPREMA DELOVNIH MEST PROFILE TECHNIC / WORKSTATION ACCESSORIES INFO ELEMENTI / INFO ELEMENTS INFO TABLA A4 / INFO BOARD A4 U8L U8 U

Napotki za izbiro gibljivih verig Stegne 25, 1000 Ljubljana, tel: , fax:

Microsoft Word - 9.vaja_metoda porusnih linij.docx

Microsoft Word - 9.vaja_metoda porusnih linij_17-18

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/testi in izpiti/ /IZPITI/FKKT-februar-14.dvi

Microsoft Word - avd_vaje_ars1_1.doc

Microsoft Word - ge-v01-osnove

Resonance v Osončju Resonanca 1:2 Druge orbitalne resonance: 2:3 Pluto Neptune 2:4 Tethys Mimas (Saturnovi luni) 1:2 Dione Enceladus (Saturnovi luni)

NOVA GENERACIJA KOMPAKTNIH TOPLOTNIH ČRPALK

VAJE

UNIVERZA V MARIBORU FAKULTETA ZA STROJNIŠTVO Rastko LORGER IZBIRA IN DIMENZIONIRANJE MIKRO HIDROELEKTRARNE NA POTOKU SAPOČNICA Diplomsko delo visokošo

VIBRACIJE NA STROJIH BALANSIRANJE ROTORJEV VZDRŽEVALNA DELA VIBRACIJE NA DELOVNEM MESTU CENTRIRANJE SKLOPK VARILSKA DELA VIBRACIJE V GRADBENIŠTVU ONLI

Diapozitiv 1

ŠTEVCI PROMETA IN NJIHOVA UPORABA ZA NAMENE STATISTIK ČRT GRAHONJA

Microsoft Word - PRAKTIKUM CELOTA 4v2.doc

Osnovni pojmi(17)

Microsoft Word - SI_vaja5.doc

Microsoft Word - M docx

UDK 534.1:519.61/.64 Računalniško simuliranje torzijskih nihanj razvejanih sistemov Computer Simulation of Torsional Vibrations of Branched Chain Topo

VIN Lab 1

Ime in priimek

Vrste

Microsoft PowerPoint - 3_MACS+_Pozarni_testi_slo.ppt [Compatibility Mode]

Transkripcija:

