TEORIJA GRAVITACIJE. Geodetke v Schwarzschildovi metriki. Gregor Kladnik. astronomsko-geofizikalna smer

Velikost: px
Začni prikazovanje s strani:

Download "TEORIJA GRAVITACIJE. Geodetke v Schwarzschildovi metriki. Gregor Kladnik. astronomsko-geofizikalna smer"

Transkripcija

1 TEORIJA GRAVITACIJE Geodetke v Schwarzschildovi metriki Gregor Kladnik astronomsko-geofizikalna smer 1 Uvod Glavna enačba splošne teorije relativnosti je Einsteinova enačba polja G = c = 1) [1, ] G µν = 8πT µν, 1.1) kjer je G µν Einsteinov tenzor ter T µν napetostni tenzor. Pri tem je Einsteinov tenzor tesno povezan z Riccijevim tenzorjem R µν in njegovo sledjo R = R µ µ G µν = R µν 1 g µνr, 1.) pri čemer je g µν metrični tenzor. Riccijev tenzor ni nič drugega kot skrčen Riemannov tenzor R α βγδ : R αβ = R µ αµβ. Riemmanov tenzor je povezan s Christoffelovimi simboli Γ α βγ, le-ti pa so direktno povezani z metriko g µν. Rešitev enačbe 1.1) za sferno simetričen problem stacionarne mase je prvi podal Schwarzschild le nekaj mesecev po Einsteinovi izpeljavi enačbe 1.1). Schwarzschildova rešitev V Schwarzschildovih koordinatah t, r, θ, φ) je metrika poljubnega statičnega sferno-simetričnega prostor-časa oblike [1, ] ds = fr)c dt + hr)dr + r dθ + sin θdφ ). 1.3) Leta 193 je Birkhoff pokazal, da je privzetek statičnosti odveč vsi sferno simetrični prostor-časi z R αβ = ustreza pogoju za rešitev Einsteinove enačbe v vakuumu, kjer je napetostno tenzor T µν identično enak ) so statični. Analogija k temu t.i. Birkhoffovemu teoremu je v elektromagnetizmu dejstvo, da je Coulombova rešitev edina sferno simetrična statična rešitev Maxwellovih enačb v vakuumu. Interpretiramo jo lahko kot pogoj, da tako pri gravitaciji 1

2 kot v elektromagnetizmu ne obstaja monopolno sferno simetrično) sevanje. [] Končno zapišimo Schwarzschildovo rešitev [1, ] ds = 1 M r ) dt + 1 M r ) 1 dr + r dθ + sin θdφ ), 1.4) kjer je M Schwarzschildov radij r S = M = GM c M). radij črne luknje z maso Geodetke v Schwarzschildovi metriki Orbite delcev ustrezajo geodetkam v prostor-času. Komponente baze tangente u µ na krivuljo parametrizirano z τ je u µ = dxµ dτ = ẋµ..1) Za časovne geodetke izberemo za parameter τ lasten čas, za ničelne geodetke pa naj bo τ nek afini parameter. Za te primere imamo torej θ = π/) κ = g µν u µ u ν = 1 M r )ṫ + 1 M r ) 1ṙ + r φ,.) kjer je parameter κ enak 1 za časovne geodetke in za ničelne. [] S pomočjo lagranžijana L = 1g µνẋ µ ẋ ν in Euler-Lagrangeovih enačb ) d L = L dτ ẋ σ x,.3) σ lahko izračunamo enačbe gibanja prostega delca. Njihove rešitve ustrezajo orbitam, oziroma geodetkam ustrezne metrike. Zaradi simetričnosti lahko za Schwarzschildovo metriko privzamemo θ = π/ gibanje v ekvatorialni ravnini) in zapišemo lagranžijan L = 1 1 M r )ṫ + 1 M r ) 1ṙ + r φ)..4) Hitro prepoznamo dve konstanti gibanja [ ] d r φ = p φ = r φ = l,.5) dτ [ d 1 r )ṫ] s = p = 1 r s )ṫ = ẽ..6) dτ r r

3 Enačbo gibanja najlažje dobimo s pomočjo enačbe.), vstavimo zgornja izraza za konstanti gibanja in zapišemo κ = 1 M r ) 1ẽ + 1 M r ) 1ṙ + l r.7) Pomnožimo izraz z 1, brez izgube splošnosti postavimo r S = 1 enote dolžine so sedaj v enotah Schwarzschildovega radija r S ), [] preuredimo člene in dobimo 1 ṙ + 1 ) κr ) 1 + L r r 3 = ẽ κ = E..8) V drugem členu na levi strani enačbe prepoznamo efektivni enodimenzionalni potencial V eff = 1 ) κr ) 1 + L r r 3..9) Potem ko določimo gibanje v radialni smeri s pomočjo efektivnega potenciala, izračunamo odvisnost kota in Schwarzschildovega časa t enostavno s pomočjo konstant gibanja in njihovih enačb.5) in.6). Glavna značilnost dobljene enačbe za efektivni potencial je dodaten relativističen tretji člen, saj v prvih dveh κ/r in L /r ) prepoznamo člena Kepplerjevega efektivnega potenciala v Newtonovi gravitaciji. Dodaten relativističen člen prevlada nad centrifugalnim členom za majhne vrednosti r..1 Rešitve za ničelne geodetke κ = ) Vstavimo κ = v enačbo.9) in dobimo efektivni potencial v enotah celotne energije ẽ / = E) za ničelne geodetke V ) eff 1 = b 1 ),.1) r r slika 1). Oblika potenciala je neodvisna od parametra b in kot vidimo na sliki 1) ima le en ekstrem in sicer maksimum pri r = 3/. V splošni teoriji relativnosti torej obstajajo nestabilne maksimum!) krožne orbite fotonov pri radiju r = 3/. Najnižja energija potrebna za prestop potencialnega zidu je torej enaka 1 = V r = 3/) = 4b, oziroma.11) 7 b = L ẽ = ) 3

4 V ravnem prostoru-času je kvocient L/ẽ za foton enak parametru trka, t.j. najmanjši razdalji med orbito žarka, fotona) in izhodiščem maso, objektom). Schwarzschildov prostor-čas je asimptotično raven g µν η µν ), r zato lahko za foton, ki izhaja iz asimptotično ravnega območja r 1), definiramo navidezni parameter trka [] b = L ẽ,.13) čeprav ne predstavlja več najmanjše razdalje med objektom in orbito. Vsak foton z navideznim parametrom trka manjšim od mejnega b c = 7/4 se bo ujel v telo z maso M. Iz poteka efektivnega potenciala lahko razberemo,.7.6 V poljubne enote r r S Slika 1: Odvisnost efektivnega potenciala od radialne razdalje r za ničelno geodetko. da bodo orbite fotonov z večjim navideznim parametrom trka od mejnega ukrivljene imele bodo eno obračalno točko. S pomočjo enačbe gibanja.8) in konstant gibanja lahko izračunamo diferencialno enačbo, ki opisuje odvisnost rφ) ) 1/ dr dφ = r b r + r 3..14) Z vpeljavo nove spremenljivke podobno kot pri reševanju Kepplerjevega problema v klasični mehaniki) u = 1/r se enačba poenostavi v du ) 1/. dφ = b u + u 3.15) 4

