Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5. februar 2018 Navodila Pazljivo preberite

Velikost: px
Začni prikazovanje s strani:

Download "Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5. februar 2018 Navodila Pazljivo preberite"

Transkripcija

1 Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5 februar 018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Nalog je 6, 5 rešenih nalog pa je že 100% Na razpolago imate uri Naloga a b c d Skupaj REˇSITVE

2 1 (0 V igri Točke igralca A in B mečeta pošten kovanec Privzamamo, da so meti neodvisni Če pade grb, igralec A dobi točko, v nasprotnem primeru pa dobi točko igralec B Igralec A zmaga, če zbere a točk, preden igralec B zbere b točk, pri čemer sta a in b dani pozitivni celi števili a (10 Izrazite verjetnost, da zmaga igralec A, z vsoto Vsote vam ni treba sešteti Rešitev: Zamislimo si, da igralca mečeta v nedogled, in označimo z X število metov, dokler ne pade a grbov Igralec A bo zmagal, če bo X a + b 1 Vemo, da je X NegBin(a, 1 Sledi P (zmaga A a+b 1 ka ( k 1 a 1 ( k 1 b (10 Problem posplošimo na igralce A, B in C Iz škatle, v kateri so trije listki z napisi A, B in C, naključno izbirajo listke Točko dobi igralec, ki je napisan na izbranem listku Izbire so med sabo neodvisne, vsak listek pa izberemo z verjetnostjo 1 Igralec A zmaga, če prej izbere a točk, kot B zbere b točk ali C 3 zbere c točk, kjer so a, b in c dana pozitivna cela števila Izrazite verjetnost, da zmaga A, z ustreznimi vsotami, ki vam jih ni treba sešteti Namig: H k {A zmaga natanko pri k-tem izbiranju iz škatle} Rešitev: Podobno kot v prvem delu si zamislimo, da igralci izbirajo listke v nedogled, in označimo z X število izbir, dokler izberejo a listkov A Velja X NegBin ( a, 3 1 Igralec A ima možnosti za zmago, če se zgodi dogodek Hk {X k} za k a, a + 1,, a + b + c Če se zgodi H k, vemo, da sta igralca B in C skupaj dobila k a točk Pogojno se točke med igralca A in B porazdelijo binomsko z verjetnostjo 1 Igralec A bo zmagal, če bo število točk l igralca B ustrezalo neenačbama l < b in k a l < c ali k a c < l < b Sledi P (zmaga A min{a+b,a+c} 1 ka P (H k + a+b+c kmin{a+b,a+c} P (H k P (zmaga A H k Po zgornjem razmisleku so pogojne verjetnosti v drugi vsoti enake P (zmaga A H k ( k a 1 b 1 lk a c+1 ( k a Vstavimo verjetnosti za negativno binomsko porazdelitev in dobimo kmin{a+b,a+c} l ( a min{a+b,a+c} 1 1 ( ( k a k 1 P (zmaga A 3 a 1 3 ka a+b+c ( ( k k 1 1 b 1 + a 1 3 lk a c+1 ( k a l

3 ob dogovoru, da je vsota enaka nič, če je končni indeks manjši od začetnega (to se zgodi pri drugi vsoti, če je a b 1 Če pa sprejmemo še dogovor, da je 0, brž ko je r < 0 ali r > m, se celoten izraz poenostavi kar v: ( m r P (zmaga A a+b+c ka ( k 1 a 1 ( 1 3 k b 1 lk a c+1 ( k a l 3

4 (0 Pošten kovanec mečemo, dokler ne dobimo dveh grbov zapovrstjo Predpostavljamo, da so meti med sabo neodvisni Naj bo Y potrebno število metov Naj bo X celotno število grbov, ki jih dobimo pred dvema zapovrstnima grboma Za k 1,, definiramo { 1, če je k-ti met grb in je Y k +, I k 0 sicer a (10 Utemeljite, da je P (I in P (I k 1 1 P (Y k 1 za k 8 Rešitev: Dogodek {I 1 1} se zgodi, če na začetku dobimo grb, za njim pa številko Dogodek {I k 1} se zgodi, če na k-tem metu dobimo grb, pred njim in za njim številko, med prvimi k meti pa ni dveh zaporednih grbov Ker so meti neodvisni, je dogodek, da med prvimi k meti ni dveh grbov, nodvisen od izidov v metih k 1, k, k + 1 Zveza sledi b (10 Predpostavite kot znano, da je E(Y 6 Izračunajte E(X Kot znano privzemite, da za nenegativne slučajne spremenljivke X 1, X, vedno velja ( E X k E(X k Rešitev: Zapišemo lahko X I k Vsota je končna, brž ko je Y končen, to pa se zgodi z verjetnostjo ena Zapišemo ( E(X E I k E(I k Vsoto prepišemo v E(X k 1 P (Y k 1 8 Vemo, da je Sledi, da je P (Y k 1 P (Y n E(Y k n1 E(X E(Y 1 4

5 3 (0 Za vsak n N naj bo ( X (n 1,, X n (n slučajni vektor z gostoto, dano z f n (x 1,, x n c n (1 + x x n n+1 za ustrezno konstanto c n > 0 a (10 Naj bo k N Pokažite, da je porazdelitev slučajnega vektorja ( (n X 1,, X (n k enaka ne glede na n k Tako lahko zgornje indekse odmislimo Namig: oglejte si najprej primer, ko je n k + 1 Rešitev: Za n k + 1 z uvedbo nove spremenljivke x k x x k u izračunamo: f (k+1 X 1,,X (k+1 k (x 1,, x k c k+1 f n (x 1,, x k, x k+1 dx k+1 c k+1 dx k+1 (1 + x x k + x k+1 k x x k du (1 + x x k k+3 (1 + u k+3 d k ( 1 + x x k k+1 kjer je d k ustrezni integral, neodvisen od x 1,, x k A ker se mora gostota integrirati v 1, mora biti d k c k Dobili smo oziroma f (k+1 X 1,,X (k+1 k (x 1,, x k f X k 1,,X k k (x 1,, x k f (n X (x 1,,X (n 1,, x n 1 f (n 1 n 1 X To pomeni tudi, da za vse k < n velja f (n X 1,,X (n k Z iteriranjem po n dobimo f (n X 1,,X (n k od koder sledi dana trditev (x 1,, x k f X (n 1 (x 1,, x k f X (k b (10 Dokažite, da sta slučajna vektorja 1,,X (n 1 n 1 1,,X (n 1 k 1,,X(k k (x 1,, x n 1 (x 1,, x k (x 1,, x k, (X 1, X,, X k in 1 (X 1 + X 1 + X + + Xk k+1, X k+,, X n neodvisna za vse k 1,,, n 1 5

6 Rešitev: Definirajmo preslikavo F : R n R n po predpisu F (x 1,, x n ( : x 1,, x k, x k+1 x,, n 1 + x 1 + x + + x k 1 + x 1 + x + + x k in si oglejmo slučajni vektor (Y 1,, Y n : F (X 1, X,, X n Preslikava F je bijektivna in ekvivalentno je dokazati, da sta slučajna vektorja (Y 1,, Y k in (Y k+1,, Y n neodvisna Po krajšem računu dobimo f Y1,,Y n (y 1,, y n (1 + y1 + + yk (n k/ f n (y 1,, y k, 1 + y1 + + yk y k+1,, 1 + y1 + + yk y n c n (1 + y y k (k+1/ (1 + y k y n (n+1/, kar je produkt funkcije le spremenljivk y 1,, y k in funkcije le spremenljivk y k+1,, y n, zato sta dana slučajna vektorja res neodvisna 6

