The MATLAB Notebook v1.5.2

Velikost: px
Začni prikazovanje s strani:

Download "The MATLAB Notebook v1.5.2"

Transkripcija

1 OSNOVE ELEKTROTEHNIKE I s programom MATLAB. Elektrina (naboj), sila med elektrinami Elektrina je kvantizirana. Osnovna elektrina (naboj) elektrona je q =-1, As. Enota za elektrino je [A.s]=[C]. Sila med elektrinama je proporcionalna produktu velikosti elektrin in nasprotno proporocionalna kvadratu razdalje med elektrinama F = k. QQ 2 r Konstanta proporcionalnosti je k = 9.1 Nm /C. 4πε Naloga.1: Jedro atoma železa ima radij m in vsebuje 26 protonov. Kolikšna je elektrostatična sila med dvema protonoma, ki sta razmaknjena za m? % Izracun sile med elektrinama. Znak za komentar je % q=1.69e-19 % ce stavka ne zakljucimo s podpicjem (;) se izpise sproten rezultat k=9e9; r=4e-15; F=k*q^2/r^2; %izracun strf=num2str(f); %pretvorba v string disp(['sila je ' strf ' N']); %izpis q = 1.69e-19 Sila je N a) Ali je ta sila odbojna ali privlačna? b) Kolikšna je elektrostatična sila v primerjavi z gravitacijsko silo med protonoma? (g=6, Nm 2 /kg 2, m p =1, kg) c) (Zakaj se jedro železa ne razleti?) Naloga.2: Kolikšna je elektrostatična sila med natrijevim ionom (Na + elektrina +q) in klorovim ionom (Cl-, elektrina -q) v kristalu soli, če sta iona razmaknjena za m? Naloga.3: Dva identična iona, razmaknjena za m, se odbijata s silo 3,7.1-9 N. Kolikšna je elektrina vsakega od ionov? Koliko elektronov "manjka" (je preveč), da bi bila iona nevtralna?

2

3 1. SIla - Coulombov zakon Sila med elektrinama je usmerjena vzdolž premice na kateri se nahajata elektrini. Spreminja se inverzno proporcionalno s kvadratom razdalje med elektrinama in je proporcionalna velikosti obeh elektrin: Sila na elektrino Q2 je:!" 1 QQ 1. " 2 F12 =..1 2 r12 (.1) 4πε r12 " kjer je 1r 12 enotin vektor v smeri od elektrine Q1 do Q 2. Če je elektrin več, je sila na elektrino (vektorska) vsota prispevkov posameznih elektrin (superpozicija!). Naloga 1.1: Elektrina Q1=2 µc se nahaja v središču koordinatnega sistema P1(,,)m. S kolikšno silo deluje na elektrino Q2=-3 µc, ki se nahaja v točki P2(1,3,2) cm? Namen: Seznanitev z vektorskim računom ter izračun sile na elektrino v poljubni točki. MLAB: Vrstični vektor zapišemo tako, da nizamo komponente vektorja v oglatem oklepaju (r1=[,, ]). Absolutno vrednost vektorja dobimo tako, da skalarno pomnožimo vektor s samim seboj (Abs_r21=sqrt(r21*r21');). Potrebno je biti pozoren na to, da je v MATLABU potrebno množiti vektor s transponiranim vektorjem, ki ga označuje zgornji apostrof ('). Q1=2e-6; % Q2=-3e-6 % če vrstice ne zaključimo z znakom";", se izpiše rezultat e=8.854e-12; k=1/(4*pi*e); Q2 = -3.e-6 r1=[,, ]; r2=[1,3,2]*1e-2; % dielektričnost vakuuma % izpis rezultata %vrstični vektor r21=r2-r1; % vektor, ki kaže od vektorja r1 proti vektorju r2 oz. iz izhodišča v točko P2 Abs_r21=sqrt(r21*r21'); % absolutna vrednost vektorja r21 dobimo z množenjem vektorja r21 s transponiranim vektorjem r21' er21=r21/abs_r21 % normalni vektorj v smeri r21 er21 = F21=k*Q1*Q2*er21/Abs_r21^2 % sila na elektrino Q2

4 Abs_F21=sqrt(F21*F21') Abs_F21 = F21 = a) V katero smer kaže sila na elektrino? b) V kateri smeri je največja sila? c) Koliko je absolutna vrednost sile (enote!)? d) Koliko prostih elektronov vsebujeta Q1 in O2? e) Kolišna je sila v smeri vektorja d=(1,2,)? (Uporabi skalanrni produkt vektorja z enotinim vektorjem v smeri vektorja d!) Naloga 1.2: Poleg dveh elektrin iz naloge 1 imamo še elektrino Q3=1 µc na mestu P3(- 1,,2)cm. Vsota vseh treh elektrin je enaka, kar zaključuje sistem elektrin. Ponovno izračunajte silo na elektrino Q2! Namen: Uporaba superpozicije za izračun sile v sistemu več točkastih elektrin. MLAB: Ker smo silo Q1 na Q2 že izračunali, izračunamo le še prispevek elektrine Q3 in prispevka seštejemo: Q3=1e-6; r3=[-1,,2]*1e-2; r23=r2-r3 Abs_r23=sqrt(r23*r23'); er23=r23/abs_r23; F23=k*Q1*Q2*er23/Abs_r23^2 % sila na elektrino Q2 Abs_F23=sqrt(F23*F23') F2=F21+F23 % celotna sila na elektrino Q2 r23 =.2.3 F23 = Abs_F23 = F2 = a) Katera sila je večja, F21 ali F23 in zakaj? b) * Kako bi izračunali silo na elektrino v primeru 1-ih elektrin?

5 c) ** Kam bi morali postaviti elektrino Q3, da bi bila sila nanjo enaka nič? Naloga 1.3 Določite silo na elektrino Q1 iz naloge 1.1! Naloga 1.4 Določite silo na elektrino Q1 iz naloge 1.2! Naloga 1.5 Elektrinam v nalogi 1.2 poljubno spreminjamo predznak. Kdaj bo sila na elektrino Q3 največja in kdaj najmanjša in koliko bo? Naloga 1.6P: Uporaba elektrostatične sile med delci: Primer izračuna elektrostatične sile ne cezijev ion v molekuli cezijevega klorida! V molekuli cezijevega klorida (CsCl) so cezijevi ioni (Cs+) nameščeni v vogalih kocke, ki ima dolžino stranice a=,4 nm, klorov ion (Cl-) pa je v centru kocke. Kolikšna je sila na klorov ion? Če manjka en cezijev ion, rečemo, da ima kristal defekt. Kolikšna je sila na klorov ion v tem primeru?

6 2. Električno polje Električno poljsko jakost definiramo kot silo na enoto poskusne elektrine q. V tem smislu lahko izračunamo električno poljsko jakost povsod v prostoru, kjer se nahajajo elektrine. V prostoru N točkastih elektrin je električna poljska jakost na mestu določenim z vektorjem r k vsota prispevkov vseh elektrin:!" N 1 Q " k. i E r = 2.1 rki 4πε = 1 r i i k ki Naloga 2.1 V prostoru imamo elektrini Q1=2 pc v točki P1(1,1,1)mm in Q2=-2 pc v točki P2(-2,-1,3) cm. Koliko je električna poljska jakost v središču koordinatnega sistema? Namen: Izračun električne pojske jakosti v poljubni točki prostora kot superpozicija prispevkov. Q1=2e-12; Q2=-2e-12; e=8.854e-12; r=[,,]; r1=[1, 1, 1]*1e-2; r2=[-2,-1,3]*1e-2; % tvorimo vektor, ki kaže od točke P2 (vektor r2) proti točki središču k.s. (vektor r) r2=r-r2; r1=r1-r; Abs_r2=sqrt(r2*r2'); er2=r2/abs_r2; Abs_r1=sqrt(r1*r1'); er1=r1/abs_r1; E2=k*Q2*er2/Abs_r2^2 E1=k*Q1*er1/Abs_r1^2 E=E2+E1 Abs_E=sqrt(E*E') % polje zaradi elektrine Q2 % polje zaradi elektrine Q1 E2 = E1 = E = Abs_E = Naloga 2.2: Določite električno poljsko jakost na mestu P4(1,1,1)cm za elektrine iz naloge 1.2!