5 .1.1 Potek izračuna trajektorij Glede na dani navidezni parameter trka b in začetni pogoj r, φ ) moramo med seboj ločiti tri različne tipe trajektorij: Za b > b C in začetno oddaljenost r veliko večjo od najbolj oddaljene obračalne točke imamo pojav ukrivljanja svetlobnih žarkov, Za b < b C se svetlobni žarki ujamejo v črno luknjo, Za b > b C in začetno oddaljenost r manjšo od najbližje obračalne točke a hkrati seveda večjo od radija črne luknje, v izračunah privzamemo približno r = r S ) imamo trajektorije, ki imajo svoj začetek in konec na površju črne luknje. S pomočjo programskega paketa Mathematica implementiramo algoritem za izračun posameznega tipa orbit. Postopamo takole: na začetku definiramo nekaj parametrov kot je navidezni parameter trka b in začetno oddaljenost r brez izgube splošnosti smemo privzeti φ = ). Nato s pomočjo potenciala.1) in parametra b določimo radialne koordinate obeh obračalnih točk. S pomočjo le-teh in začetne oddaljenosti r tako lahko določimo v katerem izmed treh možnih režimov tipov trajektorij) se nahajamo. Končno vpeljemo funkcijo φu; b, u 1 ) = u u 1 ) 1/ b w + w 3 dw,.16) ki je direktno povezana z enačbo.15). Potek potenciala nam določa interval za radialno komponento, oziroma za spremenljivko u = 1/r imenujmo jo kar radialno komponento, čeprav se zavedamo da u predstavlja inverz lete). Zgornji integral pa nam za dano začetno vrednost u 1 in vrednost u poda polarni kot. Tako imamo dani obe komponenti radij vektorja, ki opisuje trajektorijo delca oz. fotona). Pri tem se uporabi še ena uporabna zvijača in sicer parametriziramo radialno komponento u z nekim parametrom z, ki nam meri kje glede na periodo se delec nahaja na orbiti. Povedano drugače, za z [, 1) opišemo natančno eno periodo orbite. Seveda je takšen pomen parametra z smiselen le za orbite z dvema obračalnima točkama, v primeru ene obračalne točke pa določa potek radialne komponente od r pri z =, do r pri z = 1; seveda se pri tem spremeni polarni kot φ po enačbi.16). Na sliki ) vidimo potek spremenljivke u levo) in r desno) v odvisnosti od parametra z za nek b > b C. Na sliki 3) pa vidimo s pomočjo integrala.16) in parametrizacije u 5

6 izračunan potek polarnega kota φ od parametra z. Poznavanje obeh komponent rz), φz) ) nam podaja iskano krivuljo trajektorijo) v parametrizirani obliki u..15 r z z Slika : Potek spremenljivke u v odvisnosti od parametra z levo), ter potek radialne komponente r = 1/u) od parametra z desno). 3 Φ z Slika 3: Potek polarnega kota φ v odvisnosti od parametra z izračunan s pomočjo integrala.16) ter ustrezne parametrizacije uz). 6

7 .1. Ukrivljanje svetlobnih žarkov za b > b C 5 y r S x r S Slika 4: Trajektorije svetlobnih žarkov v bližini črne luknje za različne vrednosti parametra b. r = ) R [ r S ] b / b C b / b C Slika 5: Odvisnost polarnih koordinat obračalne točke T r, ϕ) od parametra b. 7

8 .1.3 Ujetje svetlobnih žarkov za b < b C y r S Slika 6: Slika prikazuje trajektorije svetlobnih žarkov s parametrom b manjšim od kritičnega, zaradi česar se le-ti ujamejo v črno luknjo. r = ) x r S.1.4 Nastanek in ujetje žarkov pri r = r s in b > b C 1 y r S.5 x r S Slika 7: Nastanek fotonov pri r r S in njihove orbite za različne vrednosti parametra b. Orbite takšnega tipa dovoljuje oblika potenciala, saj za določen b > b C obstajata dve obračalni točki, glej sliko 1). 8

9 . Rešitve za časovne geodetke κ = 1) Efektivni potencial za časovne geodetke se potlej zapiše V eff = 1 ) r ) 1 + L r r 3..17) Trajektorije izračunamo na enak način kot v prejšnjem primeru za ničelne geodetke. Slika 8) prikazuje obliko potenciala za različne vrednosti parametra L. S pomočjo slike vidimo, da ima potencial dva ekstrema 1, čemur ustrezajo.1 V poljubne enote r r S Slika 8: Potek efektivnega potenciala za različne vrednosti parametra L. Za energijo E < in V max > imamo vezane orbite. krožne orbite. Pri tem je orbita kjer ima potencial maksimum nestabilna, v minimumu potenciala pa je stabilna. Za določitev trajektorij si moramo izbrati najprej dva parametra L in celotno energijo E. Ločimo lahko štiri pet) različne tipe trajektorij...1 Tipi trajektorij za časovne geodetke Podobno kot v primeru ničelnih geodetk moramo ločiti več različnih tipov trajektorij v odvisnosti od vrednosti parametrov L, E ter začetnih pogojev r, φ ). Parameter L določa obliko efektivnega potenciala, slika 8), E pa energijo delca. Ločimo naslednje primere: 1 Trditev drži le, če je vrednost parametra L večja od 3. 9

10 Za E < E > V min točkama, slika 9), imamo vezane orbite z dvema obračalnima Za E = V min imamo stabilno krožno orbito, slika 11), Za E > E < V max ter r večji od obračalne točke z največjim radijem imamo nevezane trajektorije z eno obračalno točko sipanje, Za E > E < V max ter r manjši od obračalne točke z najmanjšim radijem imamo trajektorije, ki nastanejo in končajo v bližini r S za r privzamemo kar r r S ), Za E > V max imamo trajektorije delcev, ki padejo v črno luknjo. Sam numerični algoritem je identičen opisanemu za primer ničelnih geodetk s to razliko, da se enačba za izračun polarnega kota sedaj glasi V u, L) = 1 u + L u u 3 ) ), φu; E, L, u 1 ) =.. Vezane orbite u u 1 L E V w, L) ) 1/ dw..18) Vezane orbite imajo dve obračalni točki periastron in apoastron), če narišemo na isti graf potek efektivnega potenciala in energije vidimo, da se sekata v treh točkah dve od teh predstavljata omenjeni obračalni točki nahajamo se v potencialnem loncu ), slika 9). Dodaten relativističen člen v efektivnem potencialu.17) povzroči, da vezane orbite precesirajo, slika 1). 1

11 ..1 V poljubne enote r r S Slika 9: Trajektorije določata efektivni potencial in energija modro) ter začetna) razdalja od izhodišča črne luknje). y r S x r S -1 - Slika 1: Orbita delca za zgornji primer potenciala in energije vrednosti L in E). Takoj opazimo precesijo, ki je značilna za ta tip orbit v splošni teoriji relativnosti. Za majhne vrednosti mase M je precesijska frekvenca dana kot do najnižjega reda v M) [] ω p kjer je tukaj e ekscentričnost in a velika polos orbite. 3GM)3/,.19) c 1 e )a5/ 11

12 ..3 Stabilna krožna orbita Limita vezanih orbit v minimumu potenciala je stabilna) krožna orbita, saj tam velja ṙ = ; dve obračalni točki se izrodita v eno samo. y rs. 1.1 V poljubne enote x rs r r S -1 Slika 11: Stabilna krožna orbita v minimumu efektivnega potenciala...4 Trajektorije z eno obračalno točko sipanje) Kadar je energija E pozitivna in manjša od maksimuma potenciala dobimo za delce trajektorije z eno obračalno točko. Pri tem gre dejansko za sipanje delcev v bližini črne luknje..1 V poljubne enote r r S Slika 1: Za pozitivne energije E > ) in hkrati manjše od maksimuma potenciala dobimo trajektorije sipanja, glej še sliko 13). Prikazane so energije pri katerih smo izračunali trajektorije) 1