7 4 (0 Naj bo 0 < a, b < 1 Slučajna spremenljivka N naj bo porazdeljena geometrijsko Geom(a Nadalje naj bo K slučajna spremenljivka, ki je pogojno na N n porazdeljena negativno binomsko NegBin(n, b Držimo se naslednjih dogovorov: Slučajna spremenljivka N je porazdeljena geometrijsko Geom(p, če za n 1,, 3, velja P (N n p(1 p n 1 Slučajna spremenljivka X je porazdeljena negativno binomsko NegBin(n, p, če za k n, n + 1, n +, velja P (X k ( k 1 n 1 p n (1 p k n a (10 Določite brezpogojno porazdelitev slučajne spremenljivke K Rešitev: Po predpostavki za k n, n + 1, n +, velja P (N n a(1 a n 1 ; n 1,, 3, ( k 1 P (K k N n b n (1 b k n ; k n, n + 1, n +, n 1 Po izreku o popolni verjetnosti je P (K k n P (N n P (K k N n k ( k 1 a(1 a n 1 b n (1 b k n n 1 n1 k 1 ( k 1 ab (1 a l b l (1 b k l 1 l l0 ab(1 ab k 1 Slučajna spremenljivka K je torej porazdeljena geometrijsko Geom(ab b (10 Za vse k 1,, 3, določite pogojno porazdelitev slučajne spremenljivke N 1 glede na K k Rešitev: Pogojno na K k lahko slučajna spremenljivka N zavzame vrednosti iz množice {1,, k}, torej lahko N 1 zavzame vrednosti iz množice {0, 1, k 1} Za l iz te množice velja P (N 1 l K k P (N l + 1 K k P (N l + 1 P (K n N l + 1 P (K k ( k 1 (1 a l b l (1 b k l 1 l (1 ab l ( ( l ( k 1 l k 1 (1 ab 1 b l 1 ab 1 ab Od tod zaključimo, da je slučajna spremenljivka N 1 pogojno na K k porazdeljena binomsko Bin ( k 1, (1 ab 1 ab 7

8 5 (0 Naj bodo X 1, X, in N neodvisne slučajne spremenljivke in λ > 0 Slučajne spremenljivke X 1, X, naj bodo enako porazdeljene, slučajna spremenljivka N pa naj ima Poissonovo porazdelitev Pois(λ, t j P (N n λn e λ Nadalje je znano, da je porazdelitev slučajne spremenljivke S X 1 + X + + X N podana s predpisom P (S k 1 ; k 0, 1,, k+1 a (15 Določite porazdelitev slučajnih spremenljivk X 1, X, za λ 1 Rešitev: Označimo z G X rodovno funkcijo slučajnih spremenljivk X 1, X,, z G N rodovno funkcijo slučajne spremenljivke N, z G S pa rodovno funkcijo slučajne spremenljivke S Vemo, da je G S (s G N (G X (s S seštetjem ustreznih vrst dobimo G N (s e s 1 in G S (s 1 s Torej mora veljati e G X(s 1 1 s, od koder dobimo ( G X (s 1 ln( s 1 ln ln 1 s 1 ln + Torej za i 1,, 3, velja s k k k P (X i 0 1 ln, P (X i k 1 ; k 1,, 3, k k b (5 Za katere λ sploh obstajajo takšne slučajne spremenljivke? Rešitev: Zdaj mora veljati e λ(g X(s 1 1 s, od koder dobimo G X (s 1 ln( s λ 1 ln λ + 1 λ s k k k Očitno je G X (1 1, vsi koeficienti pa bodo nenegativni natanko tedaj, ko bo λ ln : to je potreben in zadosten pogoj za obstoj zahtevanih slučajnih spremenljivk 8

9 6 (0 Naj bo N množica z n elementi Naključno izberemo permutacijo teh elementov, tako da so vse permutacije enako verjetne Vsako permutacijo lahko zapišemo kot produkt ciklov a (10 Naj bo J N podmnožica z j elementi Izračunajte verjetnost, da ti elementi v izbrani permutaciji tvorijo zaključen cikel Rešitev: Preštejmo vse permutacije, pri katerih ti elementi tvorijo cikel Izberimo element a 1 J, nato element a J \ {a 1 }, v katerega se preslika a 1, nato element a 3 J \ {a 1, a 1 }, v katerega se preslika a, in tako naprej do a j ; slednji element naj se preslika v a 1 Pri že izbranem elementu a 1 vsi možni cikli natanko ustrezajo izbiram elementov a, a 3,, a j, teh pa je (j 1! Nato moramo izbrati še, kako se permutirajo elementi izven J Neodvisno od prejšnje izbire imamo za to (n j! možnosti Iskana verjetnost je torej (j 1! (n j! b (10 Izračunajte verjetnost, da ima naključna permutacija n elementov vsaj en cikel dolžine j Dobljenih vsot vam ni treba poenostavljati Namig: izrazite ustrezni dogodek z dogodki A J, da elementi množice J v izbrani permutaciji tvorijo zaključen cikel Rešitev: Če z A označimo dogodek, da ima izbrana permutacija vsaj en cikel dolžine j, velja A A J Po načelu vključitev in izključitev je P (A n ( 1 k 1 J N J j J 1,,J k P (A J1 A J A Jk, sumacijski znak pa tu označuje vsoto po vseh neurejenih izborih različnih podmnožic J 1, J,, J k Če želimo, da je P (A J1 A J A Jk > 0, morajo biti le-te tudi disjunktne in veljati mora jk n Z večkratno uporabo točke a dobimo P (A J1 A J A Jk (j 1! (n j! (j 1! (n j! (n j! ( k(n (j 1! kj! (j 1! (n kj! (n (k 1j! Ker je število vseh neurejenih izbir k disjunktnih podmnožic moči j enako (j! k (n kj! k!, 9

10 je končno n/j P (A ( 1 k 1 (j! k (n kj! k! ( (j 1! k(n kj! n/j ( 1 k 1 k! j k 10

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 31. avgust 2018 Navodila Pazljivo preberite

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 31. avgust 2018 Navodila Pazljivo preberite Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 31 avgust 018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Za pozitiven

Prikaži več

Univerza v Mariboru Fakulteta za naravoslovje in matematiko Oddelek za matematiko in računalništvo Enopredmetna matematika IZPIT IZ VERJETNOSTI IN STA

Univerza v Mariboru Fakulteta za naravoslovje in matematiko Oddelek za matematiko in računalništvo Enopredmetna matematika IZPIT IZ VERJETNOSTI IN STA Enopredmetna matematika IN STATISTIKE Maribor, 31. 01. 2012 1. Na voljo imamo kovanca tipa K 1 in K 2, katerih verjetnost, da pade grb, je p 1 in p 2. (a) Istočasno vržemo oba kovanca. Verjetnost, da je

Prikaži več

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6. julij 2018 Navodila Pazljivo preberite be

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6. julij 2018 Navodila Pazljivo preberite be Ime in priimek: Vpisna št: FAKULEA ZA MAEMAIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6 julij 2018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Za pozitiven rezultat