7 Naloga 2.3: Elektrini Q1=1 µc in Q2=-3 µc sta razmaknjeni za 12 cm in se nahajata vzdolž x osi. Izrišite električno poljsko jakost vzdolž x osi! Namen: Izračun polja za poljubno točko v prostoru. Seznanitev z zapisom vektorjev in matrik ter operacij med njimi. MLAB: Vektor točk vzdolž x osi od -5cm do 2 cm po koraku.5 zapišemo kot (X=(- 5:.5:2)*1e-2;). Množenje vektorja a z vektorjem b (a*b) je skalarni produkt. En vektor mora biti vrstica, drugi stolpec, rezultat je skalar. Množenje (deljenje) komponent vektorja a s komponentami vektorja b brez dodatnega seštevanja delnih množenj (deljenj), dosežemo z operacijo (.*) ali (./). Za izris grafa si poglejte pomoč v MLABu (help plot). clear all Q1=1e-6; Q2=-3e-6; e=8.854e-12; k=1/(4*pi*e); X=(-5:.5:2)*1e-2; % koordinate x osi % Q1 postavimo v koord. izhodišce, Q2 pa 12 cm stran v smeri poz. x osi E1=k*Q1*X./abs(X).^3; % operator za deljenje vektorja je "./" XT=12*1e-2*ones(1,length(X)); %vektor z vrednostmi pozicije lektrine Q2 Xraz=X-XT; E2=k*Q2*Xraz./abs(Xraz).^3; E=E1+E2; plot(x,e1,x,e2,x,e,'o') xlabel('x os [cm]'); ylabel('e1, E2 in E1+E2 [V/m]'); E1, E2 in E1+E2 [V/m] 1.5 x X os [cm] a) Kakšna je smer polja vzdolž x osi? b) Koliko je najmanjša velikost polja med elektrinama? c) Kje je polje enako nič? d) Kakšno bi bilo polje, če bi bila tudi druga elektrina pozitivna? e) Kakšno bi bilo polje, če bi bili obe elektrini pozitivni? f) Kakšno bi bilo polje, če bi bili obe elektrini negativni? g) Kam bi morali postaviti elektrino Q3=2 µc, da bo sila nanj enaka nič? h) Koliko bi morala biti elektrina Q3, če jo postavimo med elektrini Q1 in Q2, da bo sila nanjo enaka?

8 Naloga 2.4: Določite in izrišite električno poljsko jakost vzdolž osi x (y=,z=) od x=- 3cm do x=3cm s korakom dx=.5cm za elektrine iz naloge 2.1! Namen: Seznanitev z izračunom polja za poljubno postavljene elektrine ter seznanitev s problematiko vizualizacije polja. MLAB: Zapišemo vektor X, ki vsebuje koordinate, kjer želimo računati polje in celotnega v matriko P: clear all Q1=2e-12; Q2=-2e-12; e=8.854e-12; k=1/(4*pi*e); r1=[1, 1, 1]*1e-2; r2=[-2,-1,3]*1e-2; X=[-3:.1:3]*1e-2; len=length(x); Y=zeros(1,len); Z=Y; P=[X' Y' Z']; %tvorimo matriko s koordinatami tock P(x,y,z) P(1,:); % tako zapišemo prvi vektor for i=1:len RP1(i,:)=(P(i,:)-r1); ERP1(i,:)=k*Q1*RP1(i,:)/abs(R P1(i,:)*RP1(i,:)')^3; RP2(i,:)=(P(i,:)-r2); ERP2(i,:)=k*Q2*RP2(i,:)/abs(R P2(i,:)*RP2(i,:)')^3; ERP1(:,1); % x komponenta polja, ki ga povzroča elektrina Q2 ERP2(:,1); % x komponenta polja, ki ga povzroča elektrina Q2 E=ERP1 + ERP2; for i=1:len Eabs(i)=sqrt(E(i,1)^2+E(i,2)^2+E (i,3)^2); Eabs; Ex [V/m] AbsE [V/m] 1 x x 17 x [m] x [m] subplot(2,1,1),plot(x,e(:,3)) grid on; xlabel(' x [m]'); ylabel('ex [V/m]'); subplot(2,1,2),plot(x,eabs) grid on;

9 xlabel(' x ylabel('abse [m]'); [V/m]'); a) Poskušajte si predstavljati, kako bi se spreminjala Ez po x osi? Skicirajte in potem preverite tako, da namesto plota E(:,1) uporabite E(:,3)! b) Kako bi se spreminjal Ez, če bi bila elektrina Q2 na mestu P2(-2,-1,1)? c) Ker je prostorska predstavitev vektorskega polja v treh dimenzijah težka, poskusite skucirati električno poljsko jakost če gledamo le dve dimenziji. Naj bosta točki P1(1,,1) in P2(-1,,-1). V tem primeru ležita točki le v (x,z) ravnini, torej je tudi električna poljska jakot v smeri y enaka nič. Kako se sedaj spreminja polje Ez in Ex po oseh x in z? d) Kakšno bi bilo polje Ez(x,y=z=), Če bi bila elektrina Q1=1 pc? Naloga 2.5: Izrišite 3D graf električne poljske jakosti za elektrino Q1=5 pc postavljeno na mestu P1(1,2)cm. Izrišite polje v območju (,) do (4,4)cm! Namen: Seznanitev s 3D vizualizacijo polja. MLAB: Točke v prosturu zapišemo v matriko ([X,Y]=meshgrid(:dx:maxx,:dy:ma xy);). S pomočjo dveh FOR zank prečešemo vse točke in izračunamo polje. Za vizualizacijo uporabimo funkcijo MESH. clear all Q1=5e-12; e=8.854e-12; k=1/(4*pi*e); r1=[1, 2]*1e-2; dx=.5e-3;dy=.5e-3; maxx=4e- 2;maxy=4e-2; x=:dx:maxx; y=:dy:maxy; [X,Y]=meshgrid(:dx:maxx,:dy:ma xy); for i=1:1:length(x) for j=1:1:length(y) p1x=r1(1,1)-x(i); p1y=r1(1,2)-y(j); psqr=sqrt(p1x^2+p1y^2); if psqr== psqr=1e-1; E1x(i,j)=k*Q1*p1x/psqr^3; E1y(i,j)=k*Q1*p1y/psqr^3;

10 Eabs=(sqrt(E1x.^2+E1y.^2)); Emax=max(max(Eabs)); [i,j]=find(eabs==); Eabs(i,j)=Emax; figure,mesh(x,y,eabs) Naloga 2.6: Izrišite 3D graf in konture električne poljske jakosti za elektrine Q1=5 pc, Q2=-2 pc in Q3=-3 pc, ki se nahajajo v točkah P1(1,2) cm, P2 (2,3) cm in P3(1,1). Izrišite konture polja na x-y ravnini v območju (,) do (3,3)cm! Namen: 3D vizualizacija polja, delo s FOR zankami in poljubnim številom elektrin. MLAB: Podobno kot v prejšnjem primeru, le da imamo več elektrin. Za izris kontur električne poljske jakosti glej (help contourf). Ker se polje spreminja s kvadratom, je za boljšo vizualizacijo koristno izrisati konture (desetiškega) logaritma polja. Poleg tega lahko grafu dodate vektorje, ki kažejo v smeri polja. Najprej je potrebno uporabiti ukaz gradient, ki numerično izračuna odvod vektorja v vseh točkah ter za izris ukaz quiver. clear all Q=[5e-12,-2e-12,-3e-12]; e=8.854e-12; k=1/(4*pi*e); R=1e-2*[1, 2;2,2;1,1]; dx=.5e-3;dy=.5e-3; maxx=4e- 2;maxy=4e-2; x=:dx:maxx; y=:dy:maxy; [X,Y]=meshgrid(:dx:maxx,:dy:ma xy); N=length(Q); E1x=zeros(length(x),length(x)); E1y=E1x; for i=1:1:length(x) for j=1:1:length(y) for k=1:1:n p1x=r(k,1)-x(i); p1y=r(k,2)-y(j); psqr=sqrt(p1x^2+p1y^2); %if psqr== % psqr=1e-4; %

11 E1x(i,j)=E1x(i,j)+k*Q(k)*p1x/psqr^3; E1y(i,j)=E1y(i,j)+k*Q(k)*p1y/psqr^3; Eabs=(sqrt(E1x.^2+E1y.^2)); Emax=max(max(Eabs)); [i,j]=find(eabs==); %Eabs(i,j)=Emax; figure,surf(x,y,log1(eabs)), colormap hot figure,[c,h]=contourf(x,y,log 1(Eabs)); colorbar [U,V]=gradient(log1(Eabs),x, y); hold on; quiver(x,y,u,v) a) Analiziraj polje v primeru dveh enako velikih elektrin! b) Analiziraj polje v primeru dveh enako velikih elektrin nasprotnega predznaka! c) Analiziraj polje v primeru dveh različno velikih elektrin nasprotnega predznaka! d) Analiziraj polje v primeru dveh različno velikih elektrin nasprotnega predznaka! e) Kaj ne vidimo pri konturnem prikazu polja? f) Kakšno je polje v sredini med elektrinama v primerih a) do d)? g) Kakšno je polje daleč stran (v okolici) sistema elektrin za primere a) do d)? Naloga 2.7: Določite električno poljsko jakost dipola rezultat primerjajte z analitičnim vzdolž osi dipola!!!" M = 16 2,5.1 (1,,) Cmter