13 y r S x r S -1 - Slika 13: Nekaj trajektorij sipanih delcev za različne vrednosti parametra E, glej tudi sliko 1). r = 4)..5 Delci ki nastanejo v bližini r r S in padejo v črno luknjo Za takšne delce je značilno, da imajo njihove trajektorije eno obračalno točko, na primer na sliki 9) je to prva najbližja črni luknji) obračalna točka tam kjer se sekata grafa za efektivni potencial in energijo). Dobimo podobne trajektorije kot že pri problemu ničelnih geodetk. Rezultate prikazuje slika 14). 13

14 y rs x rs Slika 14: Vrednosti parametra E so enake kot v primeru na sliki 1), obračalna točka za ta tip trajektorij je tista, ki je najbližje črni luknji...6 Delci ki padejo v črno luknjo E > V max) eff ) V to skupino spadajo vsi delci, ki imajo energijo večjo od maksimuma efektivnega potenciala, slika 15)...1 V poljubne enote r r S Slika 15: Za vrednosti parametra E večje od maksimuma efektivnega potenciala dobimo trajektorije delcev, ki padejo v črno luknjo, slika 16). 14

15 y r S x r S -1 Slika 16: Trajektorije delcev, ki padejo v črno luknjo prestopijo potencialno oviro, ker imajo energijo E večjo od maksimuma efektivnega potenciala). r = 4) 3 Zaključek Preverili in izračunali smo ničelne in časovne geodetke v Schwarzschildovi metriki. Ugotovili smo, da lahko problem izračuna geodetk formuliramo kot problem izračuna trajektorij hipotetičnih) delcev v efektivnem potencialu, ki je v dveh členih enak Kepplerjevemu tretji člen predstavlja dodaten privlačen del v bližini črne luknje, kar je povsem posledica splošne teorije relativnosti. Videli smo da moramo ločiti med seboj večje število različnih tipov trajektorij. Numerični izračun je potekal s pomočjo paketa Mathematica. Literatura [1] Misner C. W., Thorne K. S., Wheeler J. A., Gravitation, W. H. Freeman and Company, San Francisco 1973). [] Wald R. M., General Relativity, The University of Chicago Press, Chicago 1984). [3] Teorija gravitacije, zapiski s predavanj 15

FAKULTETA ZA STROJNIŠTVO Matematika 2 Pisni izpit 9. junij 2005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite bese

FAKULTETA ZA STROJNIŠTVO Matematika 2 Pisni izpit 9. junij 2005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite bese FAKULTETA ZA STROJNIŠTVO Matematika Pisni izpit 9. junij 005 Ime in priimek: Vpisna št: Zaporedna številka izpita: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Veljale bodo

Prikaži več

ANALITIČNA GEOMETRIJA V RAVNINI

ANALITIČNA GEOMETRIJA V RAVNINI 3. Analitična geometrija v ravnini Osnovna ideja analitične geometrije je v tem, da vaskemu geometrijskemu objektu (točki, premici,...) pridružimo števila oz koordinate, ki ta objekt popolnoma popisujejo.

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNISTVO Matematika Pisni izpit. junij 22 Ime in priimek Vpisna st Navodila Pazljivo preberite besedilo naloge, preden se lotite resevanja. Veljale bodo samo resitve na papirju, kjer so

Prikaži več

Poslovilno predavanje

Poslovilno predavanje Poslovilno predavanje Matematične teme z didaktiko Marko Razpet, Pedagoška fakulteta Ljubljana, 20. november 2014 1 / 32 Naše skupne ure Matematične tehnologije 2011/12 Funkcije več spremenljivk 2011/12

Prikaži več

Univerza v Novi Gorici Fakulteta za aplikativno naravoslovje Fizika (I. stopnja) Mehanika 2014/2015 VAJE Gravitacija - ohranitveni zakoni

Univerza v Novi Gorici Fakulteta za aplikativno naravoslovje Fizika (I. stopnja) Mehanika 2014/2015 VAJE Gravitacija - ohranitveni zakoni Univerza v Novi Gorici Fakulteta za aplikativno naravoslovje Fizika (I. stopnja) Mehanika 2014/2015 VAJE 12. 11. 2014 Gravitacija - ohranitveni zakoni 1. Telo z maso M je sestavljeno iz dveh delov z masama

Prikaži več

Albert Einstein in teorija relativnosti

Albert Einstein in teorija relativnosti Albert Einstein in teorija relativnosti Rojen 14. marca 1879 v judovski družini v Ulmu, odraščal pa je v Münchnu Obiskoval je katoliško osnovno šolo, na materino željo se je učil igrati violino Pri 15

Prikaži več

Matematika 2

Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 23. april 2014 Soda in liha Fourierjeva vrsta Opomba Pri razvoju sode periodične funkcije f v Fourierjevo vrsto v razvoju nastopajo

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNIŠTVO Matematika 2. kolokvij 4. januar 212 Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Veljale bodo samo rešitve na papirju, kjer

Prikaži več

Microsoft Word - Astronomija-Projekt19fin

Microsoft Word - Astronomija-Projekt19fin Univerza v Ljubljani Fakulteta za matematiko in fiziko Jure Hribar, Rok Capuder Radialna odvisnost površinske svetlosti za eliptične galaksije Projektna naloga pri predmetu astronomija Ljubljana, april

Prikaži več

Klasična teorija polja L. D. Landau in E. M. Lifšic Inštitut za fizikalne naloge, Akademija za znanost ZSSR, Moskva Prevod: Rok Žitko, IJS 29. decembe

Klasična teorija polja L. D. Landau in E. M. Lifšic Inštitut za fizikalne naloge, Akademija za znanost ZSSR, Moskva Prevod: Rok Žitko, IJS 29. decembe Klasična teorija polja L. D. Landau in E. M. Lifšic Inštitut za fizikalne naloge, Akademija za znanost ZSSR, Moskva Prevod: Rok Žitko, IJS 29. december 2003 Kazalo 1 Načelo relativnosti 6 1 Hitrost širjenja

Prikaži več

Osnove matematicne analize 2018/19

Osnove matematicne analize  2018/19 Osnove matematične analize 2018/19 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D f R priredi natanko

Prikaži več

Osnove statistike v fizični geografiji 2

Osnove statistike v fizični geografiji 2 Osnove statistike v geografiji - Metodologija geografskega raziskovanja - dr. Gregor Kovačič, doc. Bivariantna analiza Lastnosti so med sabo odvisne (vzročnoposledično povezane), kadar ena lastnost (spremenljivka

Prikaži več

NEKAJ VPRAŠANJ IZ MATEMATIKE 2 1. Katero točko evklidskega prostora R n imenujemo notranjo (zunanjo, robno) točko množice M R n? 2. Za poljubno množic

NEKAJ VPRAŠANJ IZ MATEMATIKE 2 1. Katero točko evklidskega prostora R n imenujemo notranjo (zunanjo, robno) točko množice M R n? 2. Za poljubno množic NEKAJ VPRAŠANJ IZ MATEMATIKE 2 1. Katero točko evklidskega prostora R n imenujemo notranjo (zunanjo, robno) točko množice M R n? 2. Za poljubno množico M R n evklidskega prostora R n definirajte množice

Prikaži več

(Microsoft PowerPoint - vorsic ET 9.2 OES matri\350ne metode 2011.ppt [Compatibility Mode])

(Microsoft PowerPoint - vorsic ET 9.2 OES matri\350ne metode 2011.ppt [Compatibility Mode]) 8.2 OBRATOVANJE ELEKTROENERGETSKEGA SISTEMA o Matrične metode v razreševanju el. omrežij Matrične enačbe električnih vezij Numerične metode za reševanje linearnih in nelinearnih enačb Sistem algebraičnih

Prikaži več

EKVITABILNE PARTICIJE IN TOEPLITZOVE MATRIKE Aleksandar Jurišić Politehnika Nova Gorica in IMFM Vipavska 13, p.p. 301, Nova Gorica Slovenija Štefko Mi