Prikaži več

glava.dvi

glava.dvi Lastnosti verjetnosti 1. Za dogodka A in B velja: P(A B) = P(A) + P(B) P(A B) 2. Za dogodke A, B in C velja: P(A B C) = P(A) + P(B) + P(C) P(A B) P(A C) P(B C) + P(A B C) Kako lahko to pravilo posplošimo

Prikaži več

Osnove verjetnosti in statistika

Osnove verjetnosti in statistika Osnove verjetnosti in statistika Gašper Fijavž Fakulteta za računalništvo in informatiko Univerza v Ljubljani Ljubljana, 26. februar 2010 Poskus in dogodek Kaj je poskus? Vržemo kovanec. Petkrat vržemo

Prikaži več

Slide 1

Slide 1 SLUČAJNE SPREMENLJIVKE Povezave med verjetnostjo P, porazdelitveno funcijo F in gostoto porazdelitve p. P F (x) =P( x) P(a b)=f (b)-f (a) F p Slučajna spremenljiva ima gostoto p. Kašno gostoto ima Y=+l?

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNISTVO Matematika 2. kolokvij. december 2 Ime in priimek: Vpisna st: Navodila Pazljivo preberite besedilo naloge, preden se lotite resevanja. Veljale bodo samo resitve na papirju, kjer

Prikaži več

1 Diskretni naklju ni vektorji 1 1 Diskretni naklju ni vektorji 1. Dopolni tabelo tako, da bosta X in Y neodvisni. X Y x x x x x

1 Diskretni naklju ni vektorji 1 1 Diskretni naklju ni vektorji 1. Dopolni tabelo tako, da bosta X in Y neodvisni. X Y x x x x x 1 Diskretni naklju ni vektorji 1 1 Diskretni naklju ni vektorji 1. Dopolni tabelo tako, da bosta X in Y neodvisni. X Y 0 1 2 1 1-1 x x 20 10 1 0 x x x 10 1 1 x x x 20 x x x 1 Dolo i ²e spremenljivko Z,

Prikaži več

1. izbirni test za MMO 2018 Ljubljana, 16. december Naj bo n naravno število. Na mizi imamo n 2 okraskov n različnih barv in ni nujno, da imam

1. izbirni test za MMO 2018 Ljubljana, 16. december Naj bo n naravno število. Na mizi imamo n 2 okraskov n različnih barv in ni nujno, da imam 1. izbirni test za MMO 018 Ljubljana, 16. december 017 1. Naj bo n naravno število. Na mizi imamo n okraskov n različnih barv in ni nujno, da imamo enako število okraskov vsake barve. Dokaži, da se okraske

Prikaži več

Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y

Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y 2 ). Rešitev: Diferencialna enačba ima ločljive spremenljivke,

Prikaži več

5 SIMPLICIALNI KOMPLEKSI Definicija 5.1 Vektorji r 0,..., r k v R n so afino neodvisni, če so vektorji r 1 r 0, r 2 r 0,..., r k r 0 linearno neodvisn

5 SIMPLICIALNI KOMPLEKSI Definicija 5.1 Vektorji r 0,..., r k v R n so afino neodvisni, če so vektorji r 1 r 0, r 2 r 0,..., r k r 0 linearno neodvisn 5 SIMPLICIALNI KOMPLEKSI Definicija 5.1 Vektorji r 0,..., r k v R n so afino neodvisni, če so vektorji r 1 r 0, r 2 r 0,..., r k r 0 linearno neodvisni. Če so krajevni vektorji do točk a 0,..., a k v R

Prikaži več

Vaje: Matrike 1. Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N 0 1 n ; n N Pokaži, da je množica x 0 y 0 x

Vaje: Matrike 1. Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N 0 1 n ; n N Pokaži, da je množica x 0 y 0 x Vaje: Matrike 1 Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N n 1 1 0 1 ; n N 0 2 Pokaži, da je množica x 0 y 0 x y x + z ; x, y, z R y x z x vektorski podprostor v prostoru matrik

Prikaži več

Brownova kovariancna razdalja

Brownova kovariancna razdalja Brownova kovariančna razdalja Nace Čebulj Fakulteta za matematiko in fiziko 8. januar 2015 Nova mera odvisnosti Motivacija in definicija S primerno izbiro funkcije uteži w(t, s) lahko definiramo mero odvisnosti

Prikaži več

FAKULTETA ZA STROJNIŠTVO Matematika 2 Pisni izpit 9. junij 2005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite bese

FAKULTETA ZA STROJNIŠTVO Matematika 2 Pisni izpit 9. junij 2005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite bese FAKULTETA ZA STROJNIŠTVO Matematika Pisni izpit 9. junij 005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Veljale bodo

Prikaži več

Osnove matematicne analize 2018/19

Osnove matematicne analize  2018/19 Osnove matematične analize 2018/19 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D f R priredi natanko

Prikaži več

2. Model multiple regresije

2. Model multiple regresije 2. Model multiple regresije doc. dr. Miroslav Verbič miroslav.verbic@ef.uni-lj.si www.miroslav-verbic.si Ljubljana, februar 2014 2.1 Populacijski regresijski model in regresijski model vzorčnih podatkov

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 3. februar Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Veljale bodo samo rešitve na papirju, kjer

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-avgust-17.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-avgust-17.dvi Vpisna številka Priimek, ime Smer: K KT WA Izpit pri predmetu MATEMATIKA I Računski del Ugasni in odstrani mobilni telefon. Uporaba knjig in zapiskov ni dovoljena. Dovoljeni pripomočki so: kemični svinčnik,

Prikaži več

Učinkovita izvedba algoritma Goldberg-Tarjan Teja Peklaj 26. februar Definicije Definicija 1 Naj bo (G, u, s, t) omrežje, f : E(G) R, za katero v

Učinkovita izvedba algoritma Goldberg-Tarjan Teja Peklaj 26. februar Definicije Definicija 1 Naj bo (G, u, s, t) omrežje, f : E(G) R, za katero v Učinkovita izvedba algoritma Goldberg-Tarjan Teja Peklaj 26. februar 2009 1 Definicije Definicija 1 Naj bo (G, u, s, t) omrežje, f : E(G) R, za katero velja 0 f(e) u(e) za e E(G). Za v V (G) definiramo presežek

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNISTVO Matematika Pisni izpit. junij 22 Ime in priimek Vpisna st Navodila Pazljivo preberite besedilo naloge, preden se lotite resevanja. Veljale bodo samo resitve na papirju, kjer so

Prikaži več

Vrste

Vrste Matematika 1 17. - 24. november 2009 Funkcija, ki ni algebraična, se imenuje transcendentna funkcija. Podrobneje si bomo ogledali naslednje transcendentne funkcije: eksponentno, logaritemsko, kotne, ciklometrične,

Prikaži več

6.1 Uvod 6 Igra Chomp Marko Repše, Chomp je nepristranska igra dveh igralcev s popolno informacijo na dvo (ali vec) dimenzionalnem prostoru

6.1 Uvod 6 Igra Chomp Marko Repše, Chomp je nepristranska igra dveh igralcev s popolno informacijo na dvo (ali vec) dimenzionalnem prostoru 6.1 Uvod 6 Igra Chomp Marko Repše, 30.03.2009 Chomp je nepristranska igra dveh igralcev s popolno informacijo na dvo (ali vec) dimenzionalnem prostoru in na končni ali neskončni čokoladi. Igralca si izmenjujeta

Prikaži več

Kazalo 1 DVOMESTNE RELACIJE Operacije z dvomestnimi relacijami Predstavitev relacij

Kazalo 1 DVOMESTNE RELACIJE Operacije z dvomestnimi relacijami Predstavitev relacij Kazalo 1 DVOMESTNE RELACIJE 1 1.1 Operacije z dvomestnimi relacijami...................... 2 1.2 Predstavitev relacij............................... 3 1.3 Lastnosti relacij na dani množici (R X X)................