Strojniški vestnik (43) št. 1-2, str. 33-41, 1997 Tiskano v Sloveniji. Vse pravice pridržane. Journal of Mechanical Engineering (43) No. 1-2, pp. 33-41. 1997 Printed in Slovenia. All rights reserved. SV: 0039-2480(97)1-R3 Prispevek k analizi sil na vodilni lopatici modelske reverzibilne črpalke - turbine v črpalnem obratovalnem režimu Contribution to the Analysis of Forces on the Guide-Vane of the Pump-Turbine Model in Pumping Regime ANDREJ PREDIN V prispevku so obravnavane tokovne razmere v vodilniku modelske reverzibilne črpalke - turbine, analiza sil in momentov ter merilni sistem za merjenje sil in momentov na osi vodilne lopatice. Podan je predlog matematičnega modela nihanja vrtilnega momenta na osi vodilne lopatice in primerjava merilnih rezultatov z izračuni. Ključne besede: turbine - črpalke reverzibilne, vodilniki turbin, razmere tokovne, sistemi merilni In this contribution the flow conditions at the guide apparatus o f the reversible pump-turbine model, the analysis o f forces and torque at guide-vane shaft, and measurement system for force and torque measurement at guide-vane are treated. A new mathematical model is given fo r guide-vane shaft torque modeling, comparison o f the measurement results with theoretical calculations, and comments on the transfer form model to original properties. Keywords: reversible pump turbines, guide apparatus, flow conditions, measurements systems 0 UVOD Pri sodobnem optimiranju vodilnih sistemov, predvsem vodilnih lopatic, je potrebno natančno poznavanje obremenitev na osi vodilne lopatice. Premer osi omejuje optimalno oblikovanje oziroma izbiro ustreznega profila vodilne lopatice. Zaradi velike koncentracije obremenitev na mestu prehoda osi v lopatico mora biti os na tem mestu nekoliko tanjša od profila. Znano je, da so tanjši profili hidravlično ugodnejši od debelejših. Z raziskovanjem na modelih je mogoče določiti obremenitve, ki jih lahko ob upoštevanju pravil podobnega obratovanja uporabimo na izvedbah. 1 OBLIKA DELUJOČE HIDRODINAMIČNE SILE Iz dosedanjih raziskav [1] in dostopne literature je znano, da je fluidni tok [2] na izstopu iz radialnega rotorja črpalk - turbin izrazito utripne in deloma tudi naključne narave. Utrip tokaje izrazit predvsem v črpalnem obratovalnem režimu, kjer je tok pojemajoč in se z večanjem premera proti izstopu iz vodilnika umirja. Utripni tok nastane zaradi relativnega vrtinca v rotorskih kanalih s končnim številom lopatic končne debeline [3]. Posledica delovanja takšnega toka [4] na vodilne lopatice je utripajoča hidro-dinamična sila in njen vrtilni moment na osi [5]. Ta obremenjuje os vodilne lopatice z utripno, deloma tudi z izmenično obremenitvijo pri pretokih, manjših od optimalnega, vendar takšna ocena še ni popolna. Obremenitve vodilne lopatice in njene osi je treba obravnavati kompleksneje, kot dinamični sistem, pri katerem so upoštevana lastna, vsiljena in superponirana nihanja celotnega osnovnega vodilnega sklopa. 0 INTRODUCTION For present-day optimisation o f the guide systems, especially guide vanes, knowledge o f the exact strength loads on the guide-vane shaft is necessary. The guide-vane shaft diameter limits the optimal modelling or selection of the suitable guide-vane foil. Because of the great load s concentration on the place where the guide-vane shaft enters the guide-vane foil, the shaft diameter must be thinner than the guide-vane foil at this place. It is known that the thinner guide-vane foils are hydraulically more suitable than the equal thicker guide-vane foils. By means of model research, and by considering the similarity laws, the acting loads on the prototype may be determined. 1 PROPERTIES OF ACTING HYDRO-DYNAM IC FORCE Research [1] and the available literature has recently shown that the fluid flow [2] on the impeller exit has pulsation and partly stochastic properties. The fluid flow pulsation is explicated in the pump mode, where the flow has a declined character. The pulsation declines with the increasing diameter in the direction of the guide apparatus exit. The pulsation fluid flow at the impeller exit is a consequence of the rotated impeller a finite number of blades [3] and the relative whirl in the individual impeller s channels. A consequence of the acting [4] with that property is the hydrodynamic force on the guide-vane and the torsion torque on its shaft with similar properties, which load the guide-vane shaft with the pulsation and partly alternating load form, especially in small model work capacity [5], That evaluation is not complete. The guide-vane and its shaft loads are of necessity treated as a complex dynamic system by considering the eigen, forced and superposed oscillations of the whole guide system - the guide-vane with its shaft.

2 MERILNA PROGA IN TESTNI MODEL Eksperimentalne raziskave so bile izvedene v L aboratoriju za turbinske stroje Fakultete za strojništvo v Mariboru na instaliranem merilnem sistemu (sl. la), ki obsega poenostavljeni model (sl. Ib) izvedene reverzibilne črpalke turbine, prirejenem za obratovanje v črpalnem režimu z zrakom kot retočnim fluidom [6], Model ima radialni rotor onstantne širine b= 0,05 m z enajstimi lopaticami, vodilnik s štiriindvajsetimi profiliranimi in z dvanajstimi podpornimi vodilnimi lopaticami. Na izstopu je nameščen spiralni vodilnik pravokotnega pretočnega prereza konstantne širine bs v = 0,12 m. Vstopni premer rotorja D ]= 0,36 rntizstopni pa D2 = 0,6 m. Vstopni robovi vodilnih lopatic leže na premeru D3 = 0,624 m. 2 EXPERIMENTAL SYSTEM AND TESTED MODEL The experimental research was carried out in the Laboratory for turbine machines at the Faculty o f Mechanical Engineering in Maribor where the installed measurement system [6] (Fig. 1.a), which occupies the simplified reversible pump-turbine model (Fig. l.b), is adapted for work with air as the fluid medium. The model has a radial impeller constant width (b = 0.05), eleven impeller blades, twenty-four foiled guide-vanes, twelve foiled support vanes, and a spiral volute with a rectangular form, constant width ( bs = 0.12 m) on the model exit. The impeller intake diam eter is D, = 0.36 m and the exit diameter is D2 = 0,6 m. Blade vanes intake diameter is Z)3= 0.624 m. a ) Sl. 1. Eksperimentalni sistem [11J a) in poenostavljeni model reverzibilne črpalke - turbine b) Fig. 1. Experimental system [11] a) and simplified reversible pump-turbine model b)