EKVITABILNE PARTICIJE IN TOEPLITZOVE MATRIKE Aleksandar Jurišić Politehnika Nova Gorica in IMFM Vipavska 13, p.p. 301, Nova Gorica Slovenija Štefko Mi EKVITABILNE PARTICIJE IN TOEPLITZOVE MATRIKE Aleksandar Jurišić Politehnika Nova Gorica in IMFM Vipavska 13, p.p. 301, Nova Gorica Slovenija Štefko Miklavič 30. okt. 2003 Math. Subj. Class. (2000): 05E{20,

Prikaži več

Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y

Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y Matematika Diferencialne enačbe prvega reda (1) Reši diferencialne enačbe z ločljivimi spremenljivkami: (a) y = 2xy, (b) y tg x = y, (c) y = 2x(1 + y 2 ). Rešitev: Diferencialna enačba ima ločljive spremenljivke,

Prikaži več

Popravki nalog: Numerična analiza - podiplomski študij FGG : popravljena naloga : popravljena naloga 14 domače naloge - 2. skupina

Popravki nalog: Numerična analiza - podiplomski študij FGG : popravljena naloga : popravljena naloga 14 domače naloge - 2. skupina Popravki nalog: Numerična analiza - podiplomski študij FGG 9.8.24: popravljena naloga 4 3..25: popravljena naloga 4 domače naloge - 2. skupina V drugem delu morate rešiti toliko nalog, da bo njihova skupna

Prikaži več

Naloge 1. Dva električna grelnika z ohmskima upornostma 60 Ω in 30 Ω vežemo vzporedno in priključimo na idealni enosmerni tokovni vir s tokom 10 A. Tr

Naloge 1. Dva električna grelnika z ohmskima upornostma 60 Ω in 30 Ω vežemo vzporedno in priključimo na idealni enosmerni tokovni vir s tokom 10 A. Tr Naloge 1. Dva električna grelnika z ohmskima upornostma 60 Ω in 30 Ω vežemo vzporedno in priključimo na idealni enosmerni tokovni vir s tokom 10 A. Trditev: idealni enosmerni tokovni vir obratuje z močjo

Prikaži več

RAČUNALNIŠKA ORODJA V MATEMATIKI

RAČUNALNIŠKA ORODJA V MATEMATIKI DEFINICIJA V PARAVOKOTNEM TRIKOTNIKU DEFINICIJA NA ENOTSKI KROŢNICI GRAFI IN LASTNOSTI SINUSA IN KOSINUSA POMEMBNEJŠE FORMULE Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z

Prikaži več

Poskusi s kondenzatorji

Poskusi s kondenzatorji Poskusi s kondenzatorji Samo Lasič, Fakulteta za Matematiko in Fiziko, Oddelek za fiziko, Ljubljana Povzetek Opisani so nekateri poskusi s kondenzatorji, ki smo jih izvedli z merilnim vmesnikom LabPro.

Prikaži več

11. Navadne diferencialne enačbe Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogo

11. Navadne diferencialne enačbe Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogo 11. Navadne diferencialne enačbe 11.1. Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogoju y(x 0 ) = y 0, kjer je f dana dovolj gladka funkcija

Prikaži več

FGG13

FGG13 10.8 Metoda zveznega nadaljevanja To je metoda za reševanje nelinearne enačbe f(x) = 0. Če je težko poiskati začetni približek (še posebno pri nelinearnih sistemih), si lahko pomagamo z uvedbo dodatnega

Prikaži več

Slide 1

Slide 1 Vsak vektor na premici skozi izhodišče lahko zapišemo kot kjer je v smerni vektor premice in a poljubno število. r a v Vsak vektor na ravnini skozi izhodišče lahko zapišemo kot kjer sta v, v vektorja na

Prikaži več

Uvodno predavanje

Uvodno predavanje RAČUNALNIŠKA ORODJA Simulacije elektronskih vezij M. Jankovec 2.TRAN analiza (Analiza v časovnem prostoru) Iskanje odziva nelinearnega dinamičnega vezja v časovnem prostoru Prehodni pojavi Stacionarno

Prikaži več

Brownova kovariancna razdalja

Brownova kovariancna razdalja Brownova kovariančna razdalja Nace Čebulj Fakulteta za matematiko in fiziko 8. januar 2015 Nova mera odvisnosti Motivacija in definicija S primerno izbiro funkcije uteži w(t, s) lahko definiramo mero odvisnosti

Prikaži več

DOMACA NALOGA - LABORATORIJSKE VAJE NALOGA 1 Dani sta kompleksni stevili z in z Kompleksno stevilo je definirano kot : z = a + b, a p

DOMACA NALOGA - LABORATORIJSKE VAJE NALOGA 1 Dani sta kompleksni stevili z in z Kompleksno stevilo je definirano kot : z = a + b, a p DOMACA NALOGA - LABORATORIJSKE VAJE NALOGA 1 Dani sta kompleksni stevili z 1 5 2 3 in z 2 3 8 5. Kompleksno stevilo je definirano kot : z = a + b, a predstavlja realno, b pa imaginarno komponento. z 1

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/testi in izpiti/ /IZPITI/FKKT-februar-14.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/testi in izpiti/ /IZPITI/FKKT-februar-14.dvi Kemijska tehnologija, Kemija Bolonjski univerzitetni program Smer: KT K WolframA: DA NE Računski del izpita pri predmetu MATEMATIKA I 6. 2. 2014 Čas reševanja je 75 minut. Navodila: Pripravi osebni dokument.

Prikaži več

Vrste

Vrste Matematika 1 17. - 24. november 2009 Funkcija, ki ni algebraična, se imenuje transcendentna funkcija. Podrobneje si bomo ogledali naslednje transcendentne funkcije: eksponentno, logaritemsko, kotne, ciklometrične,

Prikaži več

ELEKTRIČNI NIHAJNI KROG TEORIJA Električni nihajni krog je električno vezje, ki služi za generacijo visokofrekvenče izmenične napetosti. V osnovi je "

ELEKTRIČNI NIHAJNI KROG TEORIJA Električni nihajni krog je električno vezje, ki služi za generacijo visokofrekvenče izmenične napetosti. V osnovi je ELEKTRIČNI NIHAJNI KROG TEORIJA Električni nihajni krog je električno vezje, ki služi za generacijo visokofrekvenče izmenične napetosti. V osnovi je "električno" nihalo, sestavljeno iz vzporedne vezave

Prikaži več

Matematika II (UNI) Izpit (23. avgust 2011) RE ITVE Naloga 1 (20 to k) Vektorja a = (0, 1, 1) in b = (1, 0, 1) oklepata trikotnik v prostoru. Izra una

Matematika II (UNI) Izpit (23. avgust 2011) RE ITVE Naloga 1 (20 to k) Vektorja a = (0, 1, 1) in b = (1, 0, 1) oklepata trikotnik v prostoru. Izra una Matematika II (UNI) Izpit (. avgust 11) RE ITVE Naloga 1 ( to k) Vektorja a = (, 1, 1) in b = (1,, 1) oklepata trikotnik v prostoru. Izra unajte: kot med vektorjema a in b, pravokotno projekcijo vektorja

Prikaži več

6.1 Uvod 6 Igra Chomp Marko Repše, Chomp je nepristranska igra dveh igralcev s popolno informacijo na dvo (ali vec) dimenzionalnem prostoru

6.1 Uvod 6 Igra Chomp Marko Repše, Chomp je nepristranska igra dveh igralcev s popolno informacijo na dvo (ali vec) dimenzionalnem prostoru 6.1 Uvod 6 Igra Chomp Marko Repše, 30.03.2009 Chomp je nepristranska igra dveh igralcev s popolno informacijo na dvo (ali vec) dimenzionalnem prostoru in na končni ali neskončni čokoladi. Igralca si izmenjujeta

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-avgust-17.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-avgust-17.dvi Vpisna številka Priimek, ime Smer: K KT WA Izpit pri predmetu MATEMATIKA I Računski del Ugasni in odstrani mobilni telefon. Uporaba knjig in zapiskov ni dovoljena. Dovoljeni pripomočki so: kemični svinčnik,

Prikaži več

1 Naloge iz Matematične fizike II /14 1. Enakomerno segreto kocko vržemo v hladnejšo vodo stalne temperature. Kako se spreminja s časom temperat

1 Naloge iz Matematične fizike II /14 1. Enakomerno segreto kocko vržemo v hladnejšo vodo stalne temperature. Kako se spreminja s časom temperat 1 Naloge iz Matematične fizike II - 2013/14 1. Enakomerno segreto kocko vržemo v hladnejšo vodo stalne temperature. Kako se spreminja s časom temperatura v kocki? Kakšna je časovna odvisnost toplotnega

Prikaži več

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Katja Ciglar Analiza občutljivosti v Excel-u Seminarska naloga pri predmetu Optimizacija v fina

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Katja Ciglar Analiza občutljivosti v Excel-u Seminarska naloga pri predmetu Optimizacija v fina UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Katja Ciglar Analiza občutljivosti v Excel-u Seminarska naloga pri predmetu Optimizacija v financah Ljubljana, 2010 1. Klasični pristop k analizi

Prikaži več

Osnovni pojmi(17)

Osnovni pojmi(17) Osnovni poji pri obravnavi periodičnih signalov Equation Section 6 Vsebina: Opis periodičnih signalov s periodo, frekvenco in krožno frekvenco. Razlaga pojov aplituda, faza, haronični signal. Določanje

Prikaži več

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 2017

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 2017 UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 217 ii Kazalo Diferencialni račun vektorskih funkcij 1 1.1 Skalarne funkcije...........................

Prikaži več

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6. julij 2018 Navodila Pazljivo preberite be

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6. julij 2018 Navodila Pazljivo preberite be Ime in priimek: Vpisna št: FAKULEA ZA MAEMAIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 6 julij 2018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Za pozitiven rezultat

Prikaži več

2

2 Drsni ležaj Strojni elementi 1 Predloga za vaje Pripravila: doc. dr. Domen Šruga as. dr. Ivan Okorn Ljubljana, 2016 STROJNI ELEMENTI.1. 1 Kazalo 1. Definicija naloge... 3 1.1 Eksperimentalni del vaje...

Prikaži več

Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku β a c γ b α sin = a c cos = b c tan = a b cot = b a Sinus kota je razmerje kotu naspr

Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku β a c γ b α sin = a c cos = b c tan = a b cot = b a Sinus kota je razmerje kotu naspr Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete in hipotenuze. Kosinus kota je razmerje

Prikaži več

Microsoft PowerPoint _12_15-11_predavanje(1_00)-IR-pdf

Microsoft PowerPoint _12_15-11_predavanje(1_00)-IR-pdf uporaba for zanke i iz korak > 0 oblika zanke: for i iz : korak : ik NE i ik DA stavek1 stavek2 stavekn stavek1 stavek2 stavekn end i i + korak I&: P-XI/1/17 uporaba for zanke i iz korak < 0 oblika zanke:

Prikaži več

7. VAJA A. ENAČBA ZBIRALNE LEČE

7. VAJA A. ENAČBA ZBIRALNE LEČE 7. VAJA A. ENAČBA ZBIRALNE LEČE 1. UVOD Enačbo leče dobimo navadno s pomočjo geometrijskih konstrukcij. V našem primeru bomo do te enačbe prišli eksperimentalno, z merjenjem razdalj a in b. 2. NALOGA Izračunaj

Prikaži več

Univerza v Mariboru Fakulteta za naravoslovje in matematiko Oddelek za matematiko in računalništvo Enopredmetna matematika IZPIT IZ VERJETNOSTI IN STA

Univerza v Mariboru Fakulteta za naravoslovje in matematiko Oddelek za matematiko in računalništvo Enopredmetna matematika IZPIT IZ VERJETNOSTI IN STA Enopredmetna matematika IN STATISTIKE Maribor, 31. 01. 2012 1. Na voljo imamo kovanca tipa K 1 in K 2, katerih verjetnost, da pade grb, je p 1 in p 2. (a) Istočasno vržemo oba kovanca. Verjetnost, da je

Prikaži več

FGG14

FGG14 Iterativne metode podprostorov Iterativne metode podprostorov uporabljamo za numerično reševanje linearnih sistemov ali računanje lastnih vrednosti problemov z velikimi razpršenimi matrikami, ki so prevelike,

Prikaži več

PowerPoint Presentation

PowerPoint Presentation Integral rešujemo nalogo: Dana je funkcija f. Najdimo funkcijo F, katere odvod je enak f. Če je F ()=f() pravimo, da je F() primitivna funkcija za funkcijo f(). Primeri: f ( ) = cos f ( ) = sin f () =

Prikaži več

VPRAŠANJA ZA USTNI IZPIT PRI PREDMETU OSNOVE ELEKTROTEHNIKE II PREDAVATELJ PROF. DR. DEJAN KRIŽAJ Vprašanja so v osnovi sestavljena iz naslovov poglav

VPRAŠANJA ZA USTNI IZPIT PRI PREDMETU OSNOVE ELEKTROTEHNIKE II PREDAVATELJ PROF. DR. DEJAN KRIŽAJ Vprašanja so v osnovi sestavljena iz naslovov poglav VPRAŠANJA ZA USTNI IZPIT PRI PREDMETU OSNOVE ELEKTROTEHNIKE II PREDAVATELJ PROF. DR. DEJAN KRIŽAJ Vprašanja so v osnovi sestavljena iz naslovov poglavij v učbeniku Magnetika in skripti Izmenični signali.

Prikaži več

Rešene naloge iz Linearne Algebre

Rešene naloge iz Linearne Algebre UNIVERZA V LJUBLJANI FAKULTETA ZA RAČUNALNIŠTVO IN INFORMATIKO LABORATORIJ ZA MATEMATIČNE METODE V RAČUNALNIŠTVU IN INFORMATIKI Aleksandra Franc REŠENE NALOGE IZ LINEARNE ALGEBRE Študijsko gradivo Ljubljana

Prikaži več

3. Preizkušanje domnev

3. Preizkušanje domnev 3. Preizkušanje domnev doc. dr. Miroslav Verbič miroslav.verbic@ef.uni-lj.si www.miroslav-verbic.si Ljubljana, februar 2014 3.1 Izračunavanje intervala zaupanja za vrednosti regresijskih koeficientov Motivacija

Prikaži več

7. tekmovanje v znanju astronomije 8. razred OŠ Državno tekmovanje, 9. januar 2016 REŠITVE NALOG IN TOČKOVNIK SKLOP A V sklopu A je pravilen odgovor o

7. tekmovanje v znanju astronomije 8. razred OŠ Državno tekmovanje, 9. januar 2016 REŠITVE NALOG IN TOČKOVNIK SKLOP A V sklopu A je pravilen odgovor o 7. tekmovanje v znanju astronomije 8. razred OŠ Državno tekmovanje, 9. januar 2016 REŠITVE NALOG IN TOČKOVNIK SKLOP A V sklopu A je pravilen odgovor ovrednoten z 2 točkama; če ni obkrožen noben odgovor

Prikaži več

Poglavje 3 Reševanje nelinearnih enačb Na iskanje rešitve enačbe oblike f(x) = 0 (3.1) zelo pogosto naletimo pri reševanju tehničnih problemov. Pri te

Poglavje 3 Reševanje nelinearnih enačb Na iskanje rešitve enačbe oblike f(x) = 0 (3.1) zelo pogosto naletimo pri reševanju tehničnih problemov. Pri te Poglavje 3 Reševanje nelinearnih enačb Na iskanje rešitve enačbe oblike f(x) = 0 (3.1) zelo pogosto naletimo pri reševanju tehničnih problemov. Pri tem je lahko nelinearna funkcija f podana eksplicitno,

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 3. februar Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Veljale bodo samo rešitve na papirju, kjer

Prikaži več

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5. februar 2018 Navodila Pazljivo preberite

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5. februar 2018 Navodila Pazljivo preberite Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost Pisni izpit 5 februar 018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Nalog je

Prikaži več

resitve.dvi

resitve.dvi FAKULTETA ZA STROJNISTVO Matematika 2. kolokvij. december 2 Ime in priimek: Vpisna st: Navodila Pazljivo preberite besedilo naloge, preden se lotite resevanja. Veljale bodo samo resitve na papirju, kjer

Prikaži več

Microsoft Word - CelotniPraktikum_2011_verZaTisk.doc

Microsoft Word - CelotniPraktikum_2011_verZaTisk.doc Elektrotehniški praktikum Sila v elektrostatičnem polju Namen vaje Našli bomo podobnost med poljem mirujočih nabojev in poljem mas, ter kakšen vpliv ima relativna vlažnost zraka na hitrost razelektritve

Prikaži več

NAVADNA (BIVARIATNA) LINEARNA REGRESIJA O regresijski analizi govorimo, kadar želimo opisati povezanost dveh numeričnih spremenljivk. Opravka imamo to

NAVADNA (BIVARIATNA) LINEARNA REGRESIJA O regresijski analizi govorimo, kadar želimo opisati povezanost dveh numeričnih spremenljivk. Opravka imamo to NAVADNA (BIVARIATNA) LINEARNA REGRESIJA O regresijski analizi govorimo, kadar želimo opisati povezanost dveh numeričnih spremenljivk. Opravka imamo torej s pari podatkov (x i,y i ), kjer so x i vrednosti

Prikaži več

Ime in priimek

Ime in priimek Polje v osi tokovne zanke Seminar pri predmetu Osnove Elektrotehnike II, VSŠ (Uporaba programskih orodij v elektrotehniki) Ime Priimek, vpisna številka, skupina Ljubljana,.. Kratka navodila: Seminar mora

Prikaži več

Diapozitiv 1

Diapozitiv 1 9. Funkcije 1 9. 1. F U N K C I J A m a i n () 9.2. D E F I N I C I J A F U N K C I J E 9.3. S T A V E K r e t u r n 9.4. K L I C F U N K C I J E I N P R E N O S P A R A M E T R O V 9.5. P R E K R I V

Prikaži več

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-junij-17.dvi

C:/Users/Matevž Èrepnjak/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-junij-17.dvi Vpisna številka Priimek, ime Smer: K KT WA Izpit pri predmetu MATEMATIKA I Računski del Ugasni in odstrani mobilni telefon. Uporaba knjig in zapiskov ni dovoljena. Dovoljeni pripomočki so: kemični svinčnik,

Prikaži več

STROJNIŠKI VESTNIK LETNIK 22 LJUBLJANA, JULIJ AVGUST 1976 ŠTEVILKA 7 8 UDK Prispevek k reševanju drugega robnega problema pri steni z luknj

STROJNIŠKI VESTNIK LETNIK 22 LJUBLJANA, JULIJ AVGUST 1976 ŠTEVILKA 7 8 UDK Prispevek k reševanju drugega robnega problema pri steni z luknj STROJNIŠKI VESTNIK LETNIK 22 LJUBLJANA, JULIJ AVGUST 1976 ŠTEVILKA 7 8 UDK 624.073.12 Prispevek k reševanju drugega robnega problema pri steni z luknjo F R A N C K O S E L M A R K O Š K E R L J Članek

Prikaži več

Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t

Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t Matematika II (UN) 2. kolokvij (7. junij 2013) RE ITVE Naloga 1 (25 to k) ƒasovna funkcija f je denirana za t [0, 2] in podana s spodnjim grafom. f t 0.5 1.5 2.0 t a.) Nari²ite tri grafe: graf (klasi ne)

Prikaži več

C:/Users/Matevz/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-januar-februar-15.dvi

C:/Users/Matevz/Dropbox/FKKT/TESTI-IZPITI-REZULTATI/ /Izpiti/FKKT-januar-februar-15.dvi Kemijska tehnologija, Kemija Bolonjski univerzitetni program Smer: KT K WolframA: DA NE Čas reševanja je 75 minut. Navodila: Računski del izpita pri predmetu MATEMATIKA I Ugasni in odstrani mobilni telefon.

Prikaži več

Napotki za izbiro gibljivih verig Stegne 25, 1000 Ljubljana, tel: , fax:

Napotki za izbiro gibljivih verig   Stegne 25, 1000 Ljubljana, tel: , fax: Napotki za izbiro gibljivih verig Postopek za izbiro verige Vrsta gibanja Izračun teže instalacij Izbira verige glede na težo Hod verige Dolžina verige Radij verige Hitrost in pospešek gibanja Instalacije

Prikaži več

LABORATORIJSKE VAJE IZ FIZIKE

LABORATORIJSKE VAJE IZ FIZIKE UVOD LABORATORIJSKE VAJE IZ FIZIKE V tem šolskem letu ste se odločili za fiziko kot izbirni predmet. Laboratorijske vaje boste opravljali med poukom od začetka oktobra do konca aprila. Zunanji kandidati

Prikaži več

Microsoft Word - A-3-Dezelak-SLO.doc

Microsoft Word - A-3-Dezelak-SLO.doc 20. posvetovanje "KOMUNALNA ENERGETIKA / POWER ENGINEERING", Maribor, 2011 1 ANALIZA OBRATOVANJA HIDROELEKTRARNE S ŠKOLJČNIM DIAGRAMOM Klemen DEŽELAK POVZETEK V prispevku je predstavljena možnost izvedbe

Prikaži več

Urejevalna razdalja Avtorji: Nino Cajnkar, Gregor Kikelj Mentorica: Anja Petković 1 Motivacija Tajnica v posadki MARS - a je pridna delavka, ampak se

Urejevalna razdalja Avtorji: Nino Cajnkar, Gregor Kikelj Mentorica: Anja Petković 1 Motivacija Tajnica v posadki MARS - a je pridna delavka, ampak se Urejevalna razdalja Avtorji: Nino Cajnkar, Gregor Kikelj Mentorica: Anja Petković 1 Motivacija Tajnica v posadki MARS - a je pridna delavka, ampak se velikokrat zmoti. Na srečo piše v programu Microsoft

Prikaži več

GeomInterp.dvi

GeomInterp.dvi Univerza v Ljubljani Fakulteta za matematiko in fiziko Seminar za Numerično analizo Geometrijska interpolacija z ravninskimi parametričnimi polinomskimi krivuljami Gašper Jaklič, Jernej Kozak, Marjeta

Prikaži več

M

M Š i f r a k a n d i d a t a : Državni izpitni center *M16140111* Osnovna raven MATEMATIKA Izpitna pola 1 SPOMLADANSKI IZPITNI ROK Sobota, 4. junij 016 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat

Prikaži več

DN080038_plonk plus fizika SS.indd

DN080038_plonk plus fizika SS.indd razlage I formule I rešeni primeri I namigi I opozorila I tabele Srednješolski Plonk+ Fizika razlage formule rešeni primeri namigi opozorila tabele Avtor: Vasja Kožuh Strokovni pregled: dr. Gorazd Planinšič

Prikaži več

Vaje: Matrike 1. Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N 0 1 n ; n N Pokaži, da je množica x 0 y 0 x

Vaje: Matrike 1. Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N 0 1 n ; n N Pokaži, da je množica x 0 y 0 x Vaje: Matrike 1 Ugani rezultat, nato pa dokaži z indukcijo: (a) (b) [ ] n 1 1 ; n N n 1 1 0 1 ; n N 0 2 Pokaži, da je množica x 0 y 0 x y x + z ; x, y, z R y x z x vektorski podprostor v prostoru matrik

Prikaži več

MEHANIKA I - sinopsis predavanj za študente matematike v letu 2017/ OSNOVE NEWTONOVE MEHANIKE Literatura Aganovič, Veselič, Uvod v anali

MEHANIKA I - sinopsis predavanj za študente matematike v letu 2017/ OSNOVE NEWTONOVE MEHANIKE Literatura Aganovič, Veselič, Uvod v anali MEHANIKA I - sinopsis predavanj za študente matematike v letu 017/018 4. 10. 17 OSNOVE NEWTONOVE MEHANIKE Literatura Aganovič, Veselič, Uvod v analitičku mehaniku, Matematički odjel Prirodoslovnog-matematičkog

Prikaži več

STAVKI _5_

STAVKI _5_ 5. Stavki (Teoremi) Vsebina: Stavek superpozicije, stavek Thévenina in Nortona, maksimalna moč na bremenu (drugič), stavek Tellegena. 1. Stavek superpozicije Ta stavek določa, da lahko poljubno vezje sestavljeno

Prikaži več

Učinkovita izvedba algoritma Goldberg-Tarjan Teja Peklaj 26. februar Definicije Definicija 1 Naj bo (G, u, s, t) omrežje, f : E(G) R, za katero v

Učinkovita izvedba algoritma Goldberg-Tarjan Teja Peklaj 26. februar Definicije Definicija 1 Naj bo (G, u, s, t) omrežje, f : E(G) R, za katero v Učinkovita izvedba algoritma Goldberg-Tarjan Teja Peklaj 26. februar 2009 1 Definicije Definicija 1 Naj bo (G, u, s, t) omrežje, f : E(G) R, za katero velja 0 f(e) u(e) za e E(G). Za v V (G) definiramo presežek

Prikaži več

Vektorji - naloge za test Naloga 1 Ali so točke A(1, 2, 3), B(0, 3, 7), C(3, 5, 11) b) A(0, 3, 5), B(1, 2, 2), C(3, 0, 4) kolinearne? Naloga 2 Ali toč

Vektorji - naloge za test Naloga 1 Ali so točke A(1, 2, 3), B(0, 3, 7), C(3, 5, 11) b) A(0, 3, 5), B(1, 2, 2), C(3, 0, 4) kolinearne? Naloga 2 Ali toč Vektorji - naloge za test Naloga 1 li so točke (1, 2, 3), (0, 3, 7), C(3, 5, 11) b) (0, 3, 5), (1, 2, 2), C(3, 0, 4) kolinearne? Naloga 2 li točke a) (6, 0, 2), (2, 0, 4), C(6, 6, 1) in D(2, 6, 3), b)

Prikaži več

Microsoft Word - SI_vaja5.doc

Microsoft Word - SI_vaja5.doc Univerza v Ljubljani, Zdravstvena fakulteta Sanitarno inženirstvo Statistika Inštitut za biostatistiko in medicinsko informatiko Š.l. 2011/2012, 3. letnik (1. stopnja), Vaja 5 Naloge 1. del: t test za

Prikaži več

PRIPRAVA NA 1. Š. N.: KVADRATNA FUNKCIJA IN KVADRATNA ENAČBA 1. Izračunaj presečišča parabole y=5 x x 8 s koordinatnima osema. R: 2 0, 8, 4,0,,0

PRIPRAVA NA 1. Š. N.: KVADRATNA FUNKCIJA IN KVADRATNA ENAČBA 1. Izračunaj presečišča parabole y=5 x x 8 s koordinatnima osema. R: 2 0, 8, 4,0,,0 PRIPRAVA NA 1. Š. N.: KVADRATNA FUNKCIJA IN KVADRATNA ENAČBA 1. Izračunaj presečišča parabole y=5 x +18 x 8 s koordinatnima osema. R: 0, 8, 4,0,,0 5. Zapiši enačbo kvadratne funkcije f (x )=3 x +1 x+8

Prikaži več

Prevodnik_v_polju_14_

Prevodnik_v_polju_14_ 14. Prevodnik v električnem polju Vsebina poglavja: prevodnik v zunanjem električnem polju, površina prevodnika je ekvipotencialna ploskev, elektrostatična indukcija (influenca), polje znotraj votline

Prikaži več

Univerza na Primorskem FAMNIT, MFI Vrednotenje zavarovalnih produktov Seminarska naloga Naloge so sestavni del preverjanja znanja pri predmetu Vrednot

Univerza na Primorskem FAMNIT, MFI Vrednotenje zavarovalnih produktov Seminarska naloga Naloge so sestavni del preverjanja znanja pri predmetu Vrednot Univerza na Primorskem FAMNIT, MFI Vrednotenje zavarovalnih produktov Seminarska naloga Naloge so sestavni del preverjanja znanja pri predmetu Vrednotenje zavarovalnih produktov. Vsaka naloga je vredna

Prikaži več

Univerza v Ljubljani FAKULTETA ZA RAČUNALNIŠTVO IN INFORMATIKO Tržaška c. 25, 1000 Ljubljana Realizacija n-bitnega polnega seštevalnika z uporabo kvan

Univerza v Ljubljani FAKULTETA ZA RAČUNALNIŠTVO IN INFORMATIKO Tržaška c. 25, 1000 Ljubljana Realizacija n-bitnega polnega seštevalnika z uporabo kvan Univerza v Ljubljani FAKULTETA ZA RAČUNALNIŠTVO IN INFORMATIKO Tržaška c. 25, 1000 Ljubljana Realizacija n-bitnega polnega seštevalnika z uporabo kvantnih celičnih avtomatov SEMINARSKA NALOGA Univerzitetna

Prikaži več

Kazalo 1 DVOMESTNE RELACIJE Operacije z dvomestnimi relacijami Predstavitev relacij

Kazalo 1 DVOMESTNE RELACIJE Operacije z dvomestnimi relacijami Predstavitev relacij Kazalo 1 DVOMESTNE RELACIJE 1 1.1 Operacije z dvomestnimi relacijami...................... 2 1.2 Predstavitev relacij............................... 3 1.3 Lastnosti relacij na dani množici (R X X)................

Prikaži več

Funkcije in grafi

Funkcije in grafi 14 Funkcije in grafi Funkcije Zapisi funkcij Sorazmernost Obratna sorazmernost Potenčne funkcije Polinomske funkcije Druge funkcije Prileganje podatkom 14.1 Funkcije Spremenljivke Odvisnost spremenljivk

Prikaži več

Equation Chapter 1 Section 24Trifazni sistemi

Equation Chapter 1 Section 24Trifazni sistemi zmenicni_signali_triazni_sistemi(4b).doc / 8.5.7/ Triazni sistemi (4) Spoznali smo že primer dvoaznega sistema pri vrtilnem magnetnem polju, ki sta ga ustvarjala dva para prečno postavljenih tuljav s azno

Prikaži več

GRUPE07junij.dvi

GRUPE07junij.dvi Norma Mankoč Borštnik 1.PREDMET : TEORIJA GRUP (SIMETRIJE V FIZIKI) Ljubljana, februar 2007 (2/1) (Povzetek tistega, kar je bilo realizirano.) 8. junij 2007 2.NAMEN. Predmet seznani študente s pomenom

Prikaži več

Microsoft Word - Avditorne.docx

Microsoft Word - Avditorne.docx 1. Naloga Delovanje oscilatorja je odvisno od kapacitivnosti kondenzatorja C. Dopustno območje izhodnih frekvenc je podano z dopustnim območjem kapacitivnosti C od 1,35 do 1,61 nf. Uporabljen je kondenzator

Prikaži več

30 Vpihovalne šobe Vpihovalna šoba VŠ-4 Uporaba Vpihovalne šobe VŠ-4 se uporabljajo za oskrbovanje prostorov s hladnim ali toplim zrakom povsod tam, k

30 Vpihovalne šobe Vpihovalna šoba VŠ-4 Uporaba Vpihovalne šobe VŠ-4 se uporabljajo za oskrbovanje prostorov s hladnim ali toplim zrakom povsod tam, k 30 Vpihovalna šoba VŠ-4 Uporaba VŠ-4 se uporabljajo za oskrbovanje prostorov s hladnim ali toplim zrakom povsod tam, kjer se zahtevajo velike dometne razdalje in nizka stopnja šumnosti. S postavitvijo

Prikaži več

Microsoft PowerPoint - p_TK_inzeniring_1_dan_v5_shortTS.ppt [Compatibility Mode]

Microsoft PowerPoint - p_TK_inzeniring_1_dan_v5_shortTS.ppt [Compatibility Mode] Telekomunikacijski inženiring dr. Iztok Humar Vsebina Značilnosti TK prometa, preprosti modeli, uporaba Uvod Značilnosti telekomunikacijskega prometa Modeliranje vodovno komutiranih zvez Erlang B Erlang

Prikaži več

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 31. avgust 2018 Navodila Pazljivo preberite

Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 31. avgust 2018 Navodila Pazljivo preberite Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Statistika Pisni izpit 31 avgust 018 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Za pozitiven

Prikaži več

Numeri na analiza - podiplomski ²tudij FGG doma e naloge - 1. skupina V prvem delu morate re²iti toliko nalog, da bo njihova skupna vsota vsaj 10 to k

Numeri na analiza - podiplomski ²tudij FGG doma e naloge - 1. skupina V prvem delu morate re²iti toliko nalog, da bo njihova skupna vsota vsaj 10 to k Numeri na analiza - podiplomski ²tudij FGG doma e naloge -. skupina V prvem delu morate re²iti toliko nalog, da bo njihova skupna vsota vsaj 0 to k in da bo vsaj ena izmed njih vredna vsaj 4 to ke. Za

Prikaži več

N

N Državni izpitni center *N19141132* 9. razred FIZIKA Ponedeljek, 13. maj 2019 NAVODILA ZA VREDNOTENJE NACIONALNO PREVERJANJE ZNANJA v 9. razredu Državni izpitni center Vse pravice pridržane. 2 N191-411-3-2

Prikaži več

predstavitev fakultete za matematiko 2017 A

predstavitev fakultete za matematiko 2017 A ZAKAJ ŠTUDIJ MATEMATIKE? Ker vam je všeč in vam gre dobro od rok! lepa, eksaktna veda, ki ne zastara matematičnoanalitično sklepanje je uporabno povsod matematiki so zaposljivi ZAKAJ V LJUBLJANI? najdaljša

Prikaži več

'Kombinatoricna optimizacija / Lokalna optimizacija'

'Kombinatoricna optimizacija / Lokalna optimizacija' Kombinatorična optimizacija 3. Lokalna optimizacija Vladimir Batagelj FMF, matematika na vrhu različica: 15. november 2006 / 23 : 17 V. Batagelj: Kombinatorična optimizacija / 3. Lokalna optimizacija 1

Prikaži več

Microsoft Word - 2. Merski sistemi-b.doc

Microsoft Word - 2. Merski sistemi-b.doc 2.3 Etaloni Definicija enote je največkrat šele natančno formulirana naloga, kako enoto realizirati. Primarni etaloni Naprava, s katero realiziramo osnovno ali izpeljano enoto je primarni etalon. Ima največjo

Prikaži več

Turingov stroj in programiranje Barbara Strniša Opis in definicija Definirajmo nekaj oznak: Σ abeceda... končna neprazna množica simbolo

Turingov stroj in programiranje Barbara Strniša Opis in definicija Definirajmo nekaj oznak: Σ abeceda... končna neprazna množica simbolo Turingov stroj in programiranje Barbara Strniša 12. 4. 2010 1 Opis in definicija Definirajmo nekaj oznak: Σ abeceda... končna neprazna množica simbolov (običajno Σ 2) Σ n = {s 1 s 2... s n ; s i Σ, i =

Prikaži več

FIZIKA IN ARHITEKTURA SKOZI NAŠA UŠESA

FIZIKA IN ARHITEKTURA SKOZI NAŠA UŠESA FIZIKA IN ARHITEKTURA SKOZI NAŠA UŠESA SE SPOMNITE SREDNJEŠOLSKE FIZIKE IN BIOLOGIJE? Saša Galonja univ. dipl. inž. arh. ZAPS marec, april 2012 Vsebina Kaj je zvok? Kako slišimo? Arhitekturna akustika

Prikaži več

Priprava prispevka za Elektrotehniški vestnik

Priprava prispevka za Elektrotehniški vestnik ELEKTROTEHNIŠKI VESTNIK 84(4): 167-172, 2017 IZVIRNI ZNANSTVENI ČLANEK Možnost stabiliziranja prometnega toka s prilagajanjem omejitve hitrosti Lovrenc Švegl 1, Igor Grabec 2 1 Gimnazija Vič, Tržaška cesta

Prikaži več

Matematika II (UN) 1. kolokvij (13. april 2012) RE ITVE Naloga 1 (25 to k) Dana je linearna preslikava s predpisom τ( x) = A x A 1 x, kjer je A

Matematika II (UN) 1. kolokvij (13. april 2012) RE ITVE Naloga 1 (25 to k) Dana je linearna preslikava s predpisom τ( x) = A x A 1 x, kjer je A Matematika II (UN) 1 kolokvij (13 april 01) RE ITVE Naloga 1 (5 to k) Dana je linearna preslikava s predpisom τ( x) = A x A 1 x, kjer je 0 1 1 A = 1, 1 A 1 pa je inverzna matrika matrike A a) Poi² ite

Prikaži več

Geometrija v nacionalnih preverjanjih znanja

Geometrija v nacionalnih preverjanjih znanja Geometrija v nacionalnih preverjanjih znanja Aleš Kotnik, OŠ Rada Robiča Limbuš Boštjan Repovž, OŠ Krmelj Struktura NPZ za 6. razred Struktura NPZ za 9. razred Taksonomska stopnja (raven) po Gagneju I

Prikaži več

LaTeX slides

LaTeX slides Linearni in nelinearni modeli Milena Kovač 22. december 2006 Biometrija 2006/2007 1 Linearni, pogojno linearni in nelinearni modeli Kriteriji za razdelitev: prvi parcialni odvodi po parametrih Linearni

Prikaži več

Slovenska predloga za KE

Slovenska predloga za KE 23. posvetovanje "KOMUNALNA ENERGETIKA / POWER ENGINEERING", Maribor, 2014 1 ANALIZA VPLIVA PRETOKA ENERGIJE PREKO RAZLIČNIH NIZKONAPETOSTNIH VODOV NA NAPETOSTNI PROFIL OMREŽJA Ernest BELIČ, Klemen DEŽELAK,

Prikaži več