Prikaži več

EKVITABILNE PARTICIJE IN TOEPLITZOVE MATRIKE Aleksandar Jurišić Politehnika Nova Gorica in IMFM Vipavska 13, p.p. 301, Nova Gorica Slovenija Štefko Mi

EKVITABILNE PARTICIJE IN TOEPLITZOVE MATRIKE Aleksandar Jurišić Politehnika Nova Gorica in IMFM Vipavska 13, p.p. 301, Nova Gorica Slovenija Štefko Mi EKVITABILNE PARTICIJE IN TOEPLITZOVE MATRIKE Aleksandar Jurišić Politehnika Nova Gorica in IMFM Vipavska 13, p.p. 301, Nova Gorica Slovenija Štefko Miklavič 30. okt. 2003 Math. Subj. Class. (2000): 05E{20,

Prikaži več

VST: 1. kviz

VST: 1. kviz jsmath Učilnica / VST / Kvizi / 1. kviz / Pregled poskusa 1 1. kviz Pregled poskusa 1 Končaj pregled Začeto dne nedelja, 25. oktober 2009, 14:17 Dokončano dne nedelja, 25. oktober 2009, 21:39 Porabljeni

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/testi in izpiti/ /IZPITI/FKKT-februar-14.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/testi in izpiti/ /IZPITI/FKKT-februar-14.dvi Kemijska tehnologija, Kemija Bolonjski univerzitetni program Smer: KT K WolframA: DA NE Računski del izpita pri predmetu MATEMATIKA I 6. 2. 2014 Čas reševanja je 75 minut. Navodila: Pripravi osebni dokument.

Prikaži več

Osnove verjetnostne metode doc. dr. R. Škrekovski Oddelek za Matematiko Fakulteta za Matematiko in Fiziko Univerza v Ljubljani

Osnove verjetnostne metode doc. dr. R. Škrekovski Oddelek za Matematiko Fakulteta za Matematiko in Fiziko Univerza v Ljubljani Osnove verjetnostne metode doc. dr. R. Škrekovski Oddelek za Matematiko Fakulteta za Matematiko in Fiziko Univerza v Ljubljani naslov: Osnove verjetnostne metode avtorske pravice: dr. Riste Škrekovski

Prikaži več

Poslovilno predavanje

Poslovilno predavanje Poslovilno predavanje Matematične teme z didaktiko Marko Razpet, Pedagoška fakulteta Ljubljana, 20. november 2014 1 / 32 Naše skupne ure Matematične tehnologije 2011/12 Funkcije več spremenljivk 2011/12

Prikaži več

'Kombinatoricna optimizacija / Lokalna optimizacija'

'Kombinatoricna optimizacija / Lokalna optimizacija' Kombinatorična optimizacija 3. Lokalna optimizacija Vladimir Batagelj FMF, matematika na vrhu različica: 15. november 2006 / 23 : 17 V. Batagelj: Kombinatorična optimizacija / 3. Lokalna optimizacija 1

Prikaži več

GeomInterp.dvi

GeomInterp.dvi Univerza v Ljubljani Fakulteta za matematiko in fiziko Seminar za Numerično analizo Geometrijska interpolacija z ravninskimi parametričnimi polinomskimi krivuljami Gašper Jaklič, Jernej Kozak, Marjeta

Prikaži več

REŠENE NALOGE IZ VERJETNOSTI IN STATISTIKE Martin Raič Datum zadnje spremembe: 11. junij 2019

REŠENE NALOGE IZ VERJETNOSTI IN STATISTIKE Martin Raič Datum zadnje spremembe: 11. junij 2019 REŠENE NALOGE IZ VERJETNOSTI IN STATISTIKE Martin Raič Datum zadnje spremembe: junij 209 Kazalo Osnove kombinatorike 3 2 Elementarna verjetnost 5 3 Pogojna verjetnost 0 4 Slučajne spremenljivke 7 5 Slučajni

Prikaži več

Slide 1

Slide 1 Vsak vektor na premici skozi izhodišče lahko zapišemo kot kjer je v smerni vektor premice in a poljubno število. r a v Vsak vektor na ravnini skozi izhodišče lahko zapišemo kot kjer sta v, v vektorja na

Prikaži več

Microsoft Word - Seštevamo stotice.doc

Microsoft Word - Seštevamo stotice.doc UČNA PRIPRAVA: MATEMATIKA UČNI SKLOP: Računske operacije UČNA TEMA: Seštevamo in odštevamo stotice Seštevamo stotice UČNE METODE: razlaga, prikazovanje, demonstracija, grafično in pisno delo UČNE OBLIKE:

Prikaži več

Verjetnost in vzorčenje: teoretske porazdelitve standardne napake ocenjevanje parametrov as. dr. Nino RODE prof. dr. Blaž MESEC

Verjetnost in vzorčenje: teoretske porazdelitve standardne napake ocenjevanje parametrov as. dr. Nino RODE prof. dr. Blaž MESEC Verjetnost in vzorčenje: teoretske porazdelitve standardne napake ocenjevanje parametrov as. dr. Nino RODE prof. dr. Blaž MESEC VERJETNOST osnovni pojmi Poskus: dejanje pri katerem je izid negotov met

Prikaži več

Matematika II (UNI) Izpit (23. avgust 2011) RE ITVE Naloga 1 (20 to k) Vektorja a = (0, 1, 1) in b = (1, 0, 1) oklepata trikotnik v prostoru. Izra una

Matematika II (UNI) Izpit (23. avgust 2011) RE ITVE Naloga 1 (20 to k) Vektorja a = (0, 1, 1) in b = (1, 0, 1) oklepata trikotnik v prostoru. Izra una Matematika II (UNI) Izpit (. avgust 11) RE ITVE Naloga 1 ( to k) Vektorja a = (, 1, 1) in b = (1,, 1) oklepata trikotnik v prostoru. Izra unajte: kot med vektorjema a in b, pravokotno projekcijo vektorja

Prikaži več

Mere kompleksnih mrež (angl. Network Statistics) - Seminarska naloga pri predmetu Izbrana poglavja iz diskretne matematike

Mere kompleksnih mrež   (angl. Network Statistics) - Seminarska naloga pri predmetu Izbrana poglavja iz diskretne matematike Mere kompleksnih mrež (angl. Network Statistics) Seminarska naloga pri predmetu Izbrana poglavja iz diskretne matematike Ajda Pirnat, Julia Cafnik in Živa Mitar Fakulteta za matematiko in fiziko April

Prikaži več

RAM stroj Nataša Naglič 4. junij RAM RAM - random access machine Bralno pisalni, eno akumulatorski računalnik. Sestavljajo ga bralni in pisalni