3 MERILNI SISTEMI V okviru raziskovalnega delaje bilo razvitih več merilnih sistemov [7], Zadnji izvedeni je merilni sistem, ki temelji na načelu tehtnice sil, imenovan sistem C (sl. 2). Na dveh pomožnih oziroma merilnih oseh je na prednapetih merilnih konzolah vpeta merilna vodilna lopatica. Na merilnih konzolah so nameščeni merilni lističi (HBM 3/350 LY13) povezani v tripolni Wheatstonov mostič, s čimer je dosežena tem peraturna izravnava. Trije m erilni kanali zagotavljajo m erjenje pom ikov in kom ponent hidrodinamične sile v dveh smereh y, iny2, v smeri pravokotno na skeletnico profila in v smeri skeletnice profila, smerx. Predpostavljena je linearna interakcija merilnih konzol med osnovnimi smermi delovanja^, y 2 in smeri v [8], Ker je profil vodilne lopatice nesimetričen v smeri y, ima merilni sistem tri lastne frekvence. Lastne frekvence sistema so določane eksperimentalno z impulznim vzbujanjem merilnega sistema in s spektralnim analizatorjem HP 323 60C. Lastna frekvenca vodilnega sistema v smeri y t je 94 Hz, v smeri y2 je 56 Hz in v smeri x 74 Hz (sl. 3). Iz upadajočih amplitud nihajnih zapisov lahko sklenemo, da ima merilni sistem C majhno dušenje, karje ugodno za sprem ljanje časovno odvisnih obrem enitev. Umerjanje merilnega sistema je izvedeno vsakokrat neposredno pred merjenjem z utežmi na merilnih oseh, v vseh treh merilnih smereh. 3 M EASUREMENT SYSTEM An earlier measurement system was developed in previous research work [7], The latest measurement system, which is based on the force scale principle, is being developed. The measurement system is briefly named as system C (Fig. 2). The measurement guide-vane is fixed on two support measurement shafts, which are fixed on the measurement cantilever beams. The measurement strain gauge strips (HBM 3/350 LY 13) are placed on cantilever beams and connected to the full Wheatstone bridge. In this way the tem perature com pensation is achieved. The three measurement channels assure the hydrodynamic force component measurement in two directions y t and y 2 in normal direction on the guide-vane foil and in direction x in the tangential direction on the guide-vane foil. The linear interaction [8] of the measurement cantilever beams among acting directions (y,,y2 andx) is proposed. The measurement system C has three eigen frequencies because of the non symmetrical guide-vane foil in they direction. The eigen frequencies are determined experimentally by the impulse force action on the measurement guide-vane and by spectral analyser HP 323 60C. The eigen frequency o f the measurement system in direction y 1is 94 Hz, in direction y2 is 56 Hz, and in direction x is 74 Hz (Fig. 3). From the amplitudes of the oscillation record the low system damping may be determined. This is suitable for tim e-dependent changeable value measurements. The measurement system is calibrated each time before the performed measurement with the weights placed on the measurement shafts in all three measuring directions. nn MERILNI LISTIČI STRAIN GAUGE STRIPS MERILNI LISTIČI STRAIN GAUGE STRIPS SI. 2. Merilni sistem C in osnovne merilne smeri y t, y? in x Fig. 2. Measurement system C and basic measurement directions y t, y, and x