12 3. Potencial, napetost Potencial definiramo kot delo, ki ga opravi elektrostatično polje pri premiku pozitivne elektrine 1As po poljubni poti od neke splošne točke T v prostoru (kjer potencial iščemo), do točket, kjer je potencial enak nič. T V =!" Edl. " T Naloga 3.1: Izračunajte in izrišite polje in potencial med koncentričnima prevodnima valjema (koaksialni kabel) z notranjim polmerom rn=1 mm in zunanjim polmerom rz=3mm, če je med njima priključena napetost 25V. Namen: Izračun potenciala in polja za koaksialni kabel in grafični prikaz. MLAB: Uporabite ukaz plotyy za izris obeh funkcij na enem plotu. clear all; e=8.854e-12; k=1/(4*pi*e); U=25; rn=1e-3; rz=3e-3; q=u*2*pi*e/(log(rz/rn)); R=:1e-4:rz; 3 x E=zeros(length(R),1); V=E; E=q/(2*pi*e)./R; V=q/(2*pi*e)*log(rz./R); for i=1:1:length(r) if R(i)<rn V(i)=U; E(i)=; %plot(r,v); xlabel(' Radij [m]'); ylabel(' Potencial [V]'); %figure; plot(r,e); xlabel(' Radij [m]'); ylabel(' El. poljska jakost [V/m]'); % IZRIS POLJA IN POTENCIALA NA ISTI SLIKI Z DVEMA OSEMA x 1-3 [ax ax1 ax2]=plotyy(r,v,r,e); axes(ax(1)); ylabel(' Potencial [V]'); axes(ax(2)); ylabel(' El. poljska jakost [V/m]'); Potencial [V] El. poljska jakost [V/m]

13 a) Kolikšna je največja in koliko najmanjša el. poljska jakost znotraj kabla (med valjema)? b) Kolikšno je polje v okolici kabla? c) V kakšnem razmerju je maksimalna el. poljska jakost za dva koncentrična prevodna valja in dve ravnini, če je med prevodnima ploskvama obeh elementov enaka napetost? Zakaj je tako? d) V kakšnem razmerju sta napetosti, če je med elementoma enako maksimalno polje? Zakaj je ena napetost višja? e) Izrišite ekvipotencialne ploskve in silnice električnega polja! Pomoč: krog izrišeš kot plot(sin(x),cos(x)), kjer gre x od do 2*pi. Uporabi še axis equal. f) Kolikšen sme biti najmanjši in največji polmer notranjega valja, da ne pride do preboja pri prebojni trdnosti zraka 2,1kV/mm? Pomoč: dobimo transcentno enačbo, ki jo lahko rešimo tabelarično, grafično ali numerično. g) Kolikšna je ploskovna gostota na manjšem in na večjem valju? Naloga 3.2: Za iste vrednosti radijev in napetosti kot pri nalogi 2.8 le tokrat za primer krogelnega kondenzatorja izračunajte in določite polje in potencial ter odgovorite na vprašanja! Dodatno: na grafu prikažite polje in potencial za ravni (ploščni), cilindrični in krogeljni kondenzator! Naloga 3.3: Določite el. poljsko jakost in potencial vzdolž naelektrenega obroča radija r=2cm, na katerem je enakomerno razporejena elektrina Q=12nC! Naloga 3.4: Za elektrine iz naloge 2.6 izračunajte potencial v prostoru ter izrišite ekvipotencialne ploskve in v obliki 3D grafa! Namen: Izračun potenciala za točkaste elektrine. 2D in 3D vizualizacija potenciala. Komentiranje ekvipotencialnih ploskev dveh enako velikih enako (predznačenih) elektrin. clear all Q=[5e-12,-3e-12,-2e-12]; e=8.854e-12; k=1/(4*pi*e); R=1e-2*[1, 2;2,2;1,1]; dx=.5e-3;dy=.5e-3; maxx=4e- 2;maxy=4e-2; x=:dx:maxx; y=:dy:maxy; [X,Y]=meshgrid(:dx:maxx,:dy:max y); N=length(Q); V=zeros(length(x),length(y)); for i=1:1:length(x) for j=1:1:length(y) Y os [m] Potencial [V] X os [m]

14 for m=1:1:n p1x=r(m,1)-x(i); p1y=r(m,2)-y(j); psqr=sqrt(p1x^2+p1y^2); V(i,j)=V(i,j)+k*Q(m)/psqr; %figure,surf(x,y,v),colormap hot, xlabel(' X os [m]'); ;zlabel('potencial [V]'); figure,[c,h]=contourf(x,y,v); colorbar xlabel(' X os [m]'); ylabel('y os [m]'); title('potencial [V]') a) V kateri točki je potencial enak nič? b) Kje je potencial pozitiven in kje negativen? c) Izriši ekvipotencialne ploskve za dve enako veliki elektrini istega (nasprotnega) predznaka! Komentiraj! d) Izriši ekvipotencialne ploskve za dve različno veliki elektrini istega (nasprotnega) predznaka! Komentiraj! Naloga 3.5: Določi potencial znotraj in zunaj naelektrene krogle z enakomerno porazdeljeno volumsko gostoto elektrin, če je radij krogle 2 cm, specifična gostota volumsko porazdeljene elektrine pa ρ=1e-1 C.m -3. Namen: Uporabite Gaussov stavek za izračun polja in z integracijo polja izračunajte potencial. a) Kolikšna napetost je znotraj naelektrene krogle? b) Kolikšna napetost je med med površino krogle in neskončnostjo? c) Kolikšna bi morala biti velikost točkaste elektrine, da bi bil potek polja in potenciala enak za radije večje od radija krogle? d) Pri kateri napetosti in kakšni specifični gostoti enakomerno porazdeljene gostote elektrin med plaščem krogle in notranjostjo bo največja poljska jakost enaka 3kV/cm? Kje bo polje največje? e) Kako se bi polje spremenilo, če bi se gostota elektrin linearno povečevala z radijem kot ρ = kr., pri čemer določite konstanto k tako, da bo celotna elektrina enaka, kot v primeru enakomerno porazdeljene elektrine? Naloga 3.6: Prikaži na grafu potek potencialov podanih v obliki funkcij: a) V(x,y)=4x 2 y x [:1] cm; y[:1] cm b) V(x,y)=4xy+ 2*sin(x) x [:1] cm; y[:1] cm c) V(x,y)=2*sin(x)*cos(y) x [:2] cm; y[:2] cm

15 Iz grafov poskusite skicirati konture električne poljske jakosti! Numerično in analitično določite in izrišite električno poljsko jakost za vse tri primere. Namen: Izračun in prikaz polja iz znane porazdelitve potenciala. Pozor: Ne izrisite polja z računalnikom, predno ga ne poskusite skicirati sami! Kjer se potencial najhitreje spreminja je polje največje. MLAB: Točke v x,y ravnini določite z ukazom meshgrid (naloga 2.5), pri določitvi funkcije pa pazite na to, da dosežemo množenje posameznih elementov matrike z ukazom (.*). Za prikaz potenciala uporabite ukaz contourf ali surf. Numerično odvajanje dosežemo z uporabo funkcije gradient ([Ex,Ey]=gradient(V,dx,dy)), kjer st dx in dy korak med točkami v x in y smeri. xmax=1e-2; dx=xmax/1; [X,Y]=meshgrid(:dx:xmax,:dx:x max); V=4.*(X.^2).*Y; %V=2*sin(X).*cos(Y); Potencial [V] contourf(x,y,v); title('potencial [V]') %surf(x,y,v) [Ex,Ey]=gradient(-V,dx,dx); Eabs=sqrt(Ex.^2+Ey.^2); %figure, surf(x,y,eabs) Naloga 3.7P: Primer uporabe elektrostatičnega polja: Elektrostatično čiščenje plinov. Da je mogoče z uporabo elektrostatičnega polja očistiti dim, so prvič demonstrirali v Nemčiji leta 182, prvi delujoči sistem pa je izdelal F. Cottrell iz Kalifornijske univerze (Berkley) let 196. Za uspešno delovanje sistema je potrebno ustvariti korono (ioniziran plin), kar je mogoče doseči pri velikem polju v okolici žice majhnega radija. Naj bo radij žičke 1mm in radij dimnika 2 cm. Določite potrebno napetost med žičko in notranjim plaščem dimnika, da bo ob žički prišlo do korone, pri čemer vzemimo prebojno trdnost zraka Ebr=3 MV/m! Dodatno: Izrišite krivuje poteka električne poljske jakosti, pri zagotovljenem pogoju za preboj, če spreminjamo notranji radij od 1 do 5 mm. Kdaj bo potrebna napetost najnižja in zakaj? Če bi bila žička v ekscentru, ali bi potrebovali večjo ali manjšo napetost?

16 4. Dielektriki, mejni pogoji Naloga 4.1P: Primer uporabe elektrostatičnega polja: Določitev prebojne napetosti koaksialnega kabla. Če uporabimo koaksialni kabel za prenos električne moči, je polmer kabla določen s tokom, ki teče skozi kabel ter ostale dimenzije z izolacijskim materialom in napetostjo. Predpostavimo notranji radij rn=,4 cm, ki je obdan z dielektrikom iz gume (ε rg =3,2) in poliestra (ε rp =2,6). Dimenzionirajte koaksialni kabel tako, da bo delal pri napetosti 2 kv. Da bi preprečili preboj v dielektrikih (pri udaru strele in drugih zunanjih pogojih), ne sme maksimalno polje znotraj dielektrika preseči 25% maksimalne prebojne trdnosti, ki je V/m za gumo in V/m za poliester! Med zunanjim in notranjim plaščem naj napetost ne bo večja od 2 kv. Postopek: Zapišemo enačbi za maksimalno prebojno trdnost in določimo radij zunanje plasti notranjega dielektrika ter elektrino, ki se nabere na žili. Napišemo enačbo za napetost kot integral polja od notranjega do zunanjega radija in iz enačbe določimo še zunanji radij. Dodatno: Izrišite krivuje poteka električne poljske jakosti, pri zagotovljenem pogoju za preboj, če spreminjamo notranji radij od 1 do 5 mm. Če bi želeli povečati delovno napetost od 2 na 3 kv, kakšna dielektrika bi morali uporabiti, če bi dimenzije kabla obdržali iste? Kakšen postopek bi potrebovali, če bi namesto notranjega radija imeli željen zunanji radij in bi iskali primeren notranji radij?

17 5. Energija elektrostatičnega polja Za točkaste elektrine izračunamo elektrino iz znanih vrednosti električnega potenciala na mestu elektrine in velikosti elektrin. N 1 W = Qk. Vk 2 k= 1 N 1 Qj Vk = 4πε r j= 1 j k jk V primeru porazdeljenih elektrin pa velja izraz 1 2 W = ε E dv. 2 V Naloga 5.1: Za porazdelitev elektrin iz naloge 1.2 določite elektrostatično energijo. a) Kaj pomeni dobljena številka? Kako jo lahko interpretirate? b) Kolikšno delo moramo opraviti, da premaknemo elektrino Q3 v koordinatno izhodišče? c) Kakšna je razlika med pozitivnim in negativnim predznakom, ki ga dobimo pri premikanju elektrin? d) Kolišna je energija sistema, če postavimo na mesto P4(3,3)cm še dodatno energijo Q4=2 pc?

The MATLAB Notebook v1.5.2

The MATLAB Notebook v1.5.2 OSNOVE ELEKTROTEHNIKE I s programom MATLAB (ver. 2.1) Dejan Križaj Laboratorij za bioelektromagnetiko, Fakulteta za elektrotehniko, Univerza v Ljubljani, Tržaška 25, 1000 Ljubljana Email: dejan.krizaj@fe.uni-lj.si

Prikaži več

Prevodnik_v_polju_14_

Prevodnik_v_polju_14_ 14. Prevodnik v električnem polju Vsebina poglavja: prevodnik v zunanjem električnem polju, površina prevodnika je ekvipotencialna ploskev, elektrostatična indukcija (influenca), polje znotraj votline

Prikaži več

Microsoft PowerPoint _12_15-11_predavanje(1_00)-IR-pdf

Microsoft PowerPoint _12_15-11_predavanje(1_00)-IR-pdf uporaba for zanke i iz korak > 0 oblika zanke: for i iz : korak : ik NE i ik DA stavek1 stavek2 stavekn stavek1 stavek2 stavekn end i i + korak I&: P-XI/1/17 uporaba for zanke i iz korak < 0 oblika zanke:

Prikaži več

Ime in priimek

Ime in priimek Polje v osi tokovne zanke Seminar pri predmetu Osnove Elektrotehnike II, VSŠ (Uporaba programskih orodij v elektrotehniki) Ime Priimek, vpisna številka, skupina Ljubljana,.. Kratka navodila: Seminar mora

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNIŠTVO Matematika 2. kolokvij 4. januar 212 Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Veljale bodo samo rešitve na papirju, kjer

Prikaži več

Vaje: Matrike 1. Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N 0 1 n ; n N Pokaži, da je množica x 0 y 0 x

Vaje: Matrike 1. Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N 0 1 n ; n N Pokaži, da je množica x 0 y 0 x Vaje: Matrike 1 Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N n 1 1 0 1 ; n N 0 2 Pokaži, da je množica x 0 y 0 x y x + z ; x, y, z R y x z x vektorski podprostor v prostoru matrik

Prikaži več

PowerPoint Presentation

PowerPoint Presentation I&R: P-X/1/15 operatorji, ki jih uporabljamo za delo z vektorskimi veličinami vektorski oklepaj [ ] ločnica med elementi vrstičnega vektorja je vejica, ali presledek ločnica med elementi stolpčnega vektorja

Prikaži več

1 Naloge iz Matematične fizike II /14 1. Enakomerno segreto kocko vržemo v hladnejšo vodo stalne temperature. Kako se spreminja s časom temperat

1 Naloge iz Matematične fizike II /14 1. Enakomerno segreto kocko vržemo v hladnejšo vodo stalne temperature. Kako se spreminja s časom temperat 1 Naloge iz Matematične fizike II - 2013/14 1. Enakomerno segreto kocko vržemo v hladnejšo vodo stalne temperature. Kako se spreminja s časom temperatura v kocki? Kakšna je časovna odvisnost toplotnega

Prikaži več

STAVKI _5_

STAVKI _5_ 5. Stavki (Teoremi) Vsebina: Stavek superpozicije, stavek Thévenina in Nortona, maksimalna moč na bremenu (drugič), stavek Tellegena. 1. Stavek superpozicije Ta stavek določa, da lahko poljubno vezje sestavljeno

Prikaži več

Microsoft Word - M docx

Microsoft Word - M docx Državni izpitni center *M77* SPOMLADANSK ZPTN OK NAVODLA ZA OCENJEVANJE Petek, 7. junij 0 SPLOŠNA MATA C 0 M-77-- ZPTNA POLA ' ' QQ QQ ' ' Q QQ Q 0 5 0 5 C Zapisan izraz za naboj... točka zračunan naboj...

Prikaži več

Vektorji - naloge za test Naloga 1 Ali so točke A(1, 2, 3), B(0, 3, 7), C(3, 5, 11) b) A(0, 3, 5), B(1, 2, 2), C(3, 0, 4) kolinearne? Naloga 2 Ali toč

Vektorji - naloge za test Naloga 1 Ali so točke A(1, 2, 3), B(0, 3, 7), C(3, 5, 11) b) A(0, 3, 5), B(1, 2, 2), C(3, 0, 4) kolinearne? Naloga 2 Ali toč Vektorji - naloge za test Naloga 1 li so točke (1, 2, 3), (0, 3, 7), C(3, 5, 11) b) (0, 3, 5), (1, 2, 2), C(3, 0, 4) kolinearne? Naloga 2 li točke a) (6, 0, 2), (2, 0, 4), C(6, 6, 1) in D(2, 6, 3), b)

Prikaži več

Microsoft Word - M

Microsoft Word - M Državni izpitni center *M773* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Četrtek, 4. junij SPLOŠNA MATRA RIC M-77--3 IZPITNA POLA ' ' Q Q ( Q Q)/ Zapisan izraz za naboja ' ' 6 6 6 Q Q (6 4 ) / C

Prikaži več

Microsoft Word - CelotniPraktikum_2011_verZaTisk.doc

Microsoft Word - CelotniPraktikum_2011_verZaTisk.doc Elektrotehniški praktikum Sila v elektrostatičnem polju Namen vaje Našli bomo podobnost med poljem mirujočih nabojev in poljem mas, ter kakšen vpliv ima relativna vlažnost zraka na hitrost razelektritve

Prikaži več

Slide 1

Slide 1 Vsak vektor na premici skozi izhodišče lahko zapišemo kot kjer je v smerni vektor premice in a poljubno število. r a v Vsak vektor na ravnini skozi izhodišče lahko zapišemo kot kjer sta v, v vektorja na

Prikaži več

FGG14

FGG14 Iterativne metode podprostorov Iterativne metode podprostorov uporabljamo za numerično reševanje linearnih sistemov ali računanje lastnih vrednosti problemov z velikimi razpršenimi matrikami, ki so prevelike,

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNISTVO Matematika Pisni izpit. junij 22 Ime in priimek Vpisna st Navodila Pazljivo preberite besedilo naloge, preden se lotite resevanja. Veljale bodo samo resitve na papirju, kjer so

Prikaži več

FAKULTETA ZA STROJNIŠTVO Matematika 2 Pisni izpit 9. junij 2005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite bese

FAKULTETA ZA STROJNIŠTVO Matematika 2 Pisni izpit 9. junij 2005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite bese FAKULTETA ZA STROJNIŠTVO Matematika Pisni izpit 9. junij 005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Veljale bodo

Prikaži več

Univerza v Mariboru Fakulteta za naravoslovje in matematiko Oddelek za matematiko in računalništvo Enopredmetna matematika IZPIT IZ VERJETNOSTI IN STA

Univerza v Mariboru Fakulteta za naravoslovje in matematiko Oddelek za matematiko in računalništvo Enopredmetna matematika IZPIT IZ VERJETNOSTI IN STA Enopredmetna matematika IN STATISTIKE Maribor, 31. 01. 2012 1. Na voljo imamo kovanca tipa K 1 in K 2, katerih verjetnost, da pade grb, je p 1 in p 2. (a) Istočasno vržemo oba kovanca. Verjetnost, da je

Prikaži več

Osnove elektrotehnike 1, VSŠ

Osnove elektrotehnike 1, VSŠ akrižajosnove elektrotehnike 1, VSŠ Osnovna izpitna vprašanja za ustni izpit ENOSMERNA VEZJA 1. Kirchoffova zakona: enačbi, katere lastnosti polja opisujeta, razlaga, uporaba. 1.Khz Vsota vseh tokov v

Prikaži več

Microsoft PowerPoint - OVT_4_IzolacijskiMat_v1.pptx

Microsoft PowerPoint - OVT_4_IzolacijskiMat_v1.pptx Osnove visokonapetostne tehnike Izolacijski materiali Boštjan Blažič bostjan.blazic@fe.uni lj.si leon.fe.uni lj.si 01 4768 414 013/14 Izolacijski materiali Delitev: plinasti, tekoči, trdni Plinasti dielektriki

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/testi in izpiti/ /IZPITI/FKKT-februar-14.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/testi in izpiti/ /IZPITI/FKKT-februar-14.dvi Kemijska tehnologija, Kemija Bolonjski univerzitetni program Smer: KT K WolframA: DA NE Računski del izpita pri predmetu MATEMATIKA I 6. 2. 2014 Čas reševanja je 75 minut. Navodila: Pripravi osebni dokument.

Prikaži več

Univerza v Novi Gorici Fakulteta za aplikativno naravoslovje Fizika (I. stopnja) Mehanika 2014/2015 VAJE Gravitacija - ohranitveni zakoni

Univerza v Novi Gorici Fakulteta za aplikativno naravoslovje Fizika (I. stopnja) Mehanika 2014/2015 VAJE Gravitacija - ohranitveni zakoni Univerza v Novi Gorici Fakulteta za aplikativno naravoslovje Fizika (I. stopnja) Mehanika 2014/2015 VAJE 12. 11. 2014 Gravitacija - ohranitveni zakoni 1. Telo z maso M je sestavljeno iz dveh delov z masama

Prikaži več

Fizika2_stari_testi.DVI

Fizika2_stari_testi.DVI Stari pisni izpiti in kolokviji iz Fizike 2 na Fakulteti za elektrotehniko 6. november 2003 Tako, kot pri zbirki za Fiziko 1, so izpiti in kolokviji zbrani po študijskih letih (2002/2003, 2001/2002, 2000/2001).

Prikaži več

Naloge 1. Dva električna grelnika z ohmskima upornostma 60 Ω in 30 Ω vežemo vzporedno in priključimo na idealni enosmerni tokovni vir s tokom 10 A. Tr

Naloge 1. Dva električna grelnika z ohmskima upornostma 60 Ω in 30 Ω vežemo vzporedno in priključimo na idealni enosmerni tokovni vir s tokom 10 A. Tr Naloge 1. Dva električna grelnika z ohmskima upornostma 60 Ω in 30 Ω vežemo vzporedno in priključimo na idealni enosmerni tokovni vir s tokom 10 A. Trditev: idealni enosmerni tokovni vir obratuje z močjo

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNISTVO Matematika 2. kolokvij. december 2 Ime in priimek: Vpisna st: Navodila Pazljivo preberite besedilo naloge, preden se lotite resevanja. Veljale bodo samo resitve na papirju, kjer

Prikaži več

ANALITIČNA GEOMETRIJA V RAVNINI

ANALITIČNA GEOMETRIJA V RAVNINI 3. Analitična geometrija v ravnini Osnovna ideja analitične geometrije je v tem, da vaskemu geometrijskemu objektu (točki, premici,...) pridružimo števila oz koordinate, ki ta objekt popolnoma popisujejo.

Prikaži več

MATLAB programiranje MATLAB... programski jezik in programersko okolje Zakaj Matlab? tipičen proceduralni jezik enostaven za uporabo hitro učenje prir

MATLAB programiranje MATLAB... programski jezik in programersko okolje Zakaj Matlab? tipičen proceduralni jezik enostaven za uporabo hitro učenje prir MATLAB programiranje MATLAB... programski jezik in programersko okolje Zakaj Matlab? tipičen proceduralni jezik enostaven za uporabo hitro učenje priročno programsko okolje tolmač interpreter (ne prevajalnik)

Prikaži več

ELEKTRIČNI NIHAJNI KROG TEORIJA Električni nihajni krog je električno vezje, ki služi za generacijo visokofrekvenče izmenične napetosti. V osnovi je "

ELEKTRIČNI NIHAJNI KROG TEORIJA Električni nihajni krog je električno vezje, ki služi za generacijo visokofrekvenče izmenične napetosti. V osnovi je ELEKTRIČNI NIHAJNI KROG TEORIJA Električni nihajni krog je električno vezje, ki služi za generacijo visokofrekvenče izmenične napetosti. V osnovi je "električno" nihalo, sestavljeno iz vzporedne vezave

Prikaži več

Poslovilno predavanje

Poslovilno predavanje Poslovilno predavanje Matematične teme z didaktiko Marko Razpet, Pedagoška fakulteta Ljubljana, 20. november 2014 1 / 32 Naše skupne ure Matematične tehnologije 2011/12 Funkcije več spremenljivk 2011/12

Prikaži več

dr. Andreja Šarlah Teorijska fizika II (FMF, Pedagoška fizika, 2010/11) kolokviji in izpiti Vsebina Kvantna mehanika 2 1. kolokvij 2 2. kolokvij 4 1.

dr. Andreja Šarlah Teorijska fizika II (FMF, Pedagoška fizika, 2010/11) kolokviji in izpiti Vsebina Kvantna mehanika 2 1. kolokvij 2 2. kolokvij 4 1. dr. Andreja Šarlah Teorijska fizika II (FMF, Pedagoška fizika, 2010/11) kolokviji in izpiti Vsebina Kvantna mehanika 2 1. kolokvij 2 2. kolokvij 4 1. izpit 5 2. izpit 6 3. izpit (2014) 7 Termodinamika

Prikaži več

FGG13

FGG13 10.8 Metoda zveznega nadaljevanja To je metoda za reševanje nelinearne enačbe f(x) = 0. Če je težko poiskati začetni približek (še posebno pri nelinearnih sistemih), si lahko pomagamo z uvedbo dodatnega

Prikaži več

VAJE

VAJE UČNI LIST Geometrijska telesa Opomba: pri nalogah, kjer računaš maso jeklenih teles, upoštevaj gostoto jekla 7,86 g / cm ; gostote morebitnih ostalih materialov pa so navedene pri samih nalogah! Fe 1)

Prikaži več

Osnove matematicne analize 2018/19

Osnove matematicne analize  2018/19 Osnove matematične analize 2018/19 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D f R priredi natanko

Prikaži več

Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y

Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y 2 ). Rešitev: Diferencialna enačba ima ločljive spremenljivke,

Prikaži več

CpE & ME 519

CpE & ME 519 2D Transformacije Zakaj potrebujemo transformacije? Animacija Več instanc istega predmeta, variacije istega objekta na sceni Tvorba kompliciranih predmetov iz bolj preprostih Transformacije gledanja Kaj

Prikaži več

Numeri na analiza - podiplomski ²tudij FGG doma e naloge - 1. skupina V prvem delu morate re²iti toliko nalog, da bo njihova skupna vsota vsaj 10 to k

Numeri na analiza - podiplomski ²tudij FGG doma e naloge - 1. skupina V prvem delu morate re²iti toliko nalog, da bo njihova skupna vsota vsaj 10 to k Numeri na analiza - podiplomski ²tudij FGG doma e naloge -. skupina V prvem delu morate re²iti toliko nalog, da bo njihova skupna vsota vsaj 0 to k in da bo vsaj ena izmed njih vredna vsaj 4 to ke. Za

Prikaži več

C:/Users/Matevz/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-januar-februar-15.dvi

C:/Users/Matevz/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-januar-februar-15.dvi Kemijska tehnologija, Kemija Bolonjski univerzitetni program Smer: KT K WolframA: DA NE Čas reševanja je 75 minut. Navodila: Računski del izpita pri predmetu MATEMATIKA I Ugasni in odstrani mobilni telefon.

Prikaži več

Linearna algebra - povzetek vsebine Peter Šemrl Jadranska 21, kabinet 4.10 Izpitni režim: Kolokviji in pisni izpiti so vsi s

Linearna algebra - povzetek vsebine Peter Šemrl Jadranska 21, kabinet 4.10 Izpitni režim: Kolokviji in pisni izpiti so vsi s Linearna algebra - povzetek vsebine Peter Šemrl Jadranska 21, kabinet 410 petersemrl@fmfuni-ljsi Izpitni režim: Kolokviji in pisni izpiti so vsi sestavljeni iz dveh delov: v prvem delu se rešujejo naloge,

Prikaži več

7. VAJA A. ENAČBA ZBIRALNE LEČE

7. VAJA A. ENAČBA ZBIRALNE LEČE 7. VAJA A. ENAČBA ZBIRALNE LEČE 1. UVOD Enačbo leče dobimo navadno s pomočjo geometrijskih konstrukcij. V našem primeru bomo do te enačbe prišli eksperimentalno, z merjenjem razdalj a in b. 2. NALOGA Izračunaj

Prikaži več

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5. februar 2018 Navodila Pazljivo preberite

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5. februar 2018 Navodila Pazljivo preberite Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5 februar 018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Nalog je

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-avgust-17.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-avgust-17.dvi Vpisna številka Priimek, ime Smer: K KT WA Izpit pri predmetu MATEMATIKA I Računski del Ugasni in odstrani mobilni telefon. Uporaba knjig in zapiskov ni dovoljena. Dovoljeni pripomočki so: kemični svinčnik,

Prikaži več

Popravki nalog: Numerična analiza - podiplomski študij FGG : popravljena naloga : popravljena naloga 14 domače naloge - 2. skupina

Popravki nalog: Numerična analiza - podiplomski študij FGG : popravljena naloga : popravljena naloga 14 domače naloge - 2. skupina Popravki nalog: Numerična analiza - podiplomski študij FGG 9.8.24: popravljena naloga 4 3..25: popravljena naloga 4 domače naloge - 2. skupina V drugem delu morate rešiti toliko nalog, da bo njihova skupna

Prikaži več

Microsoft PowerPoint - Java_spremenljivke

Microsoft PowerPoint - Java_spremenljivke Java Spremenljivke, prireditveni stavek Spremenljivke Prostor, kjer hranimo vrednosti Ime Znak, števka, _ Presledkov v imenu ne sme biti! Tip spremenljivke int (cela števila) Vse spremenljivke napovemo

Prikaži več

Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t

Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t 0.5 1.5 2.0 t a.) Nari²ite tri grafe: graf (klasi ne)

Prikaži več

Predtest iz za 1. kontrolno nalogo- 2K Teme za kontrolno nalogo: Podobni trikotniki. Izreki v pravokotnem trikotniku. Kotne funkcije poljubnega kota.

Predtest iz za 1. kontrolno nalogo- 2K Teme za kontrolno nalogo: Podobni trikotniki. Izreki v pravokotnem trikotniku. Kotne funkcije poljubnega kota. Predtest iz za 1. kontrolno nalogo- K Teme za kontrolno nalogo: Podobni trikotniki. Izreki v pravokotnem trikotniku. Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih

Prikaži več

Strojna oprema

Strojna oprema Asistenta: Mira Trebar, Miha Moškon UIKTNT 2 Uvod v programiranje Začeti moramo razmišljati algoritmično sestaviti recept = napisati algoritem Algoritem za uporabo poljubnega okenskega programa. UIKTNT

Prikaži več

DN5(Kor).dvi

DN5(Kor).dvi Koreni Število x, ki reši enačbo x n = a, imenujemo n-ti koren števila a in to označimo z n a. Pri tem je n naravno število, a pa poljubno realno število. x = n a x n = a. ( n a ) n = a. ( n a ) m = n

Prikaži več

Kazalo 1 DVOMESTNE RELACIJE Operacije z dvomestnimi relacijami Predstavitev relacij

Kazalo 1 DVOMESTNE RELACIJE Operacije z dvomestnimi relacijami Predstavitev relacij Kazalo 1 DVOMESTNE RELACIJE 1 1.1 Operacije z dvomestnimi relacijami...................... 2 1.2 Predstavitev relacij............................... 3 1.3 Lastnosti relacij na dani množici (R X X)................

Prikaži več

LABORATORIJSKE VAJE IZ FIZIKE

LABORATORIJSKE VAJE IZ FIZIKE UVOD LABORATORIJSKE VAJE IZ FIZIKE V tem šolskem letu ste se odločili za fiziko kot izbirni predmet. Laboratorijske vaje boste opravljali med poukom od začetka oktobra do konca aprila. Zunanji kandidati

Prikaži več

Univerza v Mariboru Fakulteta za naravoslovje in matematiko Oddelek za matematiko in ra unalni²tvo Izobraºevalna matematika Pisni izpit pri predmetu K

Univerza v Mariboru Fakulteta za naravoslovje in matematiko Oddelek za matematiko in ra unalni²tvo Izobraºevalna matematika Pisni izpit pri predmetu K 31. januar 2014 1. [25] V kino dvorano z 10 vrstami po 10 o²tevil enih sedeºev vstopi 100 ljudi. Od tega je 40 deklet in 60 fantov. Na koliko na inov se lahko posedejo, (a) e ni nobenih omejitev? (b) e

Prikaži več

DOMACA NALOGA - LABORATORIJSKE VAJE NALOGA 1 Dani sta kompleksni stevili z in z Kompleksno stevilo je definirano kot : z = a + b, a p

DOMACA NALOGA - LABORATORIJSKE VAJE NALOGA 1 Dani sta kompleksni stevili z in z Kompleksno stevilo je definirano kot : z = a + b, a p DOMACA NALOGA - LABORATORIJSKE VAJE NALOGA 1 Dani sta kompleksni stevili z 1 5 2 3 in z 2 3 8 5. Kompleksno stevilo je definirano kot : z = a + b, a predstavlja realno, b pa imaginarno komponento. z 1

Prikaži več

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6. julij 2018 Navodila Pazljivo preberite be

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6. julij 2018 Navodila Pazljivo preberite be Ime in priimek: Vpisna št: FAKULEA ZA MAEMAIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6 julij 2018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Za pozitiven rezultat

Prikaži več

EKVITABILNE PARTICIJE IN TOEPLITZOVE MATRIKE Aleksandar Jurišić Politehnika Nova Gorica in IMFM Vipavska 13, p.p. 301, Nova Gorica Slovenija Štefko Mi

EKVITABILNE PARTICIJE IN TOEPLITZOVE MATRIKE Aleksandar Jurišić Politehnika Nova Gorica in IMFM Vipavska 13, p.p. 301, Nova Gorica Slovenija Štefko Mi EKVITABILNE PARTICIJE IN TOEPLITZOVE MATRIKE Aleksandar Jurišić Politehnika Nova Gorica in IMFM Vipavska 13, p.p. 301, Nova Gorica Slovenija Štefko Miklavič 30. okt. 2003 Math. Subj. Class. (2000): 05E{20,

Prikaži več

MATEMATIKA 2. LETNIK GIMNAZIJE G2A,G2B Sestavil: Matej Mlakar, prof. Ravnatelj: Ernest Simončič, prof. Šolsko leto 2011/2012 Število ur: 140

MATEMATIKA 2. LETNIK GIMNAZIJE G2A,G2B Sestavil: Matej Mlakar, prof. Ravnatelj: Ernest Simončič, prof. Šolsko leto 2011/2012 Število ur: 140 MATEMATIKA 2. LETNIK GIMNAZIJE G2A,G2B Sestavil: Matej Mlakar, prof. Ravnatelj: Ernest Simončič, prof. Šolsko leto 2011/2012 Število ur: 140 Pravila ocenjevanja pri predmetu matematika na Gimnaziji Krško

Prikaži več

FGG02

FGG02 6.6 Simetrični problem lastnih vrednosti Če je A = A T, potem so lastne vrednosti realne, matrika pa se da diagonalizirati. Schurova forma za simetrično matriko je diagonalna matrika. Lastne vrednosti

Prikaži več

VPRAŠANJA ZA USTNI IZPIT PRI PREDMETU OSNOVE ELEKTROTEHNIKE II PREDAVATELJ PROF. DR. DEJAN KRIŽAJ Vprašanja so v osnovi sestavljena iz naslovov poglav

VPRAŠANJA ZA USTNI IZPIT PRI PREDMETU OSNOVE ELEKTROTEHNIKE II PREDAVATELJ PROF. DR. DEJAN KRIŽAJ Vprašanja so v osnovi sestavljena iz naslovov poglav VPRAŠANJA ZA USTNI IZPIT PRI PREDMETU OSNOVE ELEKTROTEHNIKE II PREDAVATELJ PROF. DR. DEJAN KRIŽAJ Vprašanja so v osnovi sestavljena iz naslovov poglavij v učbeniku Magnetika in skripti Izmenični signali.

Prikaži več

Mladi za napredek Maribora srečanje DOLŽINA»SPIRALE«Matematika Raziskovalna naloga Februar 2015

Mladi za napredek Maribora srečanje DOLŽINA»SPIRALE«Matematika Raziskovalna naloga Februar 2015 Mladi za napredek Maribora 015 3. srečanje DOLŽINA»SPIRALE«Matematika Raziskovalna naloga Februar 015 Kazalo 1. Povzetek...3. Uvod...4 3. Spirala 1...5 4. Spirala...6 5. Spirala 3...8 6. Pitagorejsko drevo...10

Prikaži več

Microsoft Word - Delo_energija_12_.doc

Microsoft Word - Delo_energija_12_.doc 12 Delo in potencialna enegija Vsebina: Delo kot integal sile na poti, delo elektične sile, delo po zaključeni poti, potencialna enegija, potencialna enegija sistema nabojev, delo kot azlika potencialnih

Prikaži več

Microsoft Word - M docx

Microsoft Word - M docx Državni izpitni center *M7773* SPOMLDNSKI IZPITNI ROK NVODIL Z OCENJEVNJE Četrtek,. junij 07 SPLOŠN MTUR Državni izpitni center Vse pravice pridržane. M7-77--3 IZPITN POL W kwh 000 W 3600 s 43, MJ Pretvorbena

Prikaži več

LaTeX slides

LaTeX slides Model v matri ni obliki ena ba modela Milena Kova 13 november 2012 Biometrija 2012/13 1 Nomenklatura Skalarji: tako kot doslej, male tiskane, neodebeljene Vektorji: male tiskane, odebeljene rke (y) ali

Prikaži več

Microsoft Word - UP_Lekcija04_2014.docx

Microsoft Word - UP_Lekcija04_2014.docx 4. Zanka while Zanke pri programiranju uporabljamo, kadar moramo stavek ali skupino stavkov izvršiti večkrat zaporedoma. Namesto, da iste (ali podobne) stavke pišemo n-krat, jih napišemo samo enkrat in

Prikaži več

(Microsoft PowerPoint - vorsic ET 9.2 OES matri\350ne metode 2011.ppt [Compatibility Mode])

(Microsoft PowerPoint - vorsic ET 9.2 OES matri\350ne metode 2011.ppt [Compatibility Mode]) 8.2 OBRATOVANJE ELEKTROENERGETSKEGA SISTEMA o Matrične metode v razreševanju el. omrežij Matrične enačbe električnih vezij Numerične metode za reševanje linearnih in nelinearnih enačb Sistem algebraičnih

Prikaži več

Microsoft Word - avd_vaje_ars1_1.doc

Microsoft Word - avd_vaje_ars1_1.doc ARS I Avditorne vaje Pri nekem programu je potrebno izvršiti N=1620 ukazov. Pogostost in trajanje posameznih vrst ukazov računalnika sta naslednja: Vrsta ukaza Štev. urinih period Pogostost Prenosi podatkov

Prikaži več

Rešene naloge iz Linearne Algebre

Rešene naloge iz Linearne Algebre UNIVERZA V LJUBLJANI FAKULTETA ZA RAČUNALNIŠTVO IN INFORMATIKO LABORATORIJ ZA MATEMATIČNE METODE V RAČUNALNIŠTVU IN INFORMATIKI Aleksandra Franc REŠENE NALOGE IZ LINEARNE ALGEBRE Študijsko gradivo Ljubljana

Prikaži več

1 Diskretni naklju ni vektorji 1 1 Diskretni naklju ni vektorji 1. Dopolni tabelo tako, da bosta X in Y neodvisni. X Y x x x x x

1 Diskretni naklju ni vektorji 1 1 Diskretni naklju ni vektorji 1. Dopolni tabelo tako, da bosta X in Y neodvisni. X Y x x x x x 1 Diskretni naklju ni vektorji 1 1 Diskretni naklju ni vektorji 1. Dopolni tabelo tako, da bosta X in Y neodvisni. X Y 0 1 2 1 1-1 x x 20 10 1 0 x x x 10 1 1 x x x 20 x x x 1 Dolo i ²e spremenljivko Z,

Prikaži več

Izmenični signali – metode reševanja vezij

Izmenični signali – metode reševanja vezij Izmenicni sinali_metode_resevanja (1d).doc 1/10 8/05/007 Izmenični sinali metode reševanja vezij (1) Načine analize enosmernih vezij smo že spoznali. Pri vezjih z izmeničnimi sinali lahko uotovimo, da

Prikaži več

Matematika II (UNI) Izpit (23. avgust 2011) RE ITVE Naloga 1 (20 to k) Vektorja a = (0, 1, 1) in b = (1, 0, 1) oklepata trikotnik v prostoru. Izra una

Matematika II (UNI) Izpit (23. avgust 2011) RE ITVE Naloga 1 (20 to k) Vektorja a = (0, 1, 1) in b = (1, 0, 1) oklepata trikotnik v prostoru. Izra una Matematika II (UNI) Izpit (. avgust 11) RE ITVE Naloga 1 ( to k) Vektorja a = (, 1, 1) in b = (1,, 1) oklepata trikotnik v prostoru. Izra unajte: kot med vektorjema a in b, pravokotno projekcijo vektorja

Prikaži več

Domače vaje iz LINEARNE ALGEBRE Marjeta Kramar Fijavž Fakulteta za gradbeništvo in geodezijo Univerze v Ljubljani 2007/08 Kazalo 1 Vektorji 2 2 Analit

Domače vaje iz LINEARNE ALGEBRE Marjeta Kramar Fijavž Fakulteta za gradbeništvo in geodezijo Univerze v Ljubljani 2007/08 Kazalo 1 Vektorji 2 2 Analit Domače vaje iz LINEARNE ALGEBRE Marjeta Kramar Fijavž Fakulteta za gradbeništvo in geodezijo Univerze v Ljubljani 007/08 Kazalo Vektorji Analitična geometrija 7 Linearni prostori 0 4 Evklidski prostori

Prikaži več

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 31. avgust 2018 Navodila Pazljivo preberite

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 31. avgust 2018 Navodila Pazljivo preberite Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 31 avgust 018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Za pozitiven

Prikaži več

4.Racionalna števila Ulomek je zapis oblike. Sestavljen je iz števila a (a ), ki ga imenujemo števec, in iz števila b (b, b 0), ki ga imenujemo imenov

4.Racionalna števila Ulomek je zapis oblike. Sestavljen je iz števila a (a ), ki ga imenujemo števec, in iz števila b (b, b 0), ki ga imenujemo imenov 4.Racionalna števila Ulomek je zapis oblike. Sestavljen je iz števila a (a ), ki ga imenujemo števec, in iz števila b (b, b 0), ki ga imenujemo imenovalec, ter iz ulomkove črte. Racionalna števila so števila,

Prikaži več

Matematika II (UN) 1. kolokvij (13. april 2012) RE ITVE Naloga 1 (25 to k) Dana je linearna preslikava s predpisom τ( x) = A x A 1 x, kjer je A

Matematika II (UN) 1. kolokvij (13. april 2012) RE ITVE Naloga 1 (25 to k) Dana je linearna preslikava s predpisom τ( x) = A x A 1 x, kjer je A Matematika II (UN) 1 kolokvij (13 april 01) RE ITVE Naloga 1 (5 to k) Dana je linearna preslikava s predpisom τ( x) = A x A 1 x, kjer je 0 1 1 A = 1, 1 A 1 pa je inverzna matrika matrike A a) Poi² ite

Prikaži več

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 2017

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 2017 UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 217 ii Kazalo Diferencialni račun vektorskih funkcij 1 1.1 Skalarne funkcije...........................

Prikaži več

NEKAJ VPRAŠANJ IZ MATEMATIKE 2 1. Katero točko evklidskega prostora R n imenujemo notranjo (zunanjo, robno) točko množice M R n? 2. Za poljubno množic

NEKAJ VPRAŠANJ IZ MATEMATIKE 2 1. Katero točko evklidskega prostora R n imenujemo notranjo (zunanjo, robno) točko množice M R n? 2. Za poljubno množic NEKAJ VPRAŠANJ IZ MATEMATIKE 2 1. Katero točko evklidskega prostora R n imenujemo notranjo (zunanjo, robno) točko množice M R n? 2. Za poljubno množico M R n evklidskega prostora R n definirajte množice

Prikaži več

NAVODILA AVTORJEM PRISPEVKOV

NAVODILA AVTORJEM PRISPEVKOV Predmetna komisija za nižji izobrazbeni standard matematika Opisi dosežkov učencev 6. razreda na nacionalnem preverjanju znanja Slika: Porazdelitev točk pri matematiki (NIS), 6. razred 1 ZELENO OBMOČJE

Prikaži več

1. K O~O~V~J Skupina: A Ce v racunskih nazogah ni pripadajocega poteka, ne dobite nobene toeke! Upoiitevani bodo samo 8teviZski rezultati v o kvireki

1. K O~O~V~J Skupina: A Ce v racunskih nazogah ni pripadajocega poteka, ne dobite nobene toeke! Upoiitevani bodo samo 8teviZski rezultati v o kvireki 1. K O~O~V~J Skupina: A Ce v racunskih nazogah ni pripadajocega poteka, ne dobite nobene toeke! Upoiitevani bodo samo 8teviZski rezultati v o kvireki h! 1. V vzporedno vezavo treh uporov (vsak 10Q) teee

Prikaži več

SLOVENIJA

SLOVENIJA KONDENZATORJI VRSTE in UPORABA Anja Pomeni besed: Kondenzator je naprava za shranjevanje električnega naboja Kapaciteta kondenzatorja pove, koliko naboja lahko hrani pri napetosti enega volta. Kapaciteta

Prikaži več

SESTAVA VSEBINE MATEMATIKE V 6

SESTAVA VSEBINE MATEMATIKE V 6 SESTAVA VSEBINE MATEMATIKE V 6. RAZREDU DEVETLETKE 1. KONFERENCA Št. ure Učne enote CILJI UVOD (1 ura) 1 Uvodna ura spoznati vsebine učnega načrta, način dela, učne pripomočke za pouk matematike v 6. razredu

Prikaži več

3. Metode, ki temeljijo na minimalnem ostanku Denimo, da smo z Arnoldijevim algoritmom zgenerirali ON bazo podprostora Krilova K k (A, r 0 ) in velja

3. Metode, ki temeljijo na minimalnem ostanku Denimo, da smo z Arnoldijevim algoritmom zgenerirali ON bazo podprostora Krilova K k (A, r 0 ) in velja 3. Metode, ki temeljijo na minimalnem ostanku Denimo, da smo z Arnoldijevim algoritmom zgenerirali ON bazo podprostora Krilova K k (A, r 0 ) in velja AV k = V k H k + h k+1,k v k+1 e T k = V kh k+1,k.

Prikaži več

Microsoft Word - 9.vaja_metoda porusnih linij.docx

Microsoft Word - 9.vaja_metoda porusnih linij.docx 9. vaja: RAČUN EJNE NOSILNOSTI AB PLOŠČ PO ETODI PORUŠNIH LINIJ 1. ZASNOVA S pomočjo analize plošč po metodi porušnih linij bomo določili mejno obtežbo plošče, za katero poznamo geometrijo, robne pogoje

Prikaži več

P182C10111

P182C10111 Š i f r a k a n d i d a t a : Državni izpitni center *P18C10111* JESENSKI IZPITNI ROK MATEMATIKA Izpitna pola Ponedeljek, 7. avgust 018 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno

Prikaži več

Microsoft Word - Avditorne.docx

Microsoft Word - Avditorne.docx 1. Naloga Delovanje oscilatorja je odvisno od kapacitivnosti kondenzatorja C. Dopustno območje izhodnih frekvenc je podano z dopustnim območjem kapacitivnosti C od 1,35 do 1,61 nf. Uporabljen je kondenzator

Prikaži več

TLAK PLOŠČINA 1. Zapiši oznako in enoto za ploščino. 2. Zapiši pretvornik pri ploščini in po velikosti zapiši enote od mm 2 do km Nariši skico z

TLAK PLOŠČINA 1. Zapiši oznako in enoto za ploščino. 2. Zapiši pretvornik pri ploščini in po velikosti zapiši enote od mm 2 do km Nariši skico z TLAK PLOŠČINA 1. Zapiši oznako in enoto za ploščino. 2. Zapiši pretvornik pri ploščini in po velikosti zapiši enote od mm 2 do km 2. 3. Nariši skico za kvadrat in zapiši, kako bi izračunal ploščino kvadrata.

Prikaži več

VIN Lab 1

VIN Lab 1 Vhodno izhodne naprave Laboratorijska vaja 1 - AV 1 Signali, OE, Linije VIN - LV 1 Rozman,Škraba, FRI Laboratorijske vaje VIN Ocena iz vaj je sestavljena iz ocene dveh kolokvijev (50% ocene) in iz poročil

Prikaži več

Izmenicni_signali_metode_resevanja(23)

Izmenicni_signali_metode_resevanja(23) zmenični sinali metode reševanja vezij Vsebina polavja: Metode za analizo vezij z izmeničnimi sinali (metoda Kirchoffovih zakonov, metoda zančnih tokov, metoda spojiščnih potencialov), stavki (superpozicije,

Prikaži več

1. Električne lastnosti varikap diode Vsaka polprevodniška dioda ima zaporno plast, debelina katere narašča z zaporno napetostjo. Dioda se v zaporni s

1. Električne lastnosti varikap diode Vsaka polprevodniška dioda ima zaporno plast, debelina katere narašča z zaporno napetostjo. Dioda se v zaporni s 1. Električne lastnosti varikap diode Vsaka polprevodniška dioda ima zaporno plast, debelina katere narašča z zaporno napetostjo. Dioda se v zaporni smeri obnaša kot nelinearen kondenzator, ki mu z višanjem

Prikaži več

Microsoft Word - ELEKTROTEHNIKA2_ junij 2013_pola1 in 2

Microsoft Word - ELEKTROTEHNIKA2_ junij 2013_pola1 in 2 Šifra kandidata: Srednja elektro šola in tehniška gimnazija ELEKTROTEHNIKA PISNA IZPITNA POLA 1 12. junij 2013 Čas pisanja 40 minut Dovoljeno dodatno gradivo in pripomočki: Kandidat prinese nalivno pero

Prikaži več

RAM stroj Nataša Naglič 4. junij RAM RAM - random access machine Bralno pisalni, eno akumulatorski računalnik. Sestavljajo ga bralni in pisalni

RAM stroj Nataša Naglič 4. junij RAM RAM - random access machine Bralno pisalni, eno akumulatorski računalnik. Sestavljajo ga bralni in pisalni RAM stroj Nataša Naglič 4. junij 2009 1 RAM RAM - random access machine Bralno pisalni, eno akumulatorski računalnik. Sestavljajo ga bralni in pisalni trak, pomnilnik ter program. Bralni trak- zaporedje

Prikaži več

Microsoft Word - A-3-Dezelak-SLO.doc

Microsoft Word - A-3-Dezelak-SLO.doc 20. posvetovanje "KOMUNALNA ENERGETIKA / POWER ENGINEERING", Maribor, 2011 1 ANALIZA OBRATOVANJA HIDROELEKTRARNE S ŠKOLJČNIM DIAGRAMOM Klemen DEŽELAK POVZETEK V prispevku je predstavljena možnost izvedbe

Prikaži več

1 Merjenje sil in snovnih lastnosti 1.1 Merjenje sil z računalnikom Umeritev senzorja Senzor za merjenje sile pretvarja silo v električno napetost. Si

1 Merjenje sil in snovnih lastnosti 1.1 Merjenje sil z računalnikom Umeritev senzorja Senzor za merjenje sile pretvarja silo v električno napetost. Si 1 Merjenje sil in snovnih lastnosti 11 Merjenje sil z računalnikom Umeritev senzorja Senzor za merjenje sile pretvarja silo v električno napetost Signal vodimo do računalnika, ki prikaže časovno odvisnost

Prikaži več

Microsoft Word - Astronomija-Projekt19fin

Microsoft Word - Astronomija-Projekt19fin Univerza v Ljubljani Fakulteta za matematiko in fiziko Jure Hribar, Rok Capuder Radialna odvisnost površinske svetlosti za eliptične galaksije Projektna naloga pri predmetu astronomija Ljubljana, april

Prikaži več

P181C10111

P181C10111 Š i f r a k a n d i d a t a : Državni izpitni center *P181C10111* SPOMLADANSKI IZPITNI ROK MATEMATIKA Izpitna pola Sobota, 9. junij 018 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno

Prikaži več

M

M Š i f r a k a n d i d a t a : Državni izpitni center *M16140111* Osnovna raven MATEMATIKA Izpitna pola 1 SPOMLADANSKI IZPITNI ROK Sobota, 4. junij 016 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat

Prikaži več

Brownova kovariancna razdalja

Brownova kovariancna razdalja Brownova kovariančna razdalja Nace Čebulj Fakulteta za matematiko in fiziko 8. januar 2015 Nova mera odvisnosti Motivacija in definicija S primerno izbiro funkcije uteži w(t, s) lahko definiramo mero odvisnosti

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-junij-17.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-junij-17.dvi Vpisna številka Priimek, ime Smer: K KT WA Izpit pri predmetu MATEMATIKA I Računski del Ugasni in odstrani mobilni telefon. Uporaba knjig in zapiskov ni dovoljena. Dovoljeni pripomočki so: kemični svinčnik,

Prikaži več

MAGIČNI KVADRATI DIMENZIJE 4n+2

MAGIČNI KVADRATI DIMENZIJE 4n+2 List za mlade matematike, fizike, astronome in računalnikarje ISSN 0351-6652 Letnik 18 (1990/1991) Številka 6 Strani 322 327 Borut Zalar: MAGIČNI KVADRATI DIMENZIJE 4n + 2 Ključne besede: matematika, aritmetika,

Prikaži več

Univerza v Ljubljani FAKULTETA ZA RAČUNALNIŠTVO IN INFORMATIKO Tržaška c. 25, 1000 Ljubljana Realizacija n-bitnega polnega seštevalnika z uporabo kvan

Univerza v Ljubljani FAKULTETA ZA RAČUNALNIŠTVO IN INFORMATIKO Tržaška c. 25, 1000 Ljubljana Realizacija n-bitnega polnega seštevalnika z uporabo kvan Univerza v Ljubljani FAKULTETA ZA RAČUNALNIŠTVO IN INFORMATIKO Tržaška c. 25, 1000 Ljubljana Realizacija n-bitnega polnega seštevalnika z uporabo kvantnih celičnih avtomatov SEMINARSKA NALOGA Univerzitetna

Prikaži več

Microsoft Word - 2. Merski sistemi-b.doc

Microsoft Word - 2. Merski sistemi-b.doc 2.3 Etaloni Definicija enote je največkrat šele natančno formulirana naloga, kako enoto realizirati. Primarni etaloni Naprava, s katero realiziramo osnovno ali izpeljano enoto je primarni etalon. Ima največjo

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 3. februar Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Veljale bodo samo rešitve na papirju, kjer

Prikaži več

Funkcije in grafi

Funkcije in grafi 14 Funkcije in grafi Funkcije Zapisi funkcij Sorazmernost Obratna sorazmernost Potenčne funkcije Polinomske funkcije Druge funkcije Prileganje podatkom 14.1 Funkcije Spremenljivke Odvisnost spremenljivk

Prikaži več

11. Navadne diferencialne enačbe Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogo

11. Navadne diferencialne enačbe Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogo 11. Navadne diferencialne enačbe 11.1. Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogoju y(x 0 ) = y 0, kjer je f dana dovolj gladka funkcija

Prikaži več