RAM stroj Nataša Naglič 4. junij RAM RAM - random access machine Bralno pisalni, eno akumulatorski računalnik. Sestavljajo ga bralni in pisalni RAM stroj Nataša Naglič 4. junij 2009 1 RAM RAM - random access machine Bralno pisalni, eno akumulatorski računalnik. Sestavljajo ga bralni in pisalni trak, pomnilnik ter program. Bralni trak- zaporedje

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNIŠTVO Matematika 2. kolokvij 4. januar 212 Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Veljale bodo samo rešitve na papirju, kjer

Prikaži več

2. izbirni test za MMO 2017 Ljubljana, 17. februar Naj bosta k 1 in k 2 dve krožnici s središčema O 1 in O 2, ki se sekata v dveh točkah, ter

2. izbirni test za MMO 2017 Ljubljana, 17. februar Naj bosta k 1 in k 2 dve krožnici s središčema O 1 in O 2, ki se sekata v dveh točkah, ter 2. izbirni test za MMO 2017 Ljubljana, 17. februar 2017 1. Naj bosta k 1 in k 2 dve krožnici s središčema O 1 in O 2, ki se sekata v dveh točkah, ter naj bo A eno od njunih presečišč. Ena od njunih skupnih

Prikaži več

NAVADNA (BIVARIATNA) LINEARNA REGRESIJA O regresijski analizi govorimo, kadar želimo opisati povezanost dveh numeričnih spremenljivk. Opravka imamo to

NAVADNA (BIVARIATNA) LINEARNA REGRESIJA O regresijski analizi govorimo, kadar želimo opisati povezanost dveh numeričnih spremenljivk. Opravka imamo to NAVADNA (BIVARIATNA) LINEARNA REGRESIJA O regresijski analizi govorimo, kadar želimo opisati povezanost dveh numeričnih spremenljivk. Opravka imamo torej s pari podatkov (x i,y i ), kjer so x i vrednosti

Prikaži več

00main.dvi

00main.dvi UNIVERZA V LJUBLJANI Fakulteta za elektrotehniko Vitomir Štruc, Simon Dobrišek INFORMACIJA IN KODI DOPOLNILNI UČBENIK Z VAJAMI UNIVERZITETNI ŠTUDIJSKI PROGRAM II. STOPNJE ELEKTROTEHNIKA - AVTOMATIKA IN

Prikaži več

Univerza v Ljubljani Fakulteta za matematiko in fiziko Verjetnost v fiziki 2012/13 tutorstvo #1 Kombinatorika Avtorja: Peter Ferjančič, Boštjan Kokot

Univerza v Ljubljani Fakulteta za matematiko in fiziko Verjetnost v fiziki 2012/13 tutorstvo #1 Kombinatorika Avtorja: Peter Ferjančič, Boštjan Kokot Univerza v Ljubljani Fakulteta za matematiko in fiziko Verjetnost v fiziki 2012/13 tutorstvo #1 Kombinatorika Avtorja: Peter Ferjančič, Boštjan Kokot Mentor: izr. prof. dr. Simon Širca 4. oktober 2012

Prikaži več

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Katja Ciglar Analiza občutljivosti v Excel-u Seminarska naloga pri predmetu Optimizacija v fina

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Katja Ciglar Analiza občutljivosti v Excel-u Seminarska naloga pri predmetu Optimizacija v fina UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Katja Ciglar Analiza občutljivosti v Excel-u Seminarska naloga pri predmetu Optimizacija v financah Ljubljana, 2010 1. Klasični pristop k analizi

Prikaži več

Matematika II (UN) 1. kolokvij (13. april 2012) RE ITVE Naloga 1 (25 to k) Dana je linearna preslikava s predpisom τ( x) = A x A 1 x, kjer je A

Matematika II (UN) 1. kolokvij (13. april 2012) RE ITVE Naloga 1 (25 to k) Dana je linearna preslikava s predpisom τ( x) = A x A 1 x, kjer je A Matematika II (UN) 1 kolokvij (13 april 01) RE ITVE Naloga 1 (5 to k) Dana je linearna preslikava s predpisom τ( x) = A x A 1 x, kjer je 0 1 1 A = 1, 1 A 1 pa je inverzna matrika matrike A a) Poi² ite

Prikaži več

Univerza na Primorskem FAMNIT, MFI Vrednotenje zavarovalnih produktov Seminarska naloga Naloge so sestavni del preverjanja znanja pri predmetu Vrednot

Univerza na Primorskem FAMNIT, MFI Vrednotenje zavarovalnih produktov Seminarska naloga Naloge so sestavni del preverjanja znanja pri predmetu Vrednot Univerza na Primorskem FAMNIT, MFI Vrednotenje zavarovalnih produktov Seminarska naloga Naloge so sestavni del preverjanja znanja pri predmetu Vrednotenje zavarovalnih produktov. Vsaka naloga je vredna

Prikaži več

2.1 Osnovni pojmi 2 Nim Ga²per Ko²mrlj, Denicija 2.1 P-poloºaj je poloºaj, ki je izgubljen za igralca na potezi. N- poloºaj je poloºaj, ki

2.1 Osnovni pojmi 2 Nim Ga²per Ko²mrlj, Denicija 2.1 P-poloºaj je poloºaj, ki je izgubljen za igralca na potezi. N- poloºaj je poloºaj, ki 2.1 Osnovni pojmi 2 Nim Ga²per Ko²mrlj, 2. 3. 2009 Denicija 2.1 P-poloºaj je poloºaj, ki je izgubljen za igralca na potezi. N- poloºaj je poloºaj, ki je dobljen za igralca na potezi. Poloºaj je kon en,

Prikaži več

Ravninski grafi Tina Malec 6. februar 2007 Predstavili bomo nekaj osnovnih dejstev o ravninskih grafih, pojem dualnega grafa (k danemu grafu) ter kako

Ravninski grafi Tina Malec 6. februar 2007 Predstavili bomo nekaj osnovnih dejstev o ravninskih grafih, pojem dualnega grafa (k danemu grafu) ter kako Ravninski grafi Tina Malec 6. februar 2007 Predstavili bomo nekaj osnovnih dejstev o ravninskih grafih, pojem dualnega grafa (k danemu grafu) ter kako ugotoviti, ali je nek graf ravninski. 1 Osnovni pojmi

Prikaži več

Posebne funkcije

Posebne funkcije 10 Posebne funkcije Posebne funkcije Geometrijska vrsta Binomska vrsta Eksponentna funkcija Logaritemska funkcija Kotne funkcije Kotne tabele Grafi kotnih funkcij Obratne kotne funkcije 10.1 Posebne funkcije

Prikaži več

3. Preizkušanje domnev

3. Preizkušanje domnev 3. Preizkušanje domnev doc. dr. Miroslav Verbič miroslav.verbic@ef.uni-lj.si www.miroslav-verbic.si Ljubljana, februar 2014 3.1 Izračunavanje intervala zaupanja za vrednosti regresijskih koeficientov Motivacija

Prikaži več

M

M Š i f r a k a n d i d a t a : Državni izpitni center *M16140111* Osnovna raven MATEMATIKA Izpitna pola 1 SPOMLADANSKI IZPITNI ROK Sobota, 4. junij 016 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat

Prikaži več

Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t

Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t 0.5 1.5 2.0 t a.) Nari²ite tri grafe: graf (klasi ne)

Prikaži več

Mladi za napredek Maribora srečanje DOLŽINA»SPIRALE«Matematika Raziskovalna naloga Februar 2015

Mladi za napredek Maribora srečanje DOLŽINA»SPIRALE«Matematika Raziskovalna naloga Februar 2015 Mladi za napredek Maribora 015 3. srečanje DOLŽINA»SPIRALE«Matematika Raziskovalna naloga Februar 015 Kazalo 1. Povzetek...3. Uvod...4 3. Spirala 1...5 4. Spirala...6 5. Spirala 3...8 6. Pitagorejsko drevo...10

Prikaži več

NAVODILA AVTORJEM PRISPEVKOV

NAVODILA AVTORJEM PRISPEVKOV Predmetna komisija za nižji izobrazbeni standard matematika Opisi dosežkov učencev 6. razreda na nacionalnem preverjanju znanja Slika: Porazdelitev točk pri matematiki (NIS), 6. razred 1 ZELENO OBMOČJE

Prikaži več

Matematika 2

Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 23. april 2014 Soda in liha Fourierjeva vrsta Opomba Pri razvoju sode periodične funkcije f v Fourierjevo vrsto v razvoju nastopajo

Prikaži več

ZveznostFunkcij11.dvi

ZveznostFunkcij11.dvi II. LIMITA IN ZVEZNOST FUNKCIJ. Preslikave med množicami Funkcija ali preslikava med dvema množicama A in B je predpis f, ki vsakemu elementu x množice A priredi natanko določen element y množice B. Važno

Prikaži več

Biometrija 1 Poglavje 1 PORAZDELITVE NAKLJUČNIH SPREMENLJIVK Porazdelitve nam predstavljajo pogostnost posameznih vrednosti. Predstavimo jih lahko s š

Biometrija 1 Poglavje 1 PORAZDELITVE NAKLJUČNIH SPREMENLJIVK Porazdelitve nam predstavljajo pogostnost posameznih vrednosti. Predstavimo jih lahko s š Biometrija 1 Poglavje 1 PORAZDELITVE NAKLJUČNIH SPREMENLJIVK Porazdelitve nam predstavljajo pogostnost posameznih vrednosti. Predstavimo jih lahko s številom posameznih vrednosti (dogodkov) ali z deleži

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-junij-17.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-junij-17.dvi Vpisna številka Priimek, ime Smer: K KT WA Izpit pri predmetu MATEMATIKA I Računski del Ugasni in odstrani mobilni telefon. Uporaba knjig in zapiskov ni dovoljena. Dovoljeni pripomočki so: kemični svinčnik,

Prikaži več

FGG13

FGG13 10.8 Metoda zveznega nadaljevanja To je metoda za reševanje nelinearne enačbe f(x) = 0. Če je težko poiskati začetni približek (še posebno pri nelinearnih sistemih), si lahko pomagamo z uvedbo dodatnega

Prikaži več

Univerza v Mariboru Fakulteta za naravoslovje in matematiko Oddelek za matematiko in ra unalni²tvo Izobraºevalna matematika Pisni izpit pri predmetu K

Univerza v Mariboru Fakulteta za naravoslovje in matematiko Oddelek za matematiko in ra unalni²tvo Izobraºevalna matematika Pisni izpit pri predmetu K 31. januar 2014 1. [25] V kino dvorano z 10 vrstami po 10 o²tevil enih sedeºev vstopi 100 ljudi. Od tega je 40 deklet in 60 fantov. Na koliko na inov se lahko posedejo, (a) e ni nobenih omejitev? (b) e

Prikaži več

PowerPoint Presentation

PowerPoint Presentation Integral rešujemo nalogo: Dana je funkcija f. Najdimo funkcijo F, katere odvod je enak f. Če je F ()=f() pravimo, da je F() primitivna funkcija za funkcijo f(). Primeri: f ( ) = cos f ( ) = sin f () =

Prikaži več

Lehmerjev algoritem za racunanje najvecjega skupnega delitelja

Lehmerjev algoritem za racunanje najvecjega skupnega delitelja Univerza v Ljubljani Fakulteta za računalništvo in informatiko ter Fakulteta za Matematiko in Fiziko Mirjam Kolar Lehmerjev algoritem za računanje največjega skupnega delitelja DIPLOMSKO DELO NA INTERDISCIPLINARNEM

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNIŠTVO Matematika 4 Pini izpit 2. januar 22 Ime in priimek: Vpina št: Navodila Pazljivo preberite beedilo naloge, preden e lotite reševanja. Veljale bodo amo rešitve na papirju, kjer

Prikaži več

ANALITIČNA GEOMETRIJA V RAVNINI

ANALITIČNA GEOMETRIJA V RAVNINI 3. Analitična geometrija v ravnini Osnovna ideja analitične geometrije je v tem, da vaskemu geometrijskemu objektu (točki, premici,...) pridružimo števila oz koordinate, ki ta objekt popolnoma popisujejo.

Prikaži več

Microsoft PowerPoint - p_TK_inzeniring_1_dan_v5_shortTS.ppt [Compatibility Mode]

Microsoft PowerPoint - p_TK_inzeniring_1_dan_v5_shortTS.ppt [Compatibility Mode] Telekomunikacijski inženiring dr. Iztok Humar Vsebina Značilnosti TK prometa, preprosti modeli, uporaba Uvod Značilnosti telekomunikacijskega prometa Modeliranje vodovno komutiranih zvez Erlang B Erlang

Prikaži več

Microsoft Word - SI_vaja5.doc

Microsoft Word - SI_vaja5.doc Univerza v Ljubljani, Zdravstvena fakulteta Sanitarno inženirstvo Statistika Inštitut za biostatistiko in medicinsko informatiko Š.l. 2011/2012, 3. letnik (1. stopnja), Vaja 5 Naloge 1. del: t test za

Prikaži več

MERE SREDNJE VREDNOSTI

MERE SREDNJE VREDNOSTI OPIS PODATKOV ENE SPREMENLJIVKE frekvenčne porazdelitve in mere srednje vrednosti as. dr. Nino RODE Uni-Lj. Fakulteta za socialno delo O ČEM BOMO GOVORILI NAMEN OPISNE STATISTIKE Kako opisati podatke OPIS

Prikaži več

Domače vaje iz LINEARNE ALGEBRE Marjeta Kramar Fijavž Fakulteta za gradbeništvo in geodezijo Univerze v Ljubljani 2007/08 Kazalo 1 Vektorji 2 2 Analit

Domače vaje iz LINEARNE ALGEBRE Marjeta Kramar Fijavž Fakulteta za gradbeništvo in geodezijo Univerze v Ljubljani 2007/08 Kazalo 1 Vektorji 2 2 Analit Domače vaje iz LINEARNE ALGEBRE Marjeta Kramar Fijavž Fakulteta za gradbeništvo in geodezijo Univerze v Ljubljani 007/08 Kazalo Vektorji Analitična geometrija 7 Linearni prostori 0 4 Evklidski prostori

Prikaži več

Microsoft Word - SI_vaja1.doc

Microsoft Word - SI_vaja1.doc Univerza v Ljubljani, Zdravstvena fakulteta Sanitarno inženirstvo Statistika Inštitut za biostatistiko in medicinsko informatiko Š.l. 2011/2012, 3. letnik (1. stopnja), Vaja 1 Naloge 1. del: Opisna statistika

Prikaži več

Optimizacija z roji delcev - Seminarska naloga pri predmetu Izbrana poglavja iz optimizacije

Optimizacija z roji delcev - Seminarska naloga pri predmetu Izbrana poglavja iz optimizacije Univerza v Ljubljani Fakulteta za matematiko in fiziko Seminarska naloga pri predmetu Izbrana poglavja iz optimizacije 2. junij 2011 Koncept PSO Motivacija: vedenje organizmov v naravi Ideja: koordinirano

Prikaži več

LaTeX slides

LaTeX slides Linearni in nelinearni modeli Milena Kovač 22. december 2006 Biometrija 2006/2007 1 Linearni, pogojno linearni in nelinearni modeli Kriteriji za razdelitev: prvi parcialni odvodi po parametrih Linearni

Prikaži več

Osnove statistike v fizični geografiji 2

Osnove statistike v fizični geografiji 2 Osnove statistike v geografiji - Metodologija geografskega raziskovanja - dr. Gregor Kovačič, doc. Bivariantna analiza Lastnosti so med sabo odvisne (vzročnoposledično povezane), kadar ena lastnost (spremenljivka

Prikaži več

FGG14

FGG14 Iterativne metode podprostorov Iterativne metode podprostorov uporabljamo za numerično reševanje linearnih sistemov ali računanje lastnih vrednosti problemov z velikimi razpršenimi matrikami, ki so prevelike,

Prikaži več

C:/Users/Matevz/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-januar-februar-15.dvi

C:/Users/Matevz/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-januar-februar-15.dvi Kemijska tehnologija, Kemija Bolonjski univerzitetni program Smer: KT K WolframA: DA NE Čas reševanja je 75 minut. Navodila: Računski del izpita pri predmetu MATEMATIKA I Ugasni in odstrani mobilni telefon.

Prikaži več

UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO Oddelek za matematiko in računalništvo DIPLOMSKO DELO Peter Škofič Maribor, 2014

UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO Oddelek za matematiko in računalništvo DIPLOMSKO DELO Peter Škofič Maribor, 2014 UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO Oddelek za matematiko in računalništvo DIPLOMSKO DELO Peter Škofič Maribor, 2014 UNIVERZA V MARIBORU FAKULTETA ZA NARAVOSLOVJE IN MATEMATIKO

Prikaži več

Jože Berk, Jana Draksler in Marjana Robič Skrivnosti števil in oblik Vsebinsko izpopolnjeno podpoglavje VERJETNOST 9

Jože Berk, Jana Draksler in Marjana Robič Skrivnosti števil in oblik Vsebinsko izpopolnjeno podpoglavje VERJETNOST 9 Jože Berk, Jana Draksler in Marjana Robič Skrivnosti števil in oblik Vsebinsko izpopolnjeno podpoglavje VERJETNOST 9 Podpoglavje Verjetnost (poglavje Obdelava podatkov) se v učbeniku Skrivnosti števil

Prikaži več

Delavnica Načrtovanje digitalnih vezij

Delavnica Načrtovanje digitalnih vezij Laboratorij za načrtovanje integriranih vezij Univerza v Ljubljani Fakulteta za elektrotehniko Programirljivi Digitalni Sistemi Digitalni sistem Digitalni sistemi na integriranem vezju Digitalni sistem

Prikaži več

Linearna algebra - povzetek vsebine Peter Šemrl Jadranska 21, kabinet 4.10 Izpitni režim: Kolokviji in pisni izpiti so vsi s

Linearna algebra - povzetek vsebine Peter Šemrl Jadranska 21, kabinet 4.10 Izpitni režim: Kolokviji in pisni izpiti so vsi s Linearna algebra - povzetek vsebine Peter Šemrl Jadranska 21, kabinet 410 petersemrl@fmfuni-ljsi Izpitni režim: Kolokviji in pisni izpiti so vsi sestavljeni iz dveh delov: v prvem delu se rešujejo naloge,

Prikaži več

Študij AHITEKTURE IN URBANIZMA, šol. l. 2016/17 Vaje iz MATEMATIKE 9. Integral Določeni integral: Določeni integral: Naj bo f : [a, b] R funkcija. Int

Študij AHITEKTURE IN URBANIZMA, šol. l. 2016/17 Vaje iz MATEMATIKE 9. Integral Določeni integral: Določeni integral: Naj bo f : [a, b] R funkcija. Int Študij AHITEKTURE IN URBANIZMA, šol. l. 6/7 Vje iz MATEMATIKE 9. Integrl Določeni integrl: Določeni integrl: Nj bo f : [, b] R funkcij. Intervl [, b] rzdelimo n n podintervlov z delilnimi točkmi: = x

Prikaži več

11. Navadne diferencialne enačbe Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogo

11. Navadne diferencialne enačbe Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogo 11. Navadne diferencialne enačbe 11.1. Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogoju y(x 0 ) = y 0, kjer je f dana dovolj gladka funkcija

Prikaži več

LaTeX slides

LaTeX slides Statistični modeli - interakcija - Milena Kovač 23. november 2007 Biometrija 2007/08 1 Število živorojenih pujskov Biometrija 2007/08 2 Sestavimo model! Vplivi: leto, farma Odvisna spremenljivka: število

Prikaži več

Urejevalna razdalja Avtorji: Nino Cajnkar, Gregor Kikelj Mentorica: Anja Petković 1 Motivacija Tajnica v posadki MARS - a je pridna delavka, ampak se

Urejevalna razdalja Avtorji: Nino Cajnkar, Gregor Kikelj Mentorica: Anja Petković 1 Motivacija Tajnica v posadki MARS - a je pridna delavka, ampak se Urejevalna razdalja Avtorji: Nino Cajnkar, Gregor Kikelj Mentorica: Anja Petković 1 Motivacija Tajnica v posadki MARS - a je pridna delavka, ampak se velikokrat zmoti. Na srečo piše v programu Microsoft

Prikaži več

UM FKKT, Bolonjski visoko²olski program Kemijska tehnologija Vpisna ²tevilka Priimek, ime 3. test pri predmetu MATEMATIKA II Ra unski del

UM FKKT, Bolonjski visoko²olski program Kemijska tehnologija Vpisna ²tevilka Priimek, ime 3. test pri predmetu MATEMATIKA II Ra unski del UM FKKT, Bolonjski visoko²olski program Kemijska tehnologija Vpisna ²tevilka Priimek, ime 3. test pri predmetu MATEMATIKA II Ra unski del 13. 6. 2016 Navodila: Pripravi osebni dokument. Ugasni in odstrani

Prikaži več

Naloge iz kolokvijev Analize 1 (z rešitvami) E-UNI, GING, TK-UNI FERI dr. Iztok Peterin Maribor 2009 V tej datoteki so zbrane naloge iz kolokvijev za

Naloge iz kolokvijev Analize 1 (z rešitvami) E-UNI, GING, TK-UNI FERI dr. Iztok Peterin Maribor 2009 V tej datoteki so zbrane naloge iz kolokvijev za Naloge iz kolokvijev Analize (z rešitvami) E-UNI, GING, TK-UNI FERI dr. Iztok Peterin Maribor 2009 V tej datoteki so zbrane naloge iz kolokvijev za predmet Analiza na smereh E-UNI, GING in TK-UNI na Fakulteti

Prikaži več

Turingov stroj in programiranje Barbara Strniša Opis in definicija Definirajmo nekaj oznak: Σ abeceda... končna neprazna množica simbolo

Turingov stroj in programiranje Barbara Strniša Opis in definicija Definirajmo nekaj oznak: Σ abeceda... končna neprazna množica simbolo Turingov stroj in programiranje Barbara Strniša 12. 4. 2010 1 Opis in definicija Definirajmo nekaj oznak: Σ abeceda... končna neprazna množica simbolov (običajno Σ 2) Σ n = {s 1 s 2... s n ; s i Σ, i =

Prikaži več

predstavitev fakultete za matematiko 2017 A

predstavitev fakultete za matematiko 2017 A ZAKAJ ŠTUDIJ MATEMATIKE? Ker vam je všeč in vam gre dobro od rok! lepa, eksaktna veda, ki ne zastara matematičnoanalitično sklepanje je uporabno povsod matematiki so zaposljivi ZAKAJ V LJUBLJANI? najdaljša

Prikaži več

MATLAB programiranje MATLAB... programski jezik in programersko okolje Zakaj Matlab? tipičen proceduralni jezik enostaven za uporabo hitro učenje prir

MATLAB programiranje MATLAB... programski jezik in programersko okolje Zakaj Matlab? tipičen proceduralni jezik enostaven za uporabo hitro učenje prir MATLAB programiranje MATLAB... programski jezik in programersko okolje Zakaj Matlab? tipičen proceduralni jezik enostaven za uporabo hitro učenje priročno programsko okolje tolmač interpreter (ne prevajalnik)

Prikaži več

Naloge 1. Dva električna grelnika z ohmskima upornostma 60 Ω in 30 Ω vežemo vzporedno in priključimo na idealni enosmerni tokovni vir s tokom 10 A. Tr

Naloge 1. Dva električna grelnika z ohmskima upornostma 60 Ω in 30 Ω vežemo vzporedno in priključimo na idealni enosmerni tokovni vir s tokom 10 A. Tr Naloge 1. Dva električna grelnika z ohmskima upornostma 60 Ω in 30 Ω vežemo vzporedno in priključimo na idealni enosmerni tokovni vir s tokom 10 A. Trditev: idealni enosmerni tokovni vir obratuje z močjo

Prikaži več

Space Invaders Opis igre: Originalna igra: Space Invaders je arkadna igra, ki so jo ustvarili leta Bila je ena izmed prvih streljaških iger, v k

Space Invaders Opis igre: Originalna igra: Space Invaders je arkadna igra, ki so jo ustvarili leta Bila je ena izmed prvih streljaških iger, v k Space Invaders Opis igre: Originalna igra: Space Invaders je arkadna igra, ki so jo ustvarili leta 1978. Bila je ena izmed prvih streljaških iger, v kateri je igralec vodil laserski top ali vesoljsko ladjo,

Prikaži več

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO ODDELEK ZA FIZIKO Peter Smerkol SEMINARSKA NALOGA Brownovo Gibanje MENTOR: dr. Tomaž Podobnik L

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO ODDELEK ZA FIZIKO Peter Smerkol SEMINARSKA NALOGA Brownovo Gibanje MENTOR: dr. Tomaž Podobnik L UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO ODDELEK ZA FIZIKO Peter Smerkol SEMINARSKA NALOGA Brownovo Gibanje MENTOR: dr. Tomaž Podobnik Ljubljana, Marec 2007 Povzetek Najpreprostejši model

Prikaži več

P181C10111

P181C10111 Š i f r a k a n d i d a t a : Državni izpitni center *P181C10111* SPOMLADANSKI IZPITNI ROK MATEMATIKA Izpitna pola Sobota, 9. junij 018 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno

Prikaži več

PREDMETNI KURIKULUM ZA RAZVOJ METEMATIČNIH KOMPETENC

PREDMETNI KURIKULUM ZA RAZVOJ METEMATIČNIH KOMPETENC MATEMATIKA 1.razred OSNOVE PREDMETA POKAZATELJI ZNANJA SPRETNOSTI KOMPETENCE Naravna števila -pozna štiri osnovne računske operacije in njihove lastnosti, -izračuna številske izraze z uporabo štirih računskih

Prikaži več

rm.dvi

rm.dvi 1 2 3 4 5 6 7 Ime, priimek Razred 14. DRŽAVNO TEKMOVANJE V RAZVEDRILNI MATEMATIKI NALOGE ZA PETI IN ŠESTI RAZRED OSNOVNE ŠOLE Čas reševanja nalog: 90 minut Točkovanje 1., 2., in 7. naloge je opisano v

Prikaži več

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 2017

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 2017 UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 217 ii Kazalo Diferencialni račun vektorskih funkcij 1 1.1 Skalarne funkcije...........................

Prikaži več

POPOLNI KVADER

POPOLNI KVADER List za mlade matematike, fizike, astronome in računalnikarje ISSN 031-662 Letnik 18 (1990/1991) Številka 3 Strani 134 139 Edvard Kramar: POPOLNI KVADER Ključne besede: matematika, geometrija, kvader,

Prikaži več

(Microsoft Word - 3. Pogre\232ki in negotovost-c.doc)

(Microsoft Word - 3. Pogre\232ki in negotovost-c.doc) 3.4 Merilna negotovost Merilna negotovost je parameter, ki pripada merilnem rezltat. Označje razpršenost vrednosti, ki jih je mogoče z določeno verjetnostjo pripisati merjeni veličini. Navaja kakovost

Prikaži več

STAVKI _5_

STAVKI _5_ 5. Stavki (Teoremi) Vsebina: Stavek superpozicije, stavek Thévenina in Nortona, maksimalna moč na bremenu (drugič), stavek Tellegena. 1. Stavek superpozicije Ta stavek določa, da lahko poljubno vezje sestavljeno

Prikaži več

Teorija kodiranja in kriptografija 2013/ AES

Teorija kodiranja in kriptografija 2013/ AES Teorija kodiranja in kriptografija 23/24 AES Arjana Žitnik Univerza v Ljubljani, Fakulteta za matematiko in fiziko Ljubljana, 8. 3. 24 AES - zgodovina Septembra 997 je NIST objavil natečaj za izbor nove

Prikaži več

MAGIČNI KVADRATI DIMENZIJE 4n+2

MAGIČNI KVADRATI DIMENZIJE 4n+2 List za mlade matematike, fizike, astronome in računalnikarje ISSN 0351-6652 Letnik 18 (1990/1991) Številka 6 Strani 322 327 Borut Zalar: MAGIČNI KVADRATI DIMENZIJE 4n + 2 Ključne besede: matematika, aritmetika,

Prikaži več

Wienerjevemu indeksu podobni indeksi na grafih

Wienerjevemu indeksu podobni indeksi na grafih UNIVERZA NA PRIMORSKEM FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN INFORMACIJSKE TENOLOGIJE Matematične znanosti, stopnja Daliborko Šabić Wienerjevemu indeksu podobni indeksi na grafih Magistrsko delo Mentor:

Prikaži več