4 REZULTATI MERITEV 4 MEASUREMENT RESULTS Zapis srednjih komponent hidrodinamične sile F 'm F oziroma koeficienta sile c,, in c,, kaže na zmanjšanje obeh proti optimalnemu pretoku Q/Qopt = = 1,00 (sl. 3a). Absolutno je komponenta sile v normalni smeri večja od komponente v obodni smeri, kar je tudi razumljivo, ker vodilna lopatica preusmerja tok predvsem v vzdolžni smeri. V področju pretokov Q/Qop= 0,15 do 0,60 je komponenta sile v vzdolžni smeri razmeroma konstantna, kar kaže na obstoj "mrtvega" cirkulacijskega toka na izstopu iz rotorja. Zapis srednjih vrtilnih momentov (sl. 4b) kaže na zvečanje vrtilnega momenta v območju pretokov Q/Qo = 0,15 do 0,80, celo večjih kakor pri obratovanju modela z optimalnim pretokom Q/Qop=1,00 in skoraj linearno zvečevanje vrtilnega momenta v območju pretokov Q/Qopt 1,00 do 1,23. The records of force components Fnand F, and, force coefficients c,. and c,. have shown that both forces declined in the defection of optimal work capacity (Q/Qopt = TOO) (Fig. 3a). The force component in normal direction is absolute more than the component in the tangential direction. This is understandable because the guide-vane guides the fluid flow more in this direction than in tangential direction. In the area of under optimal capacities ( Q/Qopt = 0.15 to 0.60) the force component in normal direction is relatively constant. This is shown by the existing "dead" circulation flow around the impeller s exit. The mean torque record (Fig. 4b) has shown on the torque an increase in the area of under optimal capacities (Q/Q = 0.15 to 0.80) which are even bigger than the torque by the optimal capacity ( ß / ß opt = 1.00) and almost linear torque increasing in the area of over optimal capacities ( Q/Qop = 1.00 to 1.23). ftve RAGE-- COMPLETE- B M a r k e r X: 2 9 3. 9 4 5 3 1 2 ms Y: 5 0.193 m V B M a r k e r X: 2 9 3. 9 4 5 3 1 2 ms Y: 5 2.568 m V a) b) 70 m V WrtKh&i 8. 75 m V /div 2 M a r k e r X: 74 Hz Y: 3 1. 0 4 4 m V 0 V Start: 0 Hz S p e c t r u m Chan 1 OVLD Stop: 8 0 0 Hz RMS :20 Start: - 2. 4 4 1 4 ms T ime Chan 1 Stop: 4 9 7. 0 7 ms O V L D c ) SI. 3. Lastne frekvence merilnega sistema C v smereh y a), y 2 b) in x c) Fig. 3. The measurement system C eigen frequences: in directions y ] k), y 2 b) and x c)

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 /1=30 s'1 M erilni sistem / Measurement system C Q/Qop, c (/) 1.60 ------1------ 1------1------ 1.40 - _ M ^ e7rt/»n2(d /zr) 1 _ 1.20 1.00 0.80 0.60 0.40 0.20 0.00-0.20 \ \ -0. 00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 /1=30 s M erilni sistem / Measurement system C Q/Qopt Sl. 4. Koeficient vzdolžne cf ~Fn in obodne cr komponente hidrodinamične sile a) in koeficient vrtilnega momenta cmb) Fig. 4. Hydrodynamic force coefficient in normal cfn and tangential direction cr a), with torque coefficient cmb) raaaabbbbmsihi fl Marker X: 0 5 Y: 5. 5236 mv fl Marker X: 9 s Y: 1. 2204 mv b) 0] Marker X: 5 5 He Y: 3. 5 8 0 5 m V 4.S r mv r- f- -..V.. l j- - 6 0 0 UV a) Start: 0 s Fl = < T I M E 1 * K 1 - T I M E 2» K 2 ) * K 3 iu L... Stop: 9 9 9. 0 2 ms J t, J i F 2 = F F T ( F l ) Stop: 4 0 0 Hz - b) Start: 0 s Fl = ( T I M E l * i a - T I M E 2»K2)*K3 Stop: 9 9 9. 0 2 m s R M a r K e r X: -AVERAGE -COMPLETE- 0 s Y: 612.58 uv R MarKer X: 0 s Y: 432. 19 uv Start: 0 s Stop: 9 9 9. 0 2 ms Fl = ( T I M E 1 * K 1 - T I M E 2 * K 2 ) * K 3 03 M a r K e r X: 6 0 Hz 7 2 0 uv - 1 ftaiixtmi 90 uv /di v - ; - Start: 0 s Fl = ( T I M E i * K i - T I M 2 * K 2 ) * K 3 Q3 M a rker X: 9 4 Hz Y: 1 5 6. 2 7 uv Stop: 9 9 9. 0 2 ms JTVi Hu F 2 = F F T ( F l ) u Stop: 400 Hz c ) d) SI. 5. Časovni in frekvenčni prikaz vrtilnega momenta pri n = 1800 min-1 in ß / ß op, = 15 a), ß / ß opt = 0,54 b), ß / ß opt = 1,00 c) in ß / ß opt = 1,23 d) Fig. 5. Time and frequency review o f torque at 1800 rpm. and ß / ß opt = 0,15 a), ß / ß opt = 0,54 b), ß / ß opt = 1,00 c) and ß / ß opt = 1,23 d)

Iz časovno odvisnih zapisov vrtilnega momenta (sl. 5 - zgornji prikaz) in frekvenčne analize (sl.5 - spodnji prikaz) je razvidno, da se z zvečevanjem pretoka zmanjšujejo amplitude celotnega utripanja in amplitude lastnega nihanja (55 Hz), zvečujejo pa se amplitude vsiljenega nihanja (330 Hz). Iz tega je mogoče sklepati, da se z večanjem pretoka manjšajo amplitude utripanja vrtilnega momenta [9], veča pa se frekvenca utripanja celotnega momenta, zaradi urejanja fluidnega toka kot posledica bolj polnitve rotorskih in vodilnih kanalov. From the time dependent torque record (Fig. 5 - upper record) and from frequency analysis (Fig. 5 - lower record) it is evident that, with the capacity increase, the pulsation amplitudes of eigen frequency (55 Hz) declined and at the same time the amplitude of force frequency (330 Hz) increased. Thus it can be concluded that when the capacity increased, the pulsation torque amplitudes declined [9] and at the same time the torque frequency increased. This is a consequence of the better impeller and guide-vane channel load. 5 PREDLOG MATEMATIČNEGA MODELA NIHANJA VRTILNEGA MOMENTA 5 PROPOSAL FOR A M ATHEM ATICAL MO DEL FOR TORQUE OSCILLATION PREDICTION Z namenom, da bi natančneje modelirali nihanje vrtilnega momenta, je podan predlog matematičnega modela utripnih hitrosti fluidnega toka, ki temelji na linearni diferencialni enačbi petega reda: s splošno obliko rešitve:, 647T4 y(t)v + + & )»(<)' = 0 10 J o In the research work the proposal for a mathematical model of pulsation flow velocity has been given. The basis of the model is the fifth order differential equation: with the solution in general form: 2 tt 2tt 47T. 4tt y (t) = Cu ( t ) = A0 + A 1 cos( t) + B 1 s i n ( - t ) + A2cos( -t) + B 2sm( t) Jo Jo Jo Jo s konstantnimi členi, ki zajemajo geometrijske in obratovalne parametre: D2 Q Dz 7T&2 D 2 ta n /3 2 o o ) Vh Ao 1 Ai a in ( 1), (2), where coefficients are constants, and model and work parameters are: and B 1 (4), kjer so:.0,-vstopni in Z)2-izstopni premer rotorskih lopatic, >3-vstopni premer vodilnika, «2 - obodna hitrost, ß200- teoretični kot relativne hitrosti na izstopu iz rotorja, ^-hidravlični izkoristek, a - nepopolnost rotorja in a-koeficient periodično spreminjajoče se pretočne površine v obodni sm eri [10]. Pri predlaganem m atem atičnem m odelu enačbe vsiljenega dušenega torzijskega nihanja vrtilnega momenta je enačba (2) uporabljena v brezdimenzijski obliki, kot desni - vzbujevalni del znane enačbe dušenega torzijskega nihanja: Im(p + op + kip M s ( 1 + i cos cot ^0 kjer je M srednji vrtilni moment. S postavitvijo koeficientov v nove konstante in razdružitvijo zgornje diferencialne enačbe v tri diferencialne enačbe: where: D} is the intake diameter of the front guidevane foil boundary, w, is the circumferential velocity, ß200 is the angle of relative velocity on the im peller s exit, rjh is the hydraulic efficiency, a is the impeller incompleteness, and as the coefficient of the periodical changeable flow surface in tangential direction [ 10]. By the new proposal of the forced and damping torsion torque mathematical model, the eq. (2) is used as the right or an excitating part of a well-known equation: B\. A2 S'}, sin cot -F cos 2cot 4- -t- Aq A o Aq sin 2cot (5), where Af is the mean torque. With the coefficients setting into the new constants and with the above equation (5) separating into the three following differential equations:

Im(p + ap + k<p - D0 (6), Im(p + cj> -f kip = Di co s u t + D2 s in Lot (7), Im(p + ap + k<p = D3 cos 2Lot + D3 s in 2 ait (8 ) dobimo rešitev (sl. 6) kot vsoto delnih rešitev : where a solution is sum of particular solutions (Fig.6): y{t) = <ph + P l + >2 + ^3 (9), kjer so: ^-rešitev homogenega dela osnovne enačbe (5), (j)x - rešitev enačbe (6), (j>2 - rešitev (7) in rešitev (8). S superponiranim nihanjem, to je z upoštevanjem ponavljajočega se vzbujanja lastnega nihanja vodilne lopatice z utripnim tokom, lahko simuliramo vrtilni moment z enačbo: where is the solution o f homogenous part of equation (5), <j)xis the solution of the equation (6),^2is the solution of the equation (7) and (f>3 is the solution of the equation (8). With superposed oscillations it can be considered that the repeated eigen oscillation is agitated with the pulsation fluid flow and the torque can be simulated by the equation: t=i t i (p(t) = tph + ipi + + V?3 ± ^ 2 K l,i c o s(o>t + 27r i) ± ^ 2 K i sin (u t + 27tz) (10), i= 0 1=0 kjer so i - faktor kotnega faznega odmika glede na where: i are the factors of angle or phase delay on osnovno nihanje, Kx., ^.-naključno izbrani amplitudi the basic oscillation. The K u,k 2i are the coincidenz vrednostjo med 0 in 1, ter - krožna frekvenca tal se!ected amplitude with values between 0 and 1,,... -,, and co is the circumferential eigen measurement sysastnega nihania m erilnega sistem a. Tako ìe. e T.,. 6 J J tern frequency. In this way the non-steady torque upoštevana tudi delna nestacionarnosf vrtilnega part (Fig. 7), which is the consequence of the turbumomenta(sl. 7), ki nastane zaradi turbulentnosti toka lent flow and the experimental equipment noise, is in šuma merilne opreme. considered. Sl. 6. Nihanje vrtilnega momenta na osi vodilne lopatice pri n = 1800 min-1 in Q/Qop= 1,00 a) ter izračunani grafični prikaz b) Fig. 6. Guide-vane torque oscillations at 1800 rpm. and Q/Qopt = 1,00 a), with calculated torque graphic review b)

Sl. 7. Samokorelacijski zapis vrtilnega momenta na osi vodilne lopatice p ri n = 1800 m in'1 in Q/Q t = 1,00 a) ter izračunani superponirani grafični prikaz b) Fig. 7. Auto-correlation guide-vane torque record at 1800 rpm. and Q/Qopt - 1,00 a), with calculated superposed torque graphic record b) 6 PRIMERJAVA IZRAČUNANIH MOMENTOV Z IZMERJENIMI Iz diagramskih prikazov (sl. 6a, 6b) je razvidno ujemanje izračunanih vrednosti nihanja vrtilnega momenta na osi vodilne lopatice z eksperimentalno določenimi vrednostmi oz. s srednjimi vrednostmi šestih ponovitvenih meritev. Prav tako je razvidna podobnost zapisov teoretično določanega vrtilnega m om enta, superponiran i zapis ( s l. 7b) z samokorelacijskim zapisom (sl.7a). Iz slednjega je m ogoče sklepati na pravilno upoštevanje ponavljajočega se vzbujanja vodilne lopatice k lastnemu nihanju, s periodičnim utripnim tokom na izstopu iz rotorja. 7 SKLEPI Po merilnih rezultatih in njihovi primerjavi s teoretičnimi je mogoče sklepati, da smo merilni problem zadovoljivo rešili. V tem primeru je bilo treba registrirati majhne referenčne obremenitve (model obratuje z zrakom), ki so se časovno zelo spreminjale (utripno, neustaljeno). V okviru raziskovalnega dela razviti merilni sistem C podaja dobre rezultate, saj je z njim moč registrirati neposredno hidrodinamično silo na vodilni lopatici kakor tudi njene komponente in prijemališče, kar je bistvena prednost pred dosedanjimi merilnimi sistemi. 6 COMPARISON OF CALCULATED AND MEASURED RESULTS The satisfactory agreement between the calculated and measured guide-vane torque mean oscillatory values, determined from six repetition measurements, is evident from diagrams (Fig. 6a and 6b). Also the great similarity between theoretically determined oscillatory torque and the auto-correlation torque record (Fig. 7a) can be seen. On this basis, the regular consideration of periodic excitation of the guide-vane into its natural oscillation, with periodic pulsation flow at impeller exit, may be concluded. 7 CONCLUSIONS On the basis of experimental measurement results, the comparison between theoretical and measurement results, it may be concluded that the measuring problem has been satisfactorily solved. In given example the small referent loads (model operates with air), that is time changeable (pulsation and partly nonsteady changeable), are measured. In research work, the measuring system developed (system C) gives good results. The hydrodynamic force, its components and it acting handle, can be directly recorded. This is the main priority in comparison with the latest developed measuring systems.

Predlagani matematični model za teoretično napovedovanje nihanja momenta na osi vodilne lopatice daje sprejemljive rezultate, ki jih je mogoče uporabiti pri dimenzioniranju premera osi vodilne lopatice. Glede na prenos razmer z modela na izvedbo je mogoče upoštevati samo kinematično podobnost, saj gre v konkretnem primeru za obratovanje z dvema različnima fluidoma (zrak - model, voda - izvedba). The given mathematical model for theoretical torque on guide-vane shaft prediction gives acceptable results. This can be used for calculation o f guide-vane shaft diameter dimensions. Concerning model to original parameter transfer, only the kinematics similarity can be used, while in this case two different fluid mediums appear. The model operates with air, and the original facility operates w ith water. 6 LITERATURA 6 REFERENCES [1] Popovič, M.: Poročila raziskovalne naloge RSS od leta 1977 do leta 1992. Tehniška fakulteta, Univerza v Mariboru. [2] Velenšek, B., K. Oberdank : Flow kinematics in a stay vane/vicked gate cascade of a low head Kaplan turbine. Experimental heat transfear. Fluid Mechanics, and Thermodynamics 1991, Elsevier Science Publishing Co. Inc. Amsterdam, 1991. [3] Predin A., M. Popovič: Contribution to the experimental analysis of fluid flow in the guide wheel of the reversible pump-turbine in pump mode. Heat Transfer and Fluid Mechanics Institute Proceedings, Sacramento California State University, 1993, 41-54. [4] R ust., M. Jamnik: Tokovno polje v kaskadi radialne črpalke - turbine. Kuhljevi d n e v i 92, Portorož, 1992. [5] Predin A., M. Popovič: The pivoted guide-vane oscillating in the turbocom pressor. International Symposium on Gas Turbines and Gas Cycle Plants Proceedings. Faculty of Mechanical Engineering, University of Ljubljana, 1993, 119-130. [6] Popovič, M.: Proučavanje pulzacionog strujanja na izlazu iz obrtnog kola reverzibilne pumpe-turbine u pumpnom radnom režimu i njegovog uticaja na oscilacije obrtnog momenta lopatice sprovodnog kola. Doktorska disertacija, Mašinski fakultet, Beograd, 1979. [7] Predin A.-M. Popovič: Contribution to the Measurements and Analysis of Pulsatory Hydrodynamic Forces and Torque on Guide Vanes of Pump-Turbine Systems. IMECO Technical Commitee Series; No.31 1993,137-144. [8] Hottner T : Dreikomponenten-Windkanalwaage für interferenzffeie Messungen von Luftkraftkomponenten. Messtechnische Briefe 16, Heft 2, 1980. [9] Predin A.:Vpliv pulzacijskih veličin na strujne razmere v vodilniku turbočrpalnih strojev. Magistrsko delo, Tehniška fakulteta Maribor, 1990. [10] Predin A.:Prispevek k analizi sil na vodilni lopatici modelske reverzibilne črpalke turbine v črpalnem obratovalnem režimu. Doktorska disertacija, Tehniška fakulteta Maribor, 1994. [11] Popovič, M. : Eksperimentalno raziskovanje strujanja v modelu reverzibilne črpalne turbine. Strojniški vestnik (19) 1973/4-5. Avtorjev naslov: dr. Andrej Predin, dipl. inž. Fakulteta za strojništvo Univerze v Mariboru Smetanova 17 2000 Maribor Author's Address: Dr. Andrej Predin, Dipl. Ing. Faculty of Mechanical Engineering University of Maribor Smetanova 17 2000 Maribor, Slovenia Prejeto: Received: 31.1.1996 Sprejeto: Accepted: 26.2